
Citation: Hu, Y.; Li, W.; Luo, Q.

Real-Time Adjustment Method for

Metro Systems with Train Delays

Based on Improved Q-Learning. Appl.

Sci. 2024, 14, 1552. https://

doi.org/10.3390/app14041552

Academic Editors: Suchao Xie,

Valerio De Martinis and Raimond

Matthias Wüst

Received: 28 December 2023

Revised: 7 February 2024

Accepted: 12 February 2024

Published: 15 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Real-Time Adjustment Method for Metro Systems with Train
Delays Based on Improved Q-Learning
Yushen Hu 1, Wei Li 2,* and Qin Luo 2

1 College of Applied Technology, Shenzhen University, Shenzhen 518060, China; h8362628852@sina.cn
2 College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen 518063, China;

luoqin@sztu.edu.cn
* Correspondence: aliweib1@126.com

Abstract: This paper presents a solution to address the challenges of unexpected events in the
operation of metro trains, which can lead to increased delays and safety risks. An improved Q-
learning algorithm is proposed to reschedule train timetables via incorporating train detention and
different section running times as actions. To enhance computational efficiency and convergence
rate, a simulated annealing dynamic factor is introduced to improve action selection strategies.
Additionally, importance sampling is employed to evaluate different policies effectively. A case study
of Shenzhen Metro is conducted to demonstrate the effectiveness of the proposed method. The results
show that the method achieves convergence, fast computation speed, and real-time adjustment
capabilities. Compared to traditional methods such as no adjustment, manual adjustment, and FIFO
(First-In-First-Out), the proposed method significantly reduces the average total train delay by 54%
and leads to more uniform train headways. The proposed method utilizes a limited number of
variables for practical state descriptions, making it well suited for real-world applications. It also
exhibits good scalability and transferability to other metro systems.
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1. Introduction

In today’s urbanization process, tunnels have become an essential component of urban
infrastructure due to the increasingly constrained urban space. Tunnels play a critical
role in various domains, including transportation, water supply, and energy transmis-
sion, significantly improving the efficiency of urban operations [1]. Specifically, in the
transportation field, the rapid development of metro systems, which are built upon tunnel
engineering, has effectively mitigated the mounting traffic congestion in densely populated
areas. Moreover, metro systems effectively meet the growing transportation needs of
densely populated areas.

However, along with this development comes a set of challenges, with train delays
being particularly prominent. As metro lines and infrastructure age, the occurrence of train
delays tends to increase, especially during peak hours. These delays have far-reaching
consequences, impacting the functioning of the city and the daily routines of its residents.
Train delays are not merely operational issues, they have a significant impact on passenger
services and the overall efficiency of the metro system. Delays disrupt passenger travel
plans, cause frustration, and reduce the overall capacity of the trains, leading to dissatisfac-
tion and complaints from passengers. Moreover, delays pose a safety risk, especially during
crowded peak hours, as sudden incidents can result in stampedes or other accidents.

Train delays are a frequent and significant problem in metro operations, occurring
when trains deviate from their scheduled arrival or departure times. Various factors
contribute to these delays, including equipment malfunctions (such as issues with the
catenary, signal system failures, or vehicle breakdowns), human factors (such as passenger
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misconduct or obstructions), adverse weather conditions (such as heavy rain, snowstorms,
or thunderstorms), and planned maintenance activities [2]. To effectively manage train
delays, they are often categorized based on their duration. Minor delays are typically brief,
lasting only a few minutes, and are often caused by minor issues like temporary signal
failures or slow passenger boarding and alighting. Moderate delays encompass a range of
several minutes to half an hour and involve more complex challenges such as equipment
malfunctions, adverse weather conditions, or traffic accidents. Severe delays are the most
significant, lasting for more than half an hour and potentially extending to several hours.
They are often the result of major equipment failures, severe weather events, or significant
traffic accidents, requiring an extended period to restore normal operations. In cases where
a train experiences prolonged delays due to external disruptions, train dispatchers can
address the recovery process by selectively canceling certain trains and modifying train
routes [3].

Currently, the handling of metro train delays heavily relies on the experience of
dispatchers and manual interventions [4]. However, as metro systems continue to expand,
the effectiveness and accuracy of manual delay management face challenges. Therefore,
there is an urgent need to explore intelligent and efficient methods to respond to delays.
Technological support is crucial in addressing metro train delay issues, as it can enhance
the operational stability of metro systems and ensure passenger safety and satisfaction.
Through employing advanced technologies and intelligent systems, metro operators can
better manage and respond to train delays, leading to an improved operational efficiency,
enhanced safety measures, and a better overall travel experience for passengers. This paper
proposes a new method using an improved Q-learning algorithm to assist metro staff to
deal with train delays.

1.1. Literature Review

For train timetable adjustments in delay scenarios, scholars such as Cacchiani have
summarized it as the train timetable rescheduling (TTR) problem [5]. TTR involves
modifying train operations by altering the sequence of trains, departure/arrival times,
tracks/stations, etc., with the objective of reducing train delays. This adjustment is crucial
for enhancing the quality of train services and improving passenger experiences. However,
the TTR problem falls under the category of NP-Hard, indicating that it is a highly challeng-
ing problem that cannot be easily solved within affordable time in computational theory.
As the problem’s scale increases, the number of variables and constraints in TTR grows ex-
ponentially, making it exceedingly difficult to find rapid solutions for the model [5–7]. It is
worth noting that compared to other scheduling problems like job shop scheduling, the TTR
problem requires higher decision-making efficiency to ensure the safety and operational
efficiency of trains [8]. Moreover, train operation adjustments have stringent real-time
requirements, implying accurate modifications to be made within a short timeframe. The
inherent conflict between these two aspects has made finding rapid solutions to the train
timetable adjustment problem a long-standing focus and a significant challenge in research.

Currently, researchers have put forward multiple solutions to address the TTR prob-
lem. Fang et al. conducted a comprehensive review on this matter and suggested a hybrid
approach as a future development direction. They also expressed the need for new methods
in future research [9]. In line with this, the present article incorporates novel machine learn-
ing techniques and broadly categorizes the existing research methods into the following
five categories: manual adjustment methods, optimization model methods, simulation
methods, optimization methods based on heuristic algorithms, and AI methods.

Manual adjustment methods are currently more commonly used in practice. Existing
manual rule-based methods include First-Come-First-Serve (FCFS) [10], First-Schedule-
First-Serve (FSFS) [11], and First-In-First-Out (FIFO) [12]. However, designing efficient
scheduling remains a challenging task. Dispatchers face the crucial question of how to
devise a high-performance and cost-effective method.
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Optimization model methods generally employ different planning models to describe
the TTR problem, including integer programming [13], mixed-integer linear program-
ming [14], constraint programming [15], and quadratic programming methods [16]. Schol-
ars have applied specialized algorithms, such as branch and bound (B and B) [17] and
branch and price [18], to tackle these planning models, decomposing the complex problem
into simpler ones. Although this approach can provide precise solutions, the response time
tends to be relatively long. To address this issue, researchers have proposed novel targeted
algorithms, including parallel algorithms [7], decomposition methods [19,20], rolling time
domain algorithms [21], traffic direction multiplier methods [19,22], and heuristic-assisted
methods [23,24], aiming to reduce computational costs.

Simulation methods, such as train movement models based on the following theory,
are used to test control algorithms and design solutions for train operations. For instance,
Li designed a train movement model under a fixed block signaling system [25]. Xun
et al. further developed a railway traffic cellular automaton model under a moving block
signaling system [26]. Corman et al. extended traffic flow models to railways using a
stochastic process model [27]. Ketphat et al. introduced a train operation model under a
virtual coupling system [28]. Saeid et al. presented a mesoscopic train-following model
that accurately captures train interactions and predicts delays based on train spacing [29].
These simulation methods are known for their realism and accuracy, but face challenges
related to complex modeling and computational requirements.

Heuristic algorithms are also employed to provide optimization solutions in TTR. Var-
ious metaheuristic approaches have been extensively studied, including taboo search [30],
genetic algorithms [31], particle swarm algorithms [32], and ant colony algorithms [33].
Within this field, many scholars have designed specific operators to handle problem con-
straints. Compared to optimization model methods and simulation methods, heuristic
algorithms offer greater flexibility, faster computation, and the ability to handle com-
plex problems.

AI methods have gained popularity in addressing the TTR problems. Recognizing the
limitations of heuristic algorithms, such as their susceptibility to local optima and poor
adaptability, researchers are now exploring machine-learning-based methods. Machine-
learning-based methods can be further divided into three main types:

(1) The first type involves understanding the search process of existing search algorithms.
For example, Qu et al. employed reinforcement learning to solve the process of mixed-
integer linear programming, designing a reinforcement-learning-based branching
strategy [34]. Tang et al. used reinforcement learning to select appropriate cutting
planes for the branch-and-cut process [35].

(2) The second type is based on data-driven approaches. For instance, Dündar et al. com-
bined genetic algorithms with artificial neural networks to simulate train dispatchers
in conflict resolution [36]. However, these methods may not be suitable for solving
the TTR problem efficiently due to their extended response times.

(3) The third type involves using reinforcement learning to directly construct solution
strategies, which is more suitable for the TTR problem. In the field of railway opera-
tions, D. Šemrov was among the early adopters of the Q-learning algorithm to tackle
the single-track train rescheduling problem. However, challenges arose due to the
large state vector and scalability issues to other scenarios [37]. Harshad Khadilkar
extended the Q-learning algorithm to real-world instances of single-track and multi-
track dispatch, reducing the state vector representation and enhancing scalability.
Real-time computation remained a challenge [38]. Zhu et al. employed Q-learning to
solve the railway timetable rescheduling problem and demonstrated its effectiveness
in finding high-quality solutions within a limited training set [39]. Li et al. utilized a
multi-agent deep reinforcement learning approach for the TTR problem. However,
their method lacked delay information, had limited state generality, and exhibited in-
sufficient scalability [40]. Ning expanded the state representation to include the actual
arrival and departure times of trains, providing more information about delays [41].
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Some scholars found that learning strategies could only be trained for individual
problem instances. For example, Ghasempour et al. trained learning strategies from
multiple instances to address delay scenarios at railway intersections [42]. Wang et al.
used a policy-based reinforcement learning approach, but their problem only allowed
for the delay of one train, which does not capture the simultaneous delays of multiple
trains that often occur in reality [43]. In the field of metro systems, Su et al. used
Q-learning to simulate metro train operations and adjust schedules. However, their
state definition made it challenging to solve large-scale scenarios, leading to the risk
of local optima or difficulties in problem-solving [44]. Liao et al. proposed using
deep reinforcement learning (DRLA) to minimize energy consumption in metro train
timetable rescheduling [45].

In summary, each method has its strengths and limitations. A comparison between
these methods and the proposed approach in this paper is provided in Table 1.

Table 1. Brief summary of the existing learning-based methods in the TTR problem.

Work Problem Setting Training Instances State Definition

Šemrov et al. [37] Multiple train delays Single instance Train locations, current time
and track availability

Khadilkar et al. [38] Multiple train delays Single instance Track availability around
the train to be controlled

Zhu et al. [39] Multiple train delays Single instance Delay time, location, and local
track availability of the current train

Li et al. [40] Multiple train delays Single instance Departure time, whether to stop at stations, and
running direction of the current train

Ning et al. [41] Multiple train delays Single instance Actual arrival time and
departure time of trains

Ghasempour et al. [42] Single train delays Multiple instances Arrival and departure time of
trains entering junction

Yin et al. [43] Single train delays Multiple instances Planned/actual arrival time and departure time

Su et al. [44] Single train delays Multiple instances Actual arrival time and the number of
passengers onboard

Liao et al. [45] Single train delays Multiple instances The speed, position, and
current driving status of the train

This paper Multiple train delays Multiple instances Train delays

Upon analyzing the literature, it becomes apparent that previous studies on the TTR
problem have certain limitations. When applying certain algorithms to tackle this problem,
there are issues related to incomplete model construction. Some specific problems include:

(1) Manual adjustment methods rely on the experience and manual intervention of
dispatchers when dealing with train delays. However, these methods are constrained
by the formulation and adaptability of manual rules, which makes it difficult to cope
with the complexity and variability of actual operational scenarios. Optimization
model methods can simulate train operations through complex algorithms, but they
often struggle to accurately capture various complex factors in real-world scenarios.
Simulation methods attempt to predict via simulating the interactions between trains,
but they face computational complexity challenges when dealing with large-scale
networked operations, making it difficult to rapidly solve problems with high real-
time requirements. Heuristic algorithms are prone to getting stuck in local optima
and often require significant computation time.

(2) Reinforcement learning has gained considerable attention. Through interactive learn-
ing between intelligent agents and the environment, reinforcement learning gradually
optimizes decision-making strategies, exhibiting adaptability and intelligence. In
the field of metro systems, utilizing reinforcement learning to directly construct
solution strategies can better adapt to the complexity and variability of actual opera-
tional scenarios.
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(3) Currently, most reinforcement learning methods focus on cases where only a single
train is delayed, neglecting scenarios where multiple trains experience simultaneous
delays, failing to consider the interactions between trains. Furthermore, existing meth-
ods often involve complex state representations, which can lead to inefficient problem-
solving processes and challenges in ensuring real-time accuracy and prediction.

1.2. Contribution of This Paper

Based on the analysis provided, this paper proposes an improved Q-learning algorithm
that specifically addresses scenarios where multiple trains experience delays simultaneously.
The algorithm focuses on several key aspects to enhance its practical applicability in metro
train delay issues. The contributions of this paper are outlined as follows:

(1) The proposed algorithm narrows down the scope of state variables, providing a
clear and concise description of delay situations, which facilitates efficient real-time
processing to improve its effectiveness in practical applications.

(2) A simulated annealing dynamic factor is introduced to improve convergence stability
and computation speed.

(3) This algorithm is trained on scenarios involving delayed interaction between multiple
trains, improving its universality and portability.

The structure of this paper is as follows: Section 2 explores the delay process of trains
and the measures taken during train delays. Section 3 models the problem of train delays,
constructs the objective function, and defines the corresponding constraints. Section 4
proposes the use of the improved Q-learning algorithm to address the TTR problem.
Section 5 evaluates the algorithm’s effectiveness through case studies. The final section
summarizes the advantages and significance of this paper.

2. Problem Description
2.1. Train Operation and Train Delay

Metro train operations involve the movement of trains between stations along railway
tracks, which consist of multiple blocks. Here, a metro station refers to a physical station
where passengers board and alight from trains, while virtual stations are defined as the
boundary points between two adjacent blocks along the railway tracks. To ensure safe and
efficient operations, specific running times are calculated for different blocks of a metro line,
taking into account factors such as curves, slopes, switches, and distances between stations.
These running times are categorized into different block running time levels, each associated
with a recommended speed curve [46]. This comprehensive management and scheduling
approach ensures the smooth operation of the metro transit system, ultimately providing
passengers with an enhanced travel experience. The relationship between block running
time levels and the corresponding recommended speed curve is depicted in Figure 1.

Appl. Sci. 2024, 14, 1552 6 of 25 
 

 
Figure 1. Schematic diagram of different block running time levels. 

Train delays are the phenomenon whereby trains deviate from their scheduled arri-
val or departure times, caused by some unexpected events. When addressing train delay 
issues, it is crucial to understand how delays propagate throughout the system [47]. The 
impact of delay events can be categorized into three stages: initial delay, secondary delay, 
and delay propagation, as illustrated in Figure 2. In the figure, the horizontal axis repre-
sents time, while the vertical axis represents the physical stations and the virtual stations. 
Physical stations are represented by a solid green line, while virtual stations are denoted 
by dashed lines. The black line represents the initial train schedule, while the red dashed 
line illustrates the adjusted actual train schedule, reflecting deviations resulting from de-
lays. Furthermore, the blue dashed line represents a modified train schedule with differ-
ent block running time levels, indicating potential adjustments aimed at mitigating delays. 

 
Figure 2. Train delay with train dwell and train optimization adjustment. 

In Figure 2, the initial delay occurs when the first train fails to depart according to its 
original timetable at the fourth physical station. It signifies the first occurrence of a train 
deviating from its scheduled departure time. The secondary delay manifests as a conse-
quence of the initial delay. It may lead to a reduction in the train headway or necessitate 
the waiting of other trains for the delayed train, thus affecting their planned operations. 
This propagation of delays refers to the gradual expansion of the initial delay. When a 
train experiences significant delays, it can trigger a chain reaction, subsequently causing 
delays in subsequent trains and affecting an increasing number of trains over time. This 

Figure 1. Schematic diagram of different block running time levels.



Appl. Sci. 2024, 14, 1552 6 of 24

Train delays are the phenomenon whereby trains deviate from their scheduled arrival
or departure times, caused by some unexpected events. When addressing train delay issues,
it is crucial to understand how delays propagate throughout the system [47]. The impact of
delay events can be categorized into three stages: initial delay, secondary delay, and delay
propagation, as illustrated in Figure 2. In the figure, the horizontal axis represents time,
while the vertical axis represents the physical stations and the virtual stations. Physical
stations are represented by a solid green line, while virtual stations are denoted by dashed
lines. The black line represents the initial train schedule, while the red dashed line illustrates
the adjusted actual train schedule, reflecting deviations resulting from delays. Furthermore,
the blue dashed line represents a modified train schedule with different block running time
levels, indicating potential adjustments aimed at mitigating delays.
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In Figure 2, the initial delay occurs when the first train fails to depart according to
its original timetable at the fourth physical station. It signifies the first occurrence of a
train deviating from its scheduled departure time. The secondary delay manifests as
a consequence of the initial delay. It may lead to a reduction in the train headway or
necessitate the waiting of other trains for the delayed train, thus affecting their planned
operations. This propagation of delays refers to the gradual expansion of the initial delay.
When a train experiences significant delays, it can trigger a chain reaction, subsequently
causing delays in subsequent trains and affecting an increasing number of trains over time.
This propagation phenomenon spreads throughout the transportation network, disrupting
the normal operation of the system.

2.2. Measures for Train Delays

When dealing with train delays, the requirement of real-time becomes crucial. In
situations with longer delays, flexible measures like train service cancellations or route
adjustments can be implemented to mitigate the overall impact of delays on the sys-
tem. However, in situations with short-term delays, the timely rescheduling of the train
timetable becomes essential as it directly affects the operational efficiency and safety of the
metro system.

Without staff adjustments, the metro system would continue operating based on
the original plan, resulting in subsequent trains experiencing the same delay as the first
train. This cumulative effect would lead to significantly longer overall delay times. To
prevent this accumulation, staff members, following the metro’s emergency plan, assess the
delay situation of the first train and progressively detain subsequent trains to ensure safe
operation and to address timetable adjustment issues. However, manual adjustment often
requires a long dwelling time and may lead to uneven adjustments across multiple trains
and physical stations. In addition, the First-In-First-Out (FIFO) algorithm is commonly
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used for rescheduling. This algorithm arranges departures based on the order in which
trains enter the physical station, maintaining the original entry order. However, the FIFO
algorithm does not consider factors such as train priority or the degree of delay, which
might result in suboptimal rescheduling plans.

To address train delays, this paper proposes a new method that comprehensively
considers multiple factors, including train priority and delay conditions. The decision
variables are the physical station dwelling times of subsequent trains, and the section
running times with different block running time levels. When delays occur, strategies such
as increasing the dwelling time of subsequent trains at physical stations or modifying trains’
block running time level can be adopted. The goal is to provide a more practical solution
for real-time train adjustments.

3. Model Construction
3.1. Model Notations and Assumptions

In this section, we will provide the mathematical description of the TTR problem.
Table 2 presents the list of symbols to be used.

Table 2. Notations and parameters used in the formulation.

Notations Definition

Set
K Set of train services. K = {1, 2, . . . , |K|}. |K| is the maximum index of train services
I Set of stations, including physical and virtual stations. I = {1, 2, . . . , 2|I|}. 2|I| is the end index of stations.
I′ Set of physical stations.
M Set of block running time levels. M = {1, 2, . . . , |M|}. |M| is the maximum index of block running time levels.
k Index of train service, ∀k ∈ K
i Index of station, ∀i ∈ I
m Index of block running time level, ∀m ∈ M

Input Parameter
Garr

k,i Scheduled arrival time of train service k at physical station i, i ∈ I′

Gdep
k,i

Scheduled departure time of train service k at physical station i, i ∈ I′

λm
k,i The running time of train service k using block running time level m from station i to i + 1

µm
k,i

The Boolean variable to decide whether block running time level m from station i to i + 1 for train service k
is selected.

Umin Minimum train headway on the truck line
Bk The block where train service k locates

Smin Minimum station dwelling time on the truck line
topen Time for door opening after train’s arrival
tclose Time for door closing before train’s departure
tmin Minimum boarding and alighting time for passengers
nmax Maximum station passenger capacity

naboard Number of passengers entering the station
Tmin

turn Minimum turnaround time at the turnaround station
Intermediate variables

Garr
k,i Rescheduled arrival time of train service k at station i

Gdep
k,i

Rescheduled departure time of train service k at station i
ton Boarding time for passengers
toff Alighting time for passengers
tadd Additional boarding and alighting time for passengers

Ddelay
k,i

Delay time of train service kat physical station i, i ∈ I′

Gtime Current checking time
Gadd

k,i Additional dwelling time of train service k at physical station i, i ∈ I′

arandom
i (k) The random action for train service k at physical station i, i ∈ I′

abest
i (k) The optimal action for train service kat physical station i, i ∈ I′

The metro line studied in this paper involves regular bi-directional operations, in-
cluding both upstream and downstream directions with turnaround stations, as shown
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in Figure 3. In the figure, the set of stations is represented by I, while the set of physical
stations is denoted by I′. Solid circles represent physical stations, while hollow circles
represent virtual stations. The stations between station |I| and |I|+ 1, as well as between
station 2|I| and 1, serve as turnaround stations.
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Under normal circumstances, metro trains operate in CBTC (communication-based
train control) mode. However, the metro signal system utilizes a fixed-block system
under emergency situations, as illustrated in Figure 4, to maintain the safe spacing of
trains and ensure route protection. Different colors in the metro blocks represent the
positions of trains, with red indicating occupied blocks that require additional stops, and
yellow indicating slow blocks to ensure the safety of the preceding train. Interaction zones
define the distance between the train and the entrance of the block when the next train
approaches, guaranteeing smooth and safe train operations. Generally, the interaction
zones are set to one block (red rectangle) for stopping and two blocks (yellow rectangle) for
deceleration [29].
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Specifically, the positional relationship between the following train service k and
preceding train service k− 1 significantly impacts the train’s speed. In Case 1 (depicted
in Figure 4), if the preceding train k− 1 is located outside the interaction zone block, the
subsequent train k will maintain its maximum design speed, ensuring a normal opera-
tion. However, in Case 2, when the train k− 1 is within the interaction zone blocks, the
subsequent train k will be advised to maintain a lower speed to ensure a safer distance.
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This operation adjustment ensures the overall stability and safe operation of the entire
metro line.

Based on the actual operation and operational requirement of metro systems, the
following assumptions are made:

(1) Due to the limited tracks at stations in metro lines, overtaking strategies for trains are
not allowed. This means that there are no overtaking situations in the model.

(2) Trains follow a strategy of stopping at each station, and there are no instances where a
train bypasses a station without stopping.

(3) The running time in each block is predetermined based on the ATO (automatic train
operation) system, which means block running time levels are determined according
to the ATO system.

(4) To ensure the efficient operation of the passenger service, it is preferred that trains
are not allowed to stop within the blocks. Even if a train does stop, the doors are not
allowed to open within the blocks. Once the train receives block clearance ahead, it
immediately departs without any stopping time.

(5) In the case of a long delay, the metro staff may decide to let trains return to the depot.
The situation after this operation can be regarded as a scenario of short-term delay.

3.2. Objective Function

The primary objective of adjusting the train timetable is to efficiently restore the normal
train service and align with the scheduled timetable. Therefore, the goal is to minimize the
sum of discrepancies for all trains at each physical station between the scheduled timetable
and the rescheduled timetable. The objective function is represented by Equation (1).

minW = Gdeviation = ∑
k∈K

∑
i∈I′

(∣∣∣Garr
k,i − Garr

k,i

∣∣∣+ ∣∣∣Gdep
k,i − Gdep

k,i

∣∣∣) (1)

3.3. Constraint Conditions

1. Train Headway Constraint

In metro operations with train delays, trains operating at blocks necessitate a specific
distance between them to ensure safety. As a result, there are minimum constraints on the
train headways between two adjacent trains, as expressed in Equations (2) and (3).

Garr
k−1,i − Garr

k,i ≥ Umin, ∀k ∈ K, i ∈ I (2)

Gdep
k−1,i − Gdep

k,i ≥ Umin, ∀k ∈ K, i ∈ I (3)

2. Block Running Time Constraint

According to the analysis in Section 2, the train’s running time within a block can be
divided into several levels, referred to as block running time levels, denoted by µm

k,i. In this
model, Boolean variables, denoted by λm

k,i, are introduced to represent the chosen running
time level for the current block. The constraints on the train’s running time in each block
can be expressed using Equations (4) and (5), where Equation (4) states that only one block
running time level can be selected, and Equation (5) limits the train’s running time within a
block to the specified time corresponding to a particular block running time level.

Garr
k−1,i − Gdep

k,i = ∑
m∈M

λm
k,iµ

m
k,i, ∀k ∈ K, i ∈ I (4)

∑
m∈M

λm
k,i = 1 (5)

When it comes to train delays, the train operation mode is downgraded to a fixed-block
system under emergency situations. According to Figure 4, if the distance between two
trains is within one block, the following train must come to a complete stop. If the distance
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is within two blocks, the train operates at a reduced speed using the slowest running level.
If the distance is three blocks or more, the train operates normally. Therefore, Equation
(5) can be further expressed as Equation (6). The block in which train k is located can be
represented as Bk, which can be represented by station, such as station i to i + 1.

λm
k,i = 0, ∀m ∈ M

λ1
k,i = 1, ∑

∀m>1
λm

k,i = 0

∑
m∈M

λm
k,i = 1

Bk−1 − Bk ≤ 1
Bk−1 − Bk ≤ 2
Bk−1 − Bk > 2

, ∀k ∈ K (6)

3. Station Dwelling Time Constraint

The minimum station dwelling time constraint for trains is defined by Equation
(7), where Smin represents the minimum station dwelling time. It should be noted that
the constraint is applicable only to physical stations. This time is determined based on
factors such as the train door opening and closing times, and passenger boarding and
alighting times, as expressed in Equation (8). Figure 5 provides a visual representation
of the construction of the minimum station dwelling time. In metro systems, the door
opening and closing time of the train are usually constant values. The passenger boarding
time, on the other hand, is determined by the passenger demand on the platforms. If the
number of passengers exceeds 90% of the station’s capacity, the passenger boarding time
is increased accordingly [48]. Otherwise, it remains at the minimum passenger boarding
time, as depicted in Equation (9).

Gdep
k,i − Garr

k,i ≥ Smin, ∀k ∈ K, i ∈ I′ (7)

Smin = topen + tclose + ton + toff (8)

ton =

{
tmin + tadd × (naboard ÷ nmax) i f (naboard ÷ nmax) ≥ 90%

tmin i f (naboard ÷ nmax) < 90%
(9)

Appl. Sci. 2024, 14, 1552 11 of 25 
 

The minimum station dwelling time constraint for trains is defined by Equation (7), 
where minS  represents the minimum station dwelling time. It should be noted that the 
constraint is applicable only to physical stations. This time is determined based on factors 
such as the train door opening and closing times, and passenger boarding and alighting 
times, as expressed in Equation (8). Figure 5 provides a visual representation of the con-
struction of the minimum station dwelling time. In metro systems, the door opening and 
closing time of the train are usually constant values. The passenger boarding time, on the 
other hand, is determined by the passenger demand on the platforms. If the number of 
passengers exceeds 90% of the station’s capacity, the passenger boarding time is increased 
accordingly [48]. Otherwise, it remains at the minimum passenger boarding time, as de-
picted in Equation (9). 

 
Figure 5. Schematic diagram of the construction of station dwelling time. 

'
, , min , ,
dep arr
k i k iG G S k K i I− ≥ ∀ ∈ ∈  (7)

min open close on offS t t t t= + + +  (8)

( ) ( )
( )

min add aboard max aboard max
on

min aboard max

90%
90%

t t n n if n n
t

t if n n
 + × ÷ ÷ ≥=  ÷ <

 (9)

4. Turnaround Time Constraint 
The turnaround time for trains at terminal stations is defined in Equation (10). 

min
,| | 1 ,| | turn ,
arr dep
k I k IG G T k K+ − ≥ ∀ ∈  (10)

4. TTR Using Reinforcement Learning 
4.1. Improved Q-Learning Algorithm 

The Q-learning algorithm is a reinforcement learning algorithm utilized for decision-
making in a dynamic environment [49]. It involves iteratively interacting with the envi-
ronment and adjusting decisions based on trial and error. The objective is to discover the 
optimal strategy that maximizes cumulative rewards for a given state and action. Tradi-
tional Q-learning methods have certain drawbacks, such as dealing with a large state 
space, difficulties in defining states precisely, and a lack of clear operational steps. Existing 
research often involves complex state constructions, which can result in inefficient prob-
lem-solving. Moreover, these methods may not adequately consider all the factors that 
contribute to train delays, thereby affecting the real-time responsiveness and prediction 
accuracy. For real-time train schedule adjustments, we employ an improved Q-learning 
algorithm, offering the following advantages. 

Figure 5. Schematic diagram of the construction of station dwelling time.

4. Turnaround Time Constraint

The turnaround time for trains at terminal stations is defined in Equation (10).

Garr
k,|I|+1 − Gdep

k,|I| ≥ Tmin
turn, ∀k ∈ K (10)

4. TTR Using Reinforcement Learning
4.1. Improved Q-Learning Algorithm

The Q-learning algorithm is a reinforcement learning algorithm utilized for decision-
making in a dynamic environment [49]. It involves iteratively interacting with the envi-
ronment and adjusting decisions based on trial and error. The objective is to discover the
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optimal strategy that maximizes cumulative rewards for a given state and action. Tra-
ditional Q-learning methods have certain drawbacks, such as dealing with a large state
space, difficulties in defining states precisely, and a lack of clear operational steps. Ex-
isting research often involves complex state constructions, which can result in inefficient
problem-solving. Moreover, these methods may not adequately consider all the factors that
contribute to train delays, thereby affecting the real-time responsiveness and prediction
accuracy. For real-time train schedule adjustments, we employ an improved Q-learning
algorithm, offering the following advantages.

(1) The Q-learning algorithm offers a concise description and representation of actual
states by utilizing a limited set of variables. The usage of limited variables makes the
algorithm more practical, reducing the complexity of the state space.

(2) Pre-training the Q-value state table for various scenarios facilitates quick retrieval
during delays or emergencies, enabling a real-time and dynamic selection of strategies
such as detaining specific trains or modifying running time. This efficient table lookup
and reusability enables our algorithm to make accurate and rapid adjustments in the
dynamically changing train operation environment, ensuring both system efficiency
and safety.

(3) The incorporation of a simulated annealing dynamic factor enhances the algorithm’s
convergence stability and computational speed. This enables the algorithm to achieve
the optimal strategy within a relatively small number of training iterations [50].

4.2. State Definition

Figure 6 provides an illustration of the state definition utilized in this study, which
involves periodically examining whether train arrivals or departures at physical stations are
affected by delays. When trains adhere to the scheduled timetable, the situation is similar
to that of physical station 2/3 of Train 1 in Figure 6. However, in the case of a delay, the
situation of trains would align with physical station 4 of Train 1, and physical station 3 of
Train 2. The state (S) is represented as a vector, where the length of the vector is determined
by the number of physical stations. Each element of the vector Si(k) represents the status
of the nearest train k arrival at station i, as shown in Equation (11). The determination of
the nearest train k can be achieved using the operator k = argmink

∣∣∣Gtime − Garr
k,i

∣∣∣, where
argmink f (k) represents taking the value of k that minimizes the function f (k).
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The state value is defined by Equations (11) and (12), where Gtime represents the
current checking time.

S =
{

Si(k) = Ddelay
k,i

}
, k = argmin

k

∣∣∣Gtime − Garr
k,i

∣∣∣, ∀i ∈ I′ (11)


Ddelay

k,i = 0 i f Gdep
k,i = Gdep

k,i

Ddelay
k,i = Gdep

k,i − Gdep
k,i i f Gdep

k,i ≤ Gtime&Gdep
k,i ̸= Gdep

k,i

Ddelay
k,i = Gtime − Gdep

k,i i f Gdep
k,i > Gtime&Gdep

k,i ̸= Gdep
k,i

, i ∈ I′ (12)

4.3. Action

In this paper, the actions are defined as the actual operational strategies. When
trains encounter delays, they have the option to choose from three action strategies, as
described below:

(1) Strategy A corresponds to the normal state, where no action for trains is taken.
(2) Strategy B represents the train movement, where the train chooses a block running

time level λm
k,i upon entering the block. The operator argmaxm f (m) represents taking

the value of k that maximises the function f (k).
(3) Strategy C involves train detention, where the train should determine the duration of

detention Gadd
k,i in the station before its departure. The duration can be a negative value.

These strategies are depicted in Equations (13) and (14).

ai(k) ∈
{

0, argmax
m

λm
k,i, Gadd

k,i
}

, ∀i ∈ I (13)

Gadd
k,i = (Gdep

k,i − Garr
k,i )− (Gdep

k,i − Garr
k,i ), ∀i ∈ I′ (14)

4.4. Reward Function

The reward in the model is set to assess the matching between the scheduled and
actual train timetable. There are two cases for identifying train stop delays. The first
case occurs when the train has not arrived at the station by the scheduled departure time
or has not resolved the delay and needs to stop at the physical station, as illustrated by
physical stations 2 and 3 in Figure 6. The reward for this situation is calculated as the
difference between the current checking time and the scheduled departure time of the train,
as expressed in Equation (15).

R(Si(k), ai(k)) = −
∣∣∣Gtime − Gdep

k,i

∣∣∣, ∀i ∈ I′ (15)

Another scenario is when the delay issue has been resolved and the delayed train has
departed, as depicted by physical station 4 in Figure 6. The reward for this situation is
calculated as the difference between the actual departure time and the scheduled departure
time of the train, as shown in Equation (16).

R(Si(k), ai(k)) = −
∣∣∣Gdep

k,i − Gdep
k,i

∣∣∣, ∀i ∈ I′ (16)

After calculating the rewards, importance sampling techniques from off-policy learn-
ing are employed to update rewards and flexibly utilize experiences from different policies.
Taking strategy B as an example, the importance sampling ratio under strategy B can be
expressed as shown in Equation (17), where A(s), B(s), and C(s) represent the probabilities
of taking actions under policies A, B, and C, respectively, in state s.

Ω =
P(A(s)|s)
P(B(s)|s) ·

P(C(s)|s, A(s))
P(C(s)|s, B(s))

(17)
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According to importance sampling, it is necessary to update the weights via multi-
plying the reward by the importance sampling ratio Ω. When updating the reward for
strategy B, the reward update calculation can be expressed using Equation (18):

R(Si(k), ai(k))← R(Si(k), ai(k))×Ω (18)

By utilizing the adjusted reward values to update the reward value for strategy B,
experiences from strategies A and C are incorporated. The weight adjustments, taking into
account the importance sampling ratio, are considered in this process. A similar approach
can be applied when updating the reward value for strategies A and C.

4.5. Algorithm Process

An improved Q-learning algorithm is designed to solve the TTR problem and is
tailored to real operational scenarios. A matrix is constructed to represent the Q-value state
table, as shown in Table 3. The columns represent different states, i.e., all physical stations
arranged in the order of operation, while the rows represent all available actions.

Table 3. An example of a Q-value state table.

Physical Stations State
Action

Strategy A Strategy B Strategy C/(s)
1 2 . . . −10 10 . . .

(1401,1402,. . .,1417) (0,0,. . .,0) 0 0 0 . . . 0 0 . . .
(1401,1402,. . .,1417) (0,0,. . .,50,. . .,0) 0 0 0 . . . 35 20 . . .
(1401,1402,. . .,1417) (0,0,. . .,0) 20 0 10 . . . 0 10 . . .
(1401,1402,. . .,1417) (0,0,. . .,0) 30 10 0 . . . 40 0 . . .
(1401,1402,. . .,1417) (0,. . .,50,. . .,100,. . .,0) 15 10 0 . . . 10 10 . . .

The ε-greedy strategy is a commonly used action selection strategy for Q-value state,
where the agent explores new actions with a probability of ε and exploits the best action
with a probability of (1 − ε). However, excessive exploration in the later stages may affect
the convergence speed. To address the balance between exploration and exploitation, the
simulated annealing concept is employed to improve the convergence. A temperature
parameter is applied to control the degree of exploration. As the iterations progress, the
temperature is reduced to decrease the acceptance probability of inferior actions, making
it more inclined to exploit advantageous actions. By gradually lowering the temperature,
the acceptance probability of suboptimal solutions is reduced, achieving a balance be-
tween exploration and exploitation. This accelerates the convergence speed and avoids
excessive exploration.

When incorporating the concept of simulated annealing into the Q-learning algorithm,
the Metropolis criterion is employed to dynamically regulate the trade-off between ex-
ploration and exploitation. The essence of the Metropolis criterion lies in controlling the
acceptance probability of new actions through the dynamic adjustment of the temperature
parameter. The algorithm follows the following steps:

(1) Set the optimal action as the current action abest
i (k).

(2) Select an action arandom
i (k) randomly.

(3) A random number δ is generated. According to the Metropolis criterion, the random

number δ is compared with o = exp
[(

Q
(

Si(k), arandom
i (k)

)
−Q

(
Si(k), abest

i (k)
))

/pT
]

to decide whether to accept the new action. If δ is larger, accept the action arandom
k,i as

the current action; otherwise, keep the optimal action abest
i (k) unchanged. Here, p is

the adjusting factor, and T represents the number of iterations in the algorithm, both
equivalent to the temperature control parameter in the simulated annealing algorithm.
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It is obvious that with the increase in T, the value of pT also increases, reducing the
probability of accepting inferior actions. This strategy ensures that as the algorithm iterates,
the probability of exploration gradually decreases, relying more on the knowledge already
learned, thus finding a balance between exploration and exploitation. This strategy can
be considered as an equivalent form of the greedy strategy. The adjusting factor p directly
influences the rate of temperature reduction. The larger p is, the faster the transition to the
greedy strategy.

Once an action is selected, the value of the state–action pair is updated at the cor-
responding position in the Q-value table according to the state transition probability, as
shown in Equation (19). Through continuously performing state transitions and updating
the Q-value function, the Q-learning algorithm gradually converges to the optimal Q-value
function, thereby learning the optimal action strategy.

Q(Si(k), ai(k))← Q(Si(k), ai(k)) + α

[
R(Si(k), ai(k)) + γ×max

a′
Q
(
S′i(k), a′i(k)− (Si(k), ai(k))

)]
(19)

where α represents the learning rate, and γ is the discount factor, which can be understood
as the importance of future steps. The complete summary of the algorithm process is
explained in Algorithm 1.

Algorithm 1: Real-time TTR Algorithm based on improved Q-learning with Train Delays

Step 1. Input the basic information of the transit line, including the planned train timetable and
parameters.
Step 2. Input the delay conditions, determine the number of training iterations
Step 3. Set current checking time Gtime and define the checking time interval, increase the
checking time by one interval at each iteration.

Step 3.1. Perform a sequential check of all stations along the line to determine the state using
Equations (11) and (12).

Step 3.2. For trains that require action, search the Q-value table to identify all potential
candidate actions based on the constraint conditions outlined in Equations (2)–(10).

Step 3.2.1. Calculate the reward value for each candidate action using Equations (15)–(17).
Step 3.2.2. Select the action to be taken based on the simulated annealing concept.

Step 3.3. Update the Q-value table using Equation (19).
Step 4. Repeat the above steps (Step 3) until the desired number of model training iterations
is achieved.
Step 5. Output the optimal reschedule timetable.

5. Case Study
5.1. Data Input

To assess the effectiveness and efficiency of the algorithm, this study selects Shenzhen
Metro Line 14 as a case study, as illustrated in Figure 7. The experimental scenario in this
research involves the operation of 16 trains, with a total of 17 physical stations along the
metro line. The train headway, representing the time interval between consecutive trains, is
set to 257 s. Additionally, all trains are assigned the same block running time level in all
sections, ensuring uniformity in their travel durations. Furthermore, each train adheres
to the scheduled station dwelling time, maintaining consistency in the time spent at each
station. The data used in the case study can be found in Supplementary Materials.

The testing period spans from 7:00 AM to 10:00 AM. This timeframe is selected based
on Figure 8, which illustrates a substantial passenger flow during the morning peak hours.
It is during this period that train headways are relatively short, meaning that delays
occurring within this timeframe will have a significant impact on train operations.
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5.2. Case Results

The experimental parameters are as follows: learning rate α = 0.02; discount factor
γ = 0.8; and adjustment factor p = 0.02. The modeling process is implemented using Python
3.9 on a computer equipped with an Intel(R) Core(TM) i7-9700 CPU at 3.00 GHz. After
calculation, the rescheduled train timetable that meets safety requirements and the objective
function can be directly output, along with the Q-value table and visualization of the actual
train diagram.

In this case study, two scenarios of train delays are simulated. The first scenario
involves a short-term delay of 200 s for one train. Specifically, it is the second train passing
through the sixth physical station in the upstream direction, as depicted in Figure 9a. In the
figure, the green line represents the train with the initial delay, while the red line represents
subsequently affected trains that have been rescheduled. The blue dashed line represents
the scheduled timetable, and the purple line represents normally operating trains. As seen
in Figure 9a, the number of disrupted trains is minimal, and normal operational order
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can be quickly restored. Additionally, the subsequent trains experience only a short delay.
This rescheduling process ensures safe operation while achieving the minimum sum of
deviations between the adjusted actual train operation timetable and the scheduled train
operation timetable, which serves as the objective.
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second train experienced a delay of 200 s at the sixth physical station. (b) Scenario II: the second train
experienced a delay of 200 s at the sixth physical station, and the fourth train experienced a delay of
150 s at the ninth physical station.

In the case of a 200 s delay combined with a 230 s stop time at the sixth physical
station, which is close to the 257 s running interval, such short-term delays can usually be
smoothly and safely resolved. Standard procedures typically involve detaining trains at
subsequent physical stations to ensure safe operation. Delays less than 200 s can also be
resolved through adjustments to the train timetable.

The second scenario involves addressing the problem of adjusting the train timetable
when multiple delays occur simultaneously, as illustrated in Figure 9b. In this scenario,
the second train, operating in the upstream direction, experiences a delay of 200 s when
passing through the sixth physical station. Additionally, the fourth train, operating in the
upstream direction, encounters a delay of 150 s when passing through the ninth physical
station. The delay of the second train has a cascading effect on subsequent trains, resulting
in the fourth train experiencing its own delay due to the influence of the initial delay. As
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depicted in Figure 9b, the algorithm effectively addresses the situation where multiple
trains encounter delays at different physical stations, enabling the rapid restoration of
normal operational order. Moreover, only a few subsequent trains are affected by these
delays. It can be seen that the algorithm successfully reschedules the train timetable when
delays between two trains mutually influence each other. This capability proves valuable in
resolving train timetable adjustments caused by delays and the mutual influences among
multiple trains. By ensuring safety and feasibility in adjusting the train timetable, the
algorithm demonstrates its ability to handle and resolve challenges arising from delays and
the mutual influences among multiple trains.

Figure 10a,b present partially enlarged train diagrams in combination with the schematic
of the blocks for the two scenarios discussed, visually illustrating how the algorithm dynam-
ically adjusts the train timetable. As observed in the figures, trains continue to run through
these virtual stations without making any stops. By adjusting the dwelling time of trains at
the physical stations and choosing the appropriate section running time for each block, it
achieves the objective of minimizing delays while adhering to operational constraints. This
optimization methodology significantly improves train punctuality, resulting in a smoother
and more efficient travel experience for passengers.
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(a) Scenario I: the second train experienced a delay of 200 s at the sixth physical station. (b) Scenario
II: the second train experienced a delay of 200 s at the sixth physical station, and the fourth train
experienced a delay of 150 s at the ninth physical station.
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5.3. Results Analysis

The evaluation of the algorithm’s performance is depicted in Figure 11a,b, which illus-
trate the total rewards achieved after 400 and 500 iterations, respectively. In the first scenario,
convergence is observed after approximately 200 iterations, while in the second scenario,
convergence is achieved after around 300 iterations. These results demonstrate the algo-
rithm’s ability to rapidly converge and maintain high stability once convergence is reached.
Such characteristics highlight the algorithm’s robustness and fast convergence properties.
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(a) Scenario I: the second train experienced a delay of 200 s at the sixth physical station. (b) Scenario
II: the second train experienced a delay of 200 s at the sixth physical station, and the fourth train
experienced a delay of 200 s at the ninth physical station.

The study compares the total delay values obtained from the proposed algorithm
with those of the FIFO algorithm, as depicted in Figure 12a,b. In the first scenario, after
approximately 200 iterations, the total delay value obtained from the proposed algorithm
is notably lower than that of the FIFO algorithm. Similarly, in the second delay scenario,
the proposed algorithm outperforms the FIFO algorithm in less than 250 iterations, again
leading to lower total delay values. The limitations of the FIFO algorithm become apparent
when faced with multiple delayed trains. In contrast, the proposed algorithm’s ability to
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dynamically adjust the train timetable and consider operational constraints allows it to
effectively minimize delays and achieve superior performance.
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Figure 12. The total delay values in the two scenarios on Shenzhen Metro Line 14 when delays occur
using Q-learning (QL) and FIFO strategies. (a) Scenario I: the second train experienced a delay of
200 s at the sixth physical station. (b) Scenario II: the second train experienced a delay of 200 s at the
sixth physical station, and the fourth train experienced a delay of 200 s at the ninth physical station.

To further analyze the advantages of the algorithm proposed in this paper, a compara-
tive analysis was conducted among five approaches: no adjustments, manual adjustment,
FIFO, traditional Q-learning, and the improved Q-learning proposed in this study, as shown
in Table 4. In the first delay scenario, the number of affected trains for each approach was
as follows: 5, 5, 3, 2, and 2, respectively. Regarding the total delay time, the proposed
algorithm reduces it from 885 to 256, approximately 71% compared to no adjustments,
from 400 to 256, approximately 36% compared to the FIFO algorithm, and from 510 to
256, approximately 49.8% compared to the manual adjustment method. In the second
scenario, the number of affected trains for each approach was as follows: 10, 11, 6, 4, and
4, respectively. Regarding the total delay time, the reductions are approximately 72.57%
(1750 to 480) compared to no adjustments, approximately 42.17% (830 to 480) compared
to the FIFO algorithm, and approximately 50.52% (970 to 480) compared to the manual
adjustment method.



Appl. Sci. 2024, 14, 1552 20 of 24

Table 4. Comparison of the effectiveness of the proposed algorithm with other methods.

No Adjustment Manual
Adjustment FIFO

Traditional
Q-Learning
(ε = 0.6)

The Proposed
Method

Scenario 1
Total delay time (s) 885 510 400 256 256
Affected trains 5 5 3 2 2
Affected physical stations 5 6 3 2 2
Average computation time (min) 8 5.1 0.1 2.5 1.1
Average Convergence Iterations - - - 634 235

Scenario 2
Total delay time (s) 1750 970 830 480 480
Affected trains 10 11 6 4 4
Affected physical stations 13 12 6 4 4
Average computation time (min) 16 12.3 0.1 5.2 2.3
Average Convergence Iterations - - - 763 312

Furthermore, compared to the traditional Q-learning algorithm utilizing the ε-greedy
strategy (ε = 0.6), the improved algorithm demonstrates notable improvements. In both
delay scenarios, the average computation time decreases by approximately 56% and
55.77%, while the average convergence iterations decrease by approximately 62.93% and
67.5%, respectively.

5.4. Sensitivity Analysis

Table 5 provides a comparison of the total delay time for different adjustment factors (p)
in the two delay scenarios, along with the traditional Q-learning algorithm’s reordering of
train schedules. Additionally, the average convergence iteration over multiple experiments
is considered. It reveals that when the adjustment factor (p) is set to 0.002, the algorithm
effectively identifies the optimal train schedule. As the value of p increases, the convergence
speed of the algorithm also increases. However, it is important to note that excessively large
values of p may cause the algorithm to quickly enter the later stages of greedy selection,
potentially resulting in convergence to a local optimum. Consequently, it is crucial to select
the adjustment factor appropriately based on the specific circumstances to accelerate the
convergence speed of the algorithm without compromising accuracy.

Table 5. Optimization results of train schedules with different p or ε values in two delay scenarios.

No.
The Proposed Method Traditional Q-Learning

p = 0.002 p = 0.005 p = 0.01 p = 0.02 ε = 0.6 ε = 0.4

Delay scenario 1 256 (591) * 256 (363) 256 (251) 256 (235) 256 (634) 256 (661)
Delay scenario 2 480 (640) 480 (484) 480 (334) 480 (248) 480 (763) 480 (782)

* Total delay time (average convergence iterations).

Compared to the traditional ε-greedy strategy of the Q-learning algorithm, the pro-
posed method demonstrates favorable outcomes. The traditional algorithm requires a larger
ε value during the exploration process, which leads to a slower convergence speed. In con-
trast, the proposed method achieves good results by selecting a more suitable adjustment
factor, enabling a faster convergence while maintaining accuracy.

5.5. Analysis of Testing on Different Lines

To verify the transferability of the proposed algorithm in this paper, a test was con-
ducted on Shenzhen Metro Line 1. The line involved the operation of 16 trains across
30 stations, with the sections between stations constructed based on the actual layout of
the line. The train headway was set at 340 s. In Scenario 1, as depicted in Figure 13a, the
2nd train encountered a delay of 300 s at the 19th physical station. In Scenario 2, illustrated
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in Figure 13b, the 9th train experienced a 300 s delay at the 18th physical station, and the
11th train faced a 200 s delay at the 16th physical station. In both scenarios, the algorithm
demonstrated the capability to swiftly restore normal operation. This case confirms that the
proposed algorithm can effectively handle delays and recover the system’s functionality
across different metro lines.
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Figure 13. Two scenarios of train delays in the case of Shenzhen Metro Line 1. (a) Scenario I: the 2nd
train experienced a delay of 300 s at the 19th physical station. (b) Scenario II: the 9th train experienced
a delay of 300 s at the 18th physical station, and the 11th train experienced a delay of 200 s at the 16th
physical station.

6. Conclusions

In this study, an optimization model is established, and an improved Q-learning
algorithm is proposed to address the TTR problem. The Shenzhen Metro is used as a case
study, and the results demonstrate that satisfactory solutions can be achieved within a
short time. The proposed approach effectively meets the real-time timetable adjustment
requirements, showcasing its ability to quickly reschedule train timetables in response to
actual metro operation delays. The main conclusions of this study are as follows:

(1) The improved Q-learning algorithm exhibited a stable convergence and rapid compu-
tation speed. Compared to no adjustment, manual adjustment, and FIFO methods, it
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achieved average reductions of approximately 39.09%, 50.16%, and 71.82% in total
train delay, respectively. In comparison to the traditional Q-learning algorithm, the
average computation time decreased by around 55.89%, and the average iteration
count decreased by approximately 65.22%.

(2) The optimized method resulted in a more evenly rescheduled train timetable and
aimed to minimize the total delay time caused by train delays. It effectively coordi-
nated the detention of subsequent trains and the adjustment of section running times,
ensuring the smooth operation of subsequent trains.

(3) The transferability of the algorithm proposed in this paper is verified through the
case study of Shenzhen Metro Line 1. This method demonstrates real-time adjust-
ment capability and promotes the utilization of pre-trained Q-value table in various
scenarios.

In our future research, we will conduct experimental analyses on different metro
systems to enhance the robustness and generalizability of the proposed algorithm. Ad-
ditionally, we will explore the incorporation of more complex state variables to further
improve the accuracy of our model. To address the challenge of dealing with large-scale
state variables, we will consider utilizing deep reinforcement learning algorithms, such as
deep Q-networks (DQN).
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