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Abstract: With the rise of electric vehicles, autonomous driving, and valet parking technologies,
considerable research has been dedicated to automatic charging solutions. While the current focus
lies on charging robot design and the visual positioning of charging ports, a notable gap exists
in addressing safety aspects during the charging plug-in process. This study aims to bridge this
gap by proposing a collision classification scheme for robot manipulators in automatic electric ve-
hicle charging scenarios. In situations with minimal visual positioning deviation, robots employ
impedance control for effective insertion. Significant deviations may lead to potential collisions
with other vehicle parts, demanding discrimination through a global visual system. For moderate
deviations, where a robot’s end-effector encounters difficulty in insertion, existing methods prove
inadequate. To address this, we propose a novel data-driven collision classification method, utilizing
vibration signals generated during collisions, integrating the robust light gradient boosting machine
(LightGBM) algorithm. This approach effectively discerns the acceptability of collision contacts in
scenarios involving moderate deviations. Considering the impact of passing vehicles introducing
environmental noise, a noise suppression module is introduced into the proposed collision classifica-
tion method, leveraging empirical mode decomposition (EMD) to enhance its robustness in noisy
charging scenarios. This study significantly contributes to the safety of automatic charging processes,
offering a practical and applicable collision classification solution tailored to diverse noisy scenarios
and potential contact forms encountered by charging robots. The experimental results affirm the
effectiveness of the collision classification method, integrating LightGBM and EMD, and highlight its
promising prediction accuracy. These findings offer valuable perspectives to steer future research
endeavors in the domain of autonomous charging systems.

Keywords: collision classification; plug-in safety; automatic charging; light gradient boosting ma-
chine; empirical mode decomposition

1. Introduction

With the proliferation of electric vehicles, the maturation of autonomous driving, and
the development of valet parking technologies, extensive research has been conducted
on automatic charging solutions for electric vehicles. In the rapidly advancing field of
artificial intelligence, the utilization of robots for the automatic charging of electric vehicles
is regarded as an ideal solution. Currently, research in the domain of automatic electric
vehicle charging primarily focuses on the design of charging robots [1,2] and the visual
positioning of charging ports [3–7]. However, a notable gap remains in the research con-
cerning the safety aspects of robots during the charging plug-in process. When addressing
the safety of the automatic charging plug-in process, collisions involving robots become an
inevitable challenge. Despite the generally reliable precision of visual systems in providing
accurate charging port localization, external environmental factors, such as extreme lighting
conditions, temperature variations, and humidity, can lead to visual positioning failures.
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In such situations, the absence of an effective collision protection system poses a risk of
damage to the robot and the vehicle.

Currently, research on the issue of robot collisions is primarily concentrated in the field
of physical human–robot interaction (pHRI) [8]. In this field, robots are often employed in
unstructured and highly dynamic environments, where contact or collisions with humans
are sometimes unavoidable. Due to the diverse forms and processes of collision contact,
there is currently no one-size-fits-all approach to handling such situations. In [9], an insight-
ful collision processing pipeline is proposed, breaking down the core processes of collision
into collision detection [10,11], collision localization [12,13], collision identification [8,14],
collision classification [15,16], and reaction after collision [17,18]. Among these, collision
classification holds significant importance in ensuring human–robot safety. Its purpose is
to predict the severity of the potential damage caused by a collision or the acceptability
of the collision contact. This step serves as a direct decision-making point for the robot to
respond appropriately in the event of a collision. Effective collision classification methods
can substantially enhance the safety of robot systems.

Although the objectives of the collision processing stages mentioned above differ, there
is a certain degree of commonality in the methods employed across these processing stages.
These methods are primarily categorized into model-based collision processing methods,
tactile-sensor-based collision processing methods, and data-driven collision processing
methods [15]. Model-based collision processing methods offer the advantage of efficiently
utilizing onboard sensors to address collision issues without the need for external sensor
intervention, thereby significantly reducing the cost of collision issue resolution [10,17].
However, their effectiveness in addressing collision problems is constrained by differences
between the constructed observation model and the actual physical characteristics, resulting
in limited precision in problem resolution. In contrast, the use of tactile sensors often
provides a precision advantage in handling collision problems [19,20]. These sensors are
typically deployed in the form of artificial skin on robots, enabling more refined collision
processing. However, the manufacturing process for such artificial skin is often complex,
and these sensors may not be suitable for scenarios involving high loads and frequent
contact due to their direct interaction with the target being manipulated or protected.
With the advancement of artificial intelligence technology, supervised learning-based
methods are increasingly being introduced when addressing collision problems [8,21].
These methods, collectively referred to as data-driven collision processing methods, can
be implemented using both onboard and external sensors. By combining reasonable data
acquisition rules, the level of precision when addressing collision problems can rival that
of tactile-sensor-based collision processing methods.

Regarding the extremely open issue of collision classification, it is often necessary to
integrate the practical application scenarios of robots, potential contact forms, and other
factors to design a rational collision classification strategy. This is crucial for significantly
enhancing the applicability of the proposed classification methods in their corresponding
domains. In the context of robot-based automatic electric vehicle charging, when there is
minimal deviation in visual positioning, a robot can achieve effective insertion through
impedance control. When there is a significant deviation in visual positioning, it may
result in the end effector of the robot not making contact with the charging port but instead
coming into contact with other parts of the electric vehicle. Due to the evident disparity,
deploying a global visual system in the world coordinate system can facilitate collision
contact discrimination, thereby preventing potential damage. When there is a moderate
deviation in visual positioning and the end effector of the robot, carrying the charger is
still able to make contact with the charging port but encounters difficulty in insertion, so
the aforementioned methods are unable to address this situation. Given the limited size of
the collision area and the frequent insertions, often involving significant insertion force,
the system faces potential safety risks when lacking the capability to classify collisions
in such scenarios. In order to enhance the system’s safety, this paper proposes a novel
data-driven collision classification method. Utilizing the vibration signals generated during
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collisions, the objective is to effectively discern whether the collision contact is acceptable
in scenarios involving moderate deviations. Additionally, given the presence of passing
vehicles introducing environmental noise in the automatic charging scenario, this paper also
specifically introduces a noise suppression module into the proposed collision classification
method to enhance the robustness of the proposed method in noisy scenarios.

The rest of this paper is organized as follows: Section 2 reviews related work and clari-
fies the main contributions of this article. Section 3 describes the details of the datasets and
the framework of the proposed method. Section 4 presents and discusses the experimental
results, and Section 5 concludes this paper.

2. Related Work

Generally, vibration-signal-based collision processing for robots, acknowledged as
an engineering-oriented challenge, is essentially the task of classifying time-series sig-
nals that exhibit distinctions arising from collisions. Commonly employed methods for
processing time-series signals include support vector machine (SVM), k-nearest neighbor
(KNN), and artificial neural network (ANN). Min et al. [14] proposed a collision detection
and identification approach for robots, utilizing frequency domain features derived from
vibration information coupled with an ANN. This method not only effectively detects
collisions but also identifies the specific link where a collision occurred. McMahan et al. [21]
achieved high-precision collision localization on a single link of a robot by leveraging an
SVM in conjunction with a rational strategy for collecting collision vibration information.
In addition to utilizing vibration signals to construct collision processing models, there
are also methods that leverage joint torque information to address collision-related issues.
Zhang et al. [8] utilized joint torque signals in conjunction with KNN, SVM, and feed-
forward neural network (FNN) methods to classify collisions occurring between robots
and humans. This approach effectively distinguishes between intentional contact and
accidental collisions involving a specific link of a robot. Additionally, some supervised
learning methods based on manual feature extraction in tasks such as robot fault detection
and fault-tolerant control, as mentioned in [22,23], are also worth considering for reference.

With the advancement of deep learning technologies, the convolutional neural net-
work (CNN) [24] and recurrent neural network (RNN) [25] have been widely applied for
the classification of time-series signals. Abhishek Iyer et al. [26] designed a hybrid model
combining a CNN and long short-term memory (LSTM) for human emotion analysis based
on electroencephalogram (EEG) data. This model successfully classifies human emotions
into neutral, positive, and negative categories. Arun Prasath G et al. [27] integrated an
RNN and a CNN to develop a speech recognition method to assist individuals with hearing
impairments in translating spoken language into sign language. Anas H. Aljemely et al. [28]
constructed an efficient bearing fault diagnosis architecture by employing LSTM with a
large-margin nearest neighbor algorithm. Yiyao An et al. [29] successfully implemented
the diagnosis of non-uniform bearing vibration signals in the presence of disturbances by
introducing attention mechanisms into LSTM. In our previous research, we attempted to
explore the possibility of simultaneous collision localization and collision classification
at the end effector of a manipulator by fusing a CNN with an SVM [15]. However, in
practical applications, complex deep learning models often demand significant computa-
tional resources, requiring high-end GPUs or dedicated hardware for efficient training and
deployment. This significantly increases equipment costs.

This study makes a significant contribution by proposing a refined collision classi-
fication method based on the light gradient boosting machine (LightGBM) that exhibits
reduced dependence on GPUs. In order to enhance the robustness of the proposed method
against noise interference, we introduce a noise suppression technique based on empirical
mode decomposition (EMD) as a preprocessing step for LightGBM training. This strategic
approach to collision classification aims to maintain model performance while lowering
computational costs, offering a more economically efficient solution for deploying collision
classification systems in resource-constrained environments. Simultaneously, this work
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fills the gap in the related research on collision processing for the automatic charging of
electric vehicles in noisy scenarios.

3. Materials and Methods
3.1. Dataset Construction

To validate the effectiveness of the proposed method, we designed an experimental
setup, as illustrated in Figure 1. The experimental setup primarily consisted of a charging
robot based on an Aubo-i5 and a test platform. The charger was connected to the charging
robot through a flexible wrist, and an Inertial Measurement Unit (IMU) was mounted above
the charger to capture vibration data during collisions with the charging port. The vibration
signal comprised three-axis acceleration and three-axis angular velocity. The test platform
was capable of vertical movement and yaw adjustment, providing different poses for the
charging port in space.
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Figure 1. Illustration of experimental setup and collision domain.

To obtain reasonable data related to collisions between the charger and the charging
port, it was necessary to describe the data acquisition method. In line with the actual
application scenario, the robot connected the charger and the charging port in a linear
motion, as shown in Figure 2. The linear motion speed at the end effector of the robot
was set to 15 mm/s, and the IMU had a sampling frequency of 1500 Hz. Regarding the
relative position during a collision between the charger and the charging port, we adopted
the approach described in [15]. Specifically, we defined the intersection of the center axis
of the charger and the plane where the end face of the charging port was located as the
collision point. Based on this description, we designed a collision point template, consisting
of 289 points in total, arranged in a grid of 17 rows and 17 columns, with adjacent points
spaced 1 mm apart. This collision point template effectively captured situations where there
was incomplete alignment and deviation between the charger and the charging port during
the plug-in process. In the plug-in process, due to the presence of a flexible wrist, when
the deviation was within a certain range, even if there was a collision between the charger
and the charging port, the charger could still be inserted into the charging port. We defined
the collision points in such situations as acceptable collision points. When the deviation
exceeded a certain range and the collision prevented the charger from being inserted, or
if insertion would have caused significant deformation in the flexible wrist, leading to
potential plastic deformation, we defined the collision points as vulnerable collision points.
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In this study, impedance control strategies were not considered during the experiments. We
solely focused on the scenario where the robot connected the charger to the charging port
in a linear motion. Theoretically, the introduction of impedance control could enlarge the
acceptable domain, but this aspect is beyond the scope of this paper’s discussion. It is worth
noting that due to the non-coaxial alignment between the charger and the flexible wrist,
when the charger came into contact with the charging port, it induced a counterclockwise
rotation along the y-axis. Therefore, the acceptable domain in the experiment exhibited
asymmetry relative to the horizontal centerline of the charging port. Specifically, it was
composed of 15 acceptable collision points and 1 center collision point from the collision
point template. The region formed by the remaining collision points in the template was
defined as the vulnerable domain. The primary objective of this study was to predict
whether collisions occurred in the acceptable domain or the vulnerable domain.
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As mentioned in [14,15,30], theoretically, variations in joint configurations at the
moment of impact may impact the collision processing methods based on vibration signals.
In the data collection process in this study, data were also collected at different joint
configurations at the moment of collision. Given that the joint configurations at the moment
of collision differed for each collision point within the collision point template with the same
spatial pose, in order to create clear distinctions, we collected data on the collision point
template at different heights and different relative angular deviations between the charger
and the charging port to represent the different joint configurations of the robot. The specific
parameters are shown in Table 1. Here, the term ‘height’ refers to the relative height of
the charging port compared to the robot base. Initially, data collection was conducted
without any angular deviation between the charger and the charging port. We established
a collision point template at intervals of 20 mm, collecting collision vibration data for each
collision point within the template. To ensure the reliability of the data for a single collision
point, five collision experiments were conducted under the same conditions, resulting in
1445 samples for a collision point template at a single height. Additionally, to enhance the
generalization ability and stability of the trained model, collision samples from every set of
three adjacent heights were aggregated to create a dataset. This process resulted in three
distinct datasets, identified as C1, C2, and C3, each comprising 4335 samples. Furthermore,
we considered cases where there was an angular deviation between the charger and the
charging port. Due to limitations in the yaw angle precision of the experimental platform,
experiments were conducted with angular deviations of 1◦, 2◦, and 3◦ based on the height
of C1. The corresponding datasets were labeled as C4, C5, and C6, with each dataset
containing the same number of samples as C1. Furthermore, to simulate the presence of
noise, we introduced varying intensities of noise on the basis of C1–C6. The intensity of
the noise was defined using the Signal-to-Noise Ratio (SNR). Specifically, we introduced
additive Gaussian noise with SNR values of −9, −7, . . ., 9.
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Table 1. Distribution of the datasets.

Dataset Angular Deviation (◦) Number of Samples Height (mm)

1047
C1 0 4335 1027

1007

987
C2 0 4335 967

947

927
C3 0 4335 907

887

1047
C4 1 4335 1027

1007

1047
C5 2 4335 1027

1007

1047
C6 3 4335 1027

1007

3.2. LightGBM Model Concept

LightGBM (light gradient boosting machine) is a gradient boosting framework de-
signed to handle large-scale datasets efficiently. It is a type of gradient boosting decision
tree (GBDT) algorithm that was introduced by Ke et al. in 2017 [31]. The primary objective
of LightGBM is to overcome the computational challenges associated with traditional GBDT
algorithms, especially when dealing with massive amounts of data. The effectiveness of
LightGBM stems from the incorporation of two key techniques based on GBDT: gradient-
based one-side sampling (GOSS) and exclusive feature bundling (EFB). GOSS is a sampling
technique that selectively targets the most informative samples for each tree, enhancing
computational efficiency while maintaining high accuracy. EFB, on the other hand, focuses
on bundling features with similar distributions into a single feature, reducing the overall
number of features that require processing.

More specifically, given the supervised training set X = {(xi, yi)}n
i=1, where xi repre-

sents the input features, yi is the corresponding label, and n is the number of instances,

LightGBM seeks to determine the approximation
∼
h(x) of the target function h∗(x). The goal

is to minimize the expected value of the predefined loss function L
(

y,
∼
h(x)

)
.

Then, a number of K regression trees (∑K
k=1 hk(X)) are integrated into LightGBM to

approximate the final model, which is expressed as follows:

hK(X) = ∑K
k=1 hk(X), (1)

In LightGBM, the objective function is efficiently approximated using Newton’s
method. Therefore, the training process of LightGBM can be expressed in the follow-
ing additive form:

Fk
∼= ∑n

i=1 (pihk(xi) +
1
2

qih2
k(xi)), (2)

where pi and qi denote the first-order and second-order gradient statistics of the loss
function. Additionally, the regression tree is represented as tr(x), r ∈ {1, 2, . . . , J}, where
J denotes the number of leaves, r stands for the decision rules of the tree, and t represents a
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vector that denotes the sample weight of the leaf nodes. Moreover, Ij denotes the sample
set of leaf j. Equation (2) can be transformed as follows:

Fk = ∑J
j=1

((
∑i∈Ij

pi

)
tj +

1
2

((
∑i∈Ij

qi + γ

)
t2

j

)
, (3)

where γ represents the hyperparameters. Further employing the optimization method
outlined in [32], we obtain the following final optimized function:

O =
1
2

( (
∑i∈IL

pi
)2

∑i∈IL
qi + γ

+

(
∑i∈IR

pi
)2

∑i∈IR
qi + γ

− (∑i∈I pi)
2

∑i∈I qi + γ

)
, (4)

where IL and IR represent the sample sets for the left and right branches, respectively.
As discussed in [32], unlike traditional GBDT-based techniques, LightGBM grows trees
vertically. This unique approach makes LightGBM an effective method for processing
large-scale data and features. For a more detailed introduction to LightGBM, please refer
to [31] by Ke et al.

3.3. EMD Concept

Empirical mode decomposition (EMD) is a signal processing technique that assumes
a signal, y(t), can be decomposed into independent oscillation modes known as intrinsic
mode functions (IMFs). IMFs are characterized by certain conditions to ensure meaningful
instantaneous physical frequencies. Specifically, each IMF must satisfy the following two
conditions [33]:

1. The counts of zero crossings and extreme points should either be equal or differ by, at
most, one across the entire data range;

2. At each data point, the average value of the upper envelope and the lower envelope
of the local data should be zero.

The EMD method decomposes a multicomponent signal into a series of IMFs arranged
from high to low frequencies, along with a trend item. Each IMF is a signal that satisfies
the physical interpretation of a single oscillation mode and a single component signal.
Huang proposed a sifting process for EMD, where each round of sifting separates one IMF.
The process involves subtracting the obtained IMF from the original signal and repeating
the sifting process until termination criteria are met. The specific decomposition process is
as follows:

∼
x(t) = x(t) + n(t), (5)

where x(t) represents the noise-free signal and n(t) represents the additive noise in the
signal. Third-order spline curve fitting is employed for both the lower envelope (el(t))
and upper envelope (eu(t)), ensuring that the signal remains bounded between these two
envelopes. Subsequently, the mean curve (m1(t)) for the maxima and minima envelopes is
obtained as follows:

m1(t) =
el(t) + eu(t)

2
, (6)

Then, the difference between the signal to be decomposed and the mean curve can be
defined as follows:

h1(t) =
∼
x(t)− m1(t), (7)

At this point, it is necessary to determine whether h1(t) satisfies the conditions for
being a valid IMF. If h1(t) meets the criteria for being an IMF, it is defined as a first-order IMF
component (c1(t)). If it does not meet the conditions for being an IMF, h1(t) is considered
as the signal to be further decomposed, and the process outlined in Equations (6) and (7) is
repeated until the resulting signal satisfies the IMF conditions. This newly obtained signal
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is then defined as the first-order IMF component c1(t). Subsequently, based on this, the
residual signal, stripped of the IMF component, can be represented as

r1(t) =
∼
x(t)− c1(t), (8)

Then, using the residual signal as the new signal to be decomposed, the process from
Equations (5)–(8) is repeated until the resulting signal after the mth decomposition cycle,
denoted as rm(t), becomes a monotonic function or a constant. In the context of EMD, at
this point, the initial noisy collision vibration signal can be represented as

∼
x(t) =

m

∑
i=1

ci(t) + rm(t) (9)

3.4. Workflow of the Proposed Method

The workflow of the proposed EMD-LightGBM collision classification method is
illustrated in Figure 3. Initially, the data resource comprised collision vibration data
acquired through the insertion and collision of each point on the collision point template.
Subsequently, normalization was applied to the six-axis vibration signals to eliminate
scale differences between the vibration features across different axes. The typical six-axis
collision vibration signals and their corresponding normalized forms are shown in Figure 4.
Here, we adopted the term ‘effective period’, as introduced in [15], to describe the actual
length of the training data. Additionally, in consideration of signal variations during
the collision, the effective period encompassed the length of the time series preceding
the collision. For ease of comparison and analysis, this work standardized the length of
the time series preceding the collision for vibration signals at different collision points
to 50 sampling points. Following preprocessing, the data were partitioned into training
and testing sets. To ensure there was no leakage of information from the testing set to
the training set, distinct joint configurations were employed during the acquisition of the
testing set, which were entirely different from those used to obtain the training set in this
study. To enhance model performance while reducing computational complexity, feature
selection was essential. In this work, we initially used the ReliefF [34] method to rank
the importance of predefined features. Subsequently, redundant features were eliminated
using LightGBM, KNN, SVM, and FNN methods. The use of these four methods was
primarily for fairness in model validation and comparison. During the model validation
and comparison stage, the comparative methods mentioned in [8], KNN, SVM, and FNN,
were employed. In practical applications, it is suggested to consider using LightGBM
independently to remove redundant features. It is worth noting that our feature selection
process involved signals without introducing noise. After identifying suitable features,
signals with noise underwent EMD. This was followed by a denoising reconstruction
process to generate new vibration signals. The resulting vibration signals then underwent
feature extraction based on the chosen feature representation. Following this, the LightGBM
model was trained using the extracted features. In addition, during testing, the same EMD
and reconstruction process for signals containing noise applied in the training process was
used on the test data. The identical feature representation method was directly applied to
the reconstructed signals of the testing set for feature extraction. The extracted features
were then utilized to evaluate the trained model.
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4. Experimental Results and Discussion
4.1. Feature Selection Results

This section emphasizes effective feature selection using the predefined feature repre-
sentation outlined in Table 2, which is an extension of the work presented in [8]. The identi-
fiers ‘T’ and ‘F’ are used to denote time domain features and frequency domain features,
respectively. To ensure optimal model performance during feature selection, the initial
step involved the critical task of hyperparameter optimization for various models utilizing
predefined features. In this context, we set the effective period length to 800 sample points,
and the chosen optimization method was the Grid Search approach [35]. A Grid Search
systematically explores a predefined hyperparameter space through exhaustive attempts of
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different parameter combinations to identify the optimal combination on the validation
set. To capture comprehensive feature information, the incorporation of a sliding window
is imperative. However, the selection of an appropriate sliding window size is pivotal.
A window that is too small may risk losing medium-scale features, influenced by transient
information, leading to an increased number of extracted features and, subsequently, el-
evated data feature redundancy, thereby reducing computational efficiency. Conversely,
an excessively large window size induces significant overlap, resulting in information
redundancy and a reduction in independence between features. Moreover, an overly large
size may average or blur specific feature variations, causing distortion. We determined
the sliding window length to be 20% of the effective period’s length, with a 50% overlap
between adjacent sliding windows. Additionally, to avoid the leakage of testing informa-
tion during the feature selection process, we solely utilized the C1 dataset to optimize
model parameters. The optimization results for the hyperparameters of different models
are presented in Table 3.

Table 2. Predefined feature representations.

Feature Type
Identifier Name of Feature Feature Definition

T1 Mean M =
1
n∑n

i=1τi

T2 Median Md =

 τ(n+1)/2, n is odd
τn/2 + τ(n/2)+1

2
, n is even

T3 Root mean square RMS =

√
1
n∑n

i=1τi
2

T4 Variance V =
1
n∑n

i=1(τi − M)2

T5 Standard deviation SD =
√

V

T6 Skewness SK =
1
n

V−(3/2)∑n
i=1(τi − M)3

T7 Kurtosis K =
1
n

V−2∑n
i=1(τi − M)4 − 3

T8 Coefficient of variation CV =
SD
M

T9 Extreme range ER = max(|τi|)− min(|τi|)
T10 Extreme deviation ED = max(|τi|)− M

T11 Energy increasing rate EIR =
1
2

lg(
∑n

i=n/2 τi
2

∑n/2
i=1 τi

2
)

F1 Mean frequency f

F2 Fundamental frequency f ∗

F3 Spectral amplitude corresponding to mean frequency S
(

f
)

F4 Spectral amplitude corresponding to fundamental frequency S( f ∗)

F5 Phase angle corresponding to mean frequency ϕ
(

f
)

F6 Phase angle corresponding to fundamental frequency ϕ( f ∗)

F7 Average signal energy Ea =

√
1
n∑n

i=1|S( fi)|2
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Table 2. Cont.

Feature Type
Identifier Name of Feature Feature Definition

F8 Crest factor CF =
S( f ∗)

Ea

F9 Spectral crest factor SCF =
S( f ∗)

S
(

f
)

F10 Relative energy in the first frequency band Eb1 =

∫ B f
0 S( f )d f∫ fn
0 S( f )d f

F11 Relative energy in the second frequency band
Eb2 =

∫ 2B f
B f

S( f )d f∫ fn
0 S( f )d f

F12 Relative energy in the third frequency band
Eb3 =

∫ 3B f
2B f

S( f )d f∫ fn
0 S( f )d f

F13 Relative energy in the fourth frequency band
Eb4 =

∫ 4B f
3B f

S( f )d f∫ fn
0 S( f )d f

F14 Relative energy in the fifth frequency band
Eb5 =

∫ 5B f
4B f

S( f )d f∫ fn
0 S( f )d f

The identifiers ‘T’ and ‘F’ are used to denote time domain features and frequency domain features, respectively.

Table 3. The results of hyperparameter optimization for the models.

Model Name of Hyperparameter Searching Range Optimal
Hyperparameter

LightGBM

Boosting type “GBDT”, “Dart”, “Goss” GBDT
Learning_rate 0.0001, 0.001, 0.01 0.01
Num_leaves 2, 22, . . . , 210 26

Max_depth 1, 2, . . ., 10 8
Feature_fraction 0.05, 0.1, . . ., 1 0.35
Bagging_fraction 0.05, 0.1, . . ., 1 0.25

N_estimator 100, 150, . . ., 1500 450

KNN
K value 2, 3, . . ., 50 7

Distance indicator “chebyshev”, ”euclidean”, “manhattan”,
“minkowski” “manhattan”

SVM
C value 1, 10, 100, 1000 100

Kernel function “linear”, “rbf”, “sigmoid” “rbf”

FNN
Number of hidden units in the first layer 26, 27, 28, 29 28

Number of hidden units in the second layer 25, 26, 27 26

On the basis of parameter optimization, further steps of feature selection were carried
out. Since extracting a single statistical feature using sliding windows generated multiple
feature points, feature selection helped reduce the feature dimensions, decreased the
number of features, and improved the computational efficiency of the model. During the
feature selection process, the ReliefF method was employed, which is an effective technique
for assessing feature importance. The samples used for feature selection still came from the
C1 dataset. The ranking results are presented in Table 4. A lower ranking in the importance
order indicates a more crucial feature. Due to significant differences in the descriptive
aspects of the time domain and frequency domain features, independent rankings were
performed for these two feature types during the importance sorting process.
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Table 4. Importance ranking of time domain and frequency domain features.

Ranking Time Domain Indicator Frequency Domain Indicator

1 T6 F8
2 T7 F7
3 T8 F6
4 T9 F4
5 T4 F9
6 T5 F2
7 T1 F3
8 T10 F10
9 T3 F5
10 T2 F11
11 T11 F1
12 - F14
13 - F13
14 - F12

Building upon the feature representation ranking using the ReliefF method, we further
combined LightGBM, k-NN, SVM, and FNN to eliminate redundant features for collision
classification in the C1 dataset. Specifically, we followed the importance ranking of the
features and sequentially removed less significant time domain and frequency domain
features. The removal alternated between time domain and frequency domain features,
starting with the removal of frequency domain features. To assess the effectiveness of fea-
ture selection, we first shuffled the C1 dataset and then evaluated the selected features using
a five-fold cross-validation approach. The classification models used the hyperparameters
in Table 3. The final evaluation results are presented in Figure 5. The figure displays the
average classification accuracy values of the classification models after removing different
features. A higher accuracy indicates a smaller impact on the classification results when
the corresponding features are removed. It can be observed that when the total number
of retained features was greater than 14, the removed features had little impact on the
classification effect. However, as the features were removed, the classification accuracy
began to decrease significantly. When the total number of features was 10, compared to the
process without feature removal, the classification accuracy dropped by 9.56%. To ensure
the effectiveness of the training of the collision classification model while minimizing
the number of features, this study utilized a set of 14 selected features in the subsequent
experiments. Specifically, these features consisted of the first six time domain features
(T6, T7, . . ., T5 in Table 4) and the first eight frequency domain features (F8, F7, . . ., F10
in Table 4).

In the context of collision processing problems, the sequence lengths of collision
signals significantly determine the richness of the information embedded in the signals.
The appropriate sequence length is crucial because sequences that are too short may
lead to insufficient feature information, severely impacting classification performance.
Conversely, excessively long sequences may decrease computational efficiency and make
the classification method more reliant on sustained collision information post-collision.
To determine the suitable information sequence length, we employed a multimodel fusion
approach to evaluate the sequence information, using LightGBM and comparison methods.
The dataset used for the evaluation was from the C1 dataset, and the feature representation
was based on the feature selection results in Table 4. Additionally, the effective period
was set from 50 sample points to 350 sample points, with testing conducted at intervals
of 30 sample points. The collision classification accuracy results with different effective
periods are illustrated in Figure 6. It was seen that as the effective period length increased,
the collision classification accuracy of the different classifiers showed an upward trend.
When the effective period length reached 290 sample points, further increasing the sequence
length resulted in minimal fluctuations in classification accuracy. For the FNN method,
there was a decline in classification accuracy. This suggests that when the effective period
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length reached 290 sample points, the information content was sufficiently rich. Therefore,
for subsequent analyses, we set the effective period length of the collision vibration signal
to 290 sample points.
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4.2. Signal Reconstruction Results

To provide a detailed exposition of the rational implementation of EMD and recon-
struction, we selected a segment of a typical x-axis collision vibration signal. Initially,
noise was added to the signal with the SNR set to −9 dB. Then, the signal underwent
normalization. Finally, the normalized signal underwent the EMD process, resulting in
different-order IMF components, as depicted in Figure 7. It is visually evident that the
noise details were more pronounced in the first- and second-order IMFs. To mitigate the
noise components in a reconstructed signal, one can choose to exclude IMFs containing
rich noise details. However, it is essential to note that such IMFs also encompass other
valuable signal feature information. Therefore, caution must be exercised during exclusion
to prevent excessive removal, which could lead to the loss of features related to the original
signal during the reconstruction process.
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In light of the results shown in Figure 7, our analysis primarily focuses on the recon-
struction scenarios after selectively removing the first-order IMF, the second-order IMF,
or both simultaneously. In the experiment, we introduced additive Gaussian white noise
under three different SNR conditions, corresponding to SNR = −9 dB, SNR = 1 dB, and
SNR = 9 dB. The dataset utilized for these experiments was the C1 dataset, with the effective
period length set to 290 sample points. For clarity, we defined the scenarios of removing
only the first-order IMF component, removing only the second-order IMF component and
removing both the first- and second-order IMF components as Case 1, Case 2, and Case 3,
respectively. Finally, we evaluated the effectiveness of different removal strategies based
on the classification accuracy results. The detailed classification results are illustrated in
Figure 8. It is evident that signal reconstruction by solely removing the first-order IMF



Appl. Sci. 2024, 14, 1605 15 of 20

outperformed scenarios where only the second-order IMF was removed or where both the
first- and second-order IMFs were removed simultaneously in terms of the classification
results. While this difference was less pronounced at lower noise intensities, as the noise
intensity increased, the advantage of solely removing the first-order IMF became signifi-
cantly more prominent. This finding indicates that in the context of collision classification,
for noise suppression, removing only the first-order IMF is more effective in minimizing
the loss of valid features in the data compared to other IMF removal strategies. Therefore,
it can be considered more reasonable to reconstruct a signal by selectively removing only
the first-order IMF component.
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4.3. Collision Classification Results under Different Conditions

Furthermore, we conducted an in-depth analysis of collision classification in scenarios
where there was no relative deflection angle between the charger and the charging port.
To observe the influence of different joint configurations on the results and mitigate potential
information leakage issues, we designated the C1 dataset as the training set, while the C2
and C3 datasets served as the test sets. In the experiment, for a detailed examination of the
impact of noise on classification results, we introduced noise signals with varying SNRs,
ranging from −9 dB to 9 dB, with intervals of 2 dB. Through this experimental design, we
gained comprehensive insights into the effect of noise intensity on collision classification
performance. Furthermore, we conducted an analysis of the impact of introducing EMD
and reconstruction on noise suppression. For comparison, we also employed collision
classification methods without the EMD process in the experiment. The average collision
classification accuracy results are illustrated in Figure 9.

It can be observed that, as the noise intensity decreased, the classification accuracy
of various methods showed a gradual upward trend. In the comprehensive comparison,
EMD-LightGBM stood out among the different noise levels, exhibiting a higher overall
classification accuracy compared to the other methods. Its maximum average classification
accuracy reached an impressive 97.3%. In comparison to the LightGBM method without the
introduction of the EMD process, incorporating EMD significantly enhanced the advantage
of the collision classification method, particularly in the presence of stronger noise, resulting
in a maximum accuracy improvement of up to 3.64%. However, it is noteworthy that among
the other classifiers, the introduction of the EMD process did not result in a significant
advantage in handling noisy signals. This phenomenon indicates, to some extent, that these
classifiers exhibited poor adaptability to signal features after undergoing EMD processing.
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Taking all factors into consideration, we believe that in the practical noise suppression
process, apart from using EMD combined with reconstruction for noise suppression, the
choice of a suitable classifier is also crucial.
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The results in Figure 10 display the collision classification accuracy values of various
collision classification methods with the inclusion of the EMD step with different joint
configurations. It can be observed that in the case of collisions with no relative angular
bias between the charger and the charging port, overall, the accuracy with C2 as the test
set was higher than that with C3 as the test set. This phenomenon indicates that the
joint configuration had a certain impact on the accuracy results, and when there was
significant variation in the joint configuration, the final classification accuracy was lower.
The classification accuracy differences between C1 and C2 using different methods were as
follows: the maximum accuracy difference for EMD-LightGBM was 0.61%; EMD-KNN’s
maximum accuracy difference was 0.56%; EMD-SVM’s maximum accuracy difference was
0.7%; and EMD-FNN’s maximum accuracy difference was 0.52%. Through a comprehensive
analysis of these data, we can conclude that although there was an overall trend suggesting
that changes in joint configurations had an impact on the collision classification results, this
impact did not lead to a significant performance decline. Within the scope of our study,
the fluctuation in classification accuracy caused by changes in joint configurations was
relatively mild, and it did not trigger significant instability.

To assess the collision classification performance of the proposed method in the pres-
ence of relative angular displacement between the charger and the charging port, we
employed C1 as the training set and selected datasets with relative angular deviations of
1◦, 2◦, and 3◦ (C4, C5, and C6 as the test sets). For a comparative analysis, we also tested
SVM, KNN, FNN, and the fusion of these three models with EMD. Figure 11 illustrates the
collision classification results with varying levels of noise and different relative angular
displacements. Similar to the scenarios without relative angular displacement, as the
noise level increased, the collision classification accuracy of all methods notably decreased.
Across various noise levels, EMD-LightGBM and LightGBM consistently demonstrated
higher average collision classification accuracy compared to the other methods. Their re-
spective highest prediction accuracies reached 91.66% and 90.09%. In scenarios with low
noise levels, the presence of relative angular displacement led to significantly lower col-
lision classification accuracy for all methods compared to the scenarios without relative
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angular displacement. For instance, at SNR=9, the maximum collision classification accu-
racies for EMD-LightGBM, EMD-SVM, EMD-KNN, and EMD-FNN were 91.66%, 86.04%,
86.46%, and 85.05%, respectively. In comparison to the scenarios without relative angular
displacement, these four methods experienced reductions of 5.87%, 6.72%, 8.85%, and 11%,
respectively. However, this performance gap diminished noticeably in conditions with
more noise. This indicates that the presence of relative angular displacement influenced
collision classification, with its impact being more pronounced in conditions with less
noise. As noise increased, obscuring the original features of the signal, the influence of rela-
tive angular displacement on prediction confusion diminished. Moreover, as the relative
angular displacement increased, EMD-LightGBM and EMD-KNN exhibited a declining
trend in collision classification accuracy with low noise levels. Therefore, for both of these
methods, enhancing the predictive performance of collision classification can be achieved
by collecting a more extensive dataset that includes a diverse range of relative angular dis-
placements. It is worth noting that introducing EMD for noise reduction is not universally
effective across different methods. For instance, EMD-FNN demonstrated significantly
lower collision classification accuracy in high-intensity noise scenarios compared to using
FNN alone. This indicates that when the introduction of EMD results in significant changes
to features, the classification model needs to exhibit good adaptability to such features to
achieve effective noise suppression through integration with EMD.
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5. Conclusions

In this study, we proposed a collision classification scheme tailored for robot manipu-
lators in noisy environments, leveraging EMD and LightGBM. During the data collection
phase, a collision point template was meticulously designed to conduct experiments, cov-
ering diverse robot execution conditions and ensuring the generation of a representative
dataset. After the normalization of the collision vibration signals, feature extraction and
selection were performed by analyzing their importance, with multiple models effectively
filtering redundant features. Subsequently, the selected features were employed in the
analysis of IMFs obtained through EMD. The rationalization of removing IMFs with high
noise contents and the subsequent reconstruction of the remaining components formed
the basis for training the classification model. The proposed collision classification method
demonstrated outstanding predictive capability, surpassing advanced methods reliant
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on manual feature extraction. Notably, it exhibited superior stability and adaptability to
noisy scenarios.

This research significantly bridges a gap in the collision classification domain, specifi-
cally for the end effectors of electric vehicle charging robots in noisy environments, thereby
contributing to an enhancement in system safety in the automatic charging process. The in-
sights gained from this study pave the way for further advancements in collision processing
methodologies. Future research can explore the development of adaptive post-collision
response systems, contributing to the establishment of a more comprehensive collision
processing system suitable for real-world scenarios in automatic electric vehicle charg-
ing applications.
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