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Abstract: Dynamic time warping estimates the alignment between two sequences and is designed to
handle a variable amount of time warping. In many contexts, it performs poorly when confronted
with two sequences of different scale, in which the average slope of the true alignment path in the
pairwise cost matrix deviates significantly from one. This paper investigates ways to improve the
robustness of DTW to such global time warping conditions, using an audio–audio alignment task as
a motivating scenario of interest. We modify a dataset commonly used for studying audio–audio
synchronization in order to construct a benchmark in which the global time warping conditions are
carefully controlled, and we evaluate the effectiveness of several strategies designed to handle global
time warping. Among the strategies tested, there is a clear winner: performing sequence length
normalization via downsampling before invoking DTW. This method achieves the best alignment
accuracy across a wide range of global time warping conditions, and it maintains or reduces the
runtime compared to standard usages of DTW. We present experiments and analyses to demonstrate
its effectiveness in both controlled and realistic scenarios.

Keywords: audio synchronization; alignment; time warping; DTW; scaling

1. Introduction

Dynamic time warping (DTW) is a dynamic programming algorithm that calculates the
optimal alignment between two sequences under certain assumptions. Though designed
to handle an unknown amount of time warping, in practice DTW’s performance often
degrades when the two sequences differ substantially in scale [1–3], resulting in a global
time warp factor that deviates from one. Scale differences arise naturally in many domains:
query-by-humming systems must handle singing at different tempos [4], gait recognition
involves different walking speeds [5], query-by-sketch systems must handle differences
in scale [6], and similar issues arise in multimedia [7] and bioinformatics [8]. This paper
studies the effect of global time warping conditions on the alignment accuracy of DTW in a
systematic manner and experimentally explores several ways to improve the robustness
of DTW to varying levels of global time warping. To make our study concrete, we will
focus on an audio–audio alignment scenario in which the goal is to accurately estimate the
temporal alignment between two different audio recordings of the same piece of music
(e.g., two different piano performances of a composition).

Previous works on DTW generally fall into one of four groups. The first group focuses
on speeding up exact DTW (or subsequence DTW), often in the context of a database search.
This has been accomplished in many ways, including lower bounds [9,10], early abandon-
ing [11,12], parallelizing across multiple cores [13,14], or using specialized hardware [15,16].
Several recent works have utilized GPUs to reduce the runtime of computing exact DTW
on long sequences [17,18]. The second group focuses on reducing the quadratic memory
and computation costs through approximations of DTW. These include approximate lower
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bounds [19,20], imposing bands in the cost matrix to limit severe time warping [21,22], per-
forming alignments at multiple different resolutions [23,24], parallelizable approximations
of DTW [18,25], and estimating alignments within strict memory limitations [26]. The third
group focuses on extending the behavior of DTW to make it more flexible. Examples in
the music information retrieval literature include handling structural differences due to
repeats or jumps in music [27–29], aligning sequences in an online setting [30–32], handling
partial alignments [33,34], utilizing multiple performances of a piece to improve alignment
accuracy [35], and handling pitch drift in a capella music [36]. The fourth group focuses
on integrating DTW into modern neural network models. These include differentiable ap-
proximations of DTW suitable for backpropagation [37–39] or adopting a hard alternating
scheme [40–42]. We note that our present study falls into the third group (more flexible
behavior), as our focus is on improving robustness under certain conditions.

This paper poses the following question: “How can we make DTW more robust to
global time warping conditions?” There are two practices that are commonly used to handle
differences in scale. The first practice is to select an appropriate set of allowable transitions
to handle the amount of expected time warping. For example, the set {(1, 1), (1, 2), (2, 1)}
allows for a maximum time warping factor of 2, while the set {(1, 1), (0, 1), (1, 0)} theoreti-
cally allows for an infinite amount of time warping. This is a design decision that must be
made whenever DTW is invoked. The second practice is to re-scale the sequences to be the
same length before invoking DTW [1,2]. Though these two practices are commonly adopted,
we are not aware of any studies that systematically study their effectiveness as a function of
the global time warping factor. This paper compares these two approaches—and others—to
determine how well they perform across a range of global time warping conditions. To
study this question in a systematic manner, we adopt a dataset commonly used to study
audio synchronization, modify it to construct benchmarks in which the average global time
warping conditions are carefully controlled, and then use our controlled benchmarks to
study the effectiveness of several strategies for handling global time warping. Our goal is
to understand the effect of global time warping on the alignment accuracy of DTW and to
identify a set of best practices for handling varying global time warping conditions.

This paper has three main contributions. First, we introduce a framework for systemati-
cally studying the effect of global time warping conditions in an audio–audio alignment task.
Second, we explore several ways to improve the robustness of DTW to varying levels of
global time warping, and we characterize their effectiveness in our controlled benchmarks.
Third, we provide a clear recommendation for best practice in handling global time warping
conditions: sequence length normalization with downsampling. This method achieves the
best alignment accuracy across a wide range of global time warping conditions, while main-
taining or reducing runtime compared to standard usages of DTW. Code for reproducing
our experiments can be found at https://github.com/HMC-MIR/ExtremeTimeWarping
(accessed on 5 February 2024).

The rest of the paper is organized as follows. Section 2 introduces four different
methods for handling or mitigating the effect of global time warping. Section 3 describes our
experimental setup to study the effect of global time warping under controlled conditions
and presents our empirical results and findings. Section 4 conducts two additional analyses
to gain a deeper insight into the results. Section 5 concludes the work.

2. Materials and Methods

In this section, we describe several methods for dealing with global time warping.
First, we explain the standard DTW algorithm for completeness, and then we describe four
different ways to handle global time warping.

Standard DTW estimates the alignment between two sequences x0, x1, . . . xN−1 and
y0, y1, . . . , yM−1 in the following manner. First, a pairwise cost matrix C ∈ RN×M is com-
puted, where C(i, j) indicates the distance between xi and yj under a particular cost metric
(e.g., Euclidean distance, cosine distance). Next, a cumulative cost matrix D ∈ RN×M is
computed with dynamic programming, where D(i, j) indicates the optimal cumulative

https://github.com/HMC-MIR/ExtremeTimeWarping
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path cost from (0, 0) to (i, j) under a pre-defined set of allowable transitions and transi-
tion weights. For example, with a set of allowable transitions {(1, 1), (1, 2), (2, 1)} and
corresponding transition weights {2, 3, 3}, the elements of D can be computed using the
following recursion:

D(0, 0) = C(0, 0) (1)

D(i, j) = min


D(i − 1, j − 1) + 2 · C(i, j)
D(i − 1, j − 2) + 3 · C(i, j)
D(i − 2, j − 1) + 3 · C(i, j)

(2)

During this dynamic programming stage, a backtrace matrix B ∈ ZN×M is also computed,
where B(i, j) indicates the optimal transition ending at (i, j). Once D and B have been
computed using dynamic programming, we can determine the optimal path through the
cost matrix by following the backpointers in B starting at position (N − 1, M − 1). The
optimal path defines the predicted alignment between the two sequences.

2.1. Different Transitions and Weights

One obvious way to deal with global time warping is to simply select a set of allowable
transitions to explicitly handle a specified amount of time warping. This is a design
decision that must be made whenever DTW is invoked. For example, the transition set
{(1, 1), (0, 1), (1, 0)} can theoretically handle an infinite amount of time warp. In practice,
however, these transitions often lead to degenerate alignments and unstable or undesirable
behavior. A more conservative way to handle global time warping is use transitions like
(2, 1) and (3, 1), which limit the maximum amount of time warping that can be handled. A
commonly used set of transitions in the audio synchronization literature is {(1, 1), (1, 2),
(2, 1)}, which imposes a maximum allowable time warp factor of 2. In a similar manner, the
set of transitions {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)} imposes a maximum allowable time warp
factor of 3, and the set {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1)} imposes a maximum
allowable time warp factor of 4. These additional transitions come with a significant
computational cost, however, since each step of the dynamic programming stage needs to
consider every possible transition (cf. Equation (2)). In Sections 3 and 4, we will compare
both the alignment accuracy and the runtime of several different settings for transition
types and weights.

2.2. Normalizing Sequence Length

Another common way to deal with global time warping is to normalize the sequence
lengths before estimating the alignment. This technique has been explored in many forms
in previous works [43–45]. Let x0, x1, . . . , xN−1 and y0, y1, . . . , yM−1 be the two sequences
that we would like to align, where N ≤ M. Before computing the pairwise cost matrix
C, we can downsample the sequence y0, y1, . . . , yM−1 to match the length of the other
sequence, yielding a modified sequence ỹ0, ỹ1, . . . , ỹN−1. One simple way to perform this
downsampling is to simply calculate a weighted combination of the two nearest neighbors.
In this approach, we first create N linearly spaced indices between 0 and M − 1, and then
use these indices to compute values as a weighted combination. For example, a desired
sample at index 4.4 would be calculated as 0.6 · y4 + 0.4 · y5. Once both sequences have
been normalized in length, we can use standard DTW to estimate the alignment between
x0, x1, . . . , xN−1 and ỹ0, ỹ1, . . . , ỹN−1, and then account for the global downsampling factor
to infer the alignment between x0, x1, . . . , xN−1 and y0, y1, . . . , yM−1.

There are multiple ways one might normalize sequence length. In our experiments,
we consider two different dimensions of behavior. One dimension is to either (a) down-
sample the longer sequence to match the length of the shorter sequence, or (b) upsample
the shorter sequence to match the length of the longer sequence. The second dimension is
to perform upsampling/downsampling by either (a) using linear interpolation between
the two nearest neighbors (as described in the previous paragraph) or (b) simply using
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the nearest neighbor (e.g., a desired sample at index 4.4 would be represented as y4). In
Sections 3 and 4, we characterize the performance and runtime of the four possible combi-
nations: downsampling with linear interpolation, downsampling with nearest neighbor,
upsampling with linear interpolation, and upsampling with nearest neighbor.

2.3. Adaptive Weighting Schemes

A third way to deal with severe time warping is to select transition weights adaptively
during the run time rather than using a fixed set of transition weights tuned on a training
set. Let x0, x1, . . . , xN−1 and y0, y1, . . . , yM−1 be the two sequences that we would like
to align, where N ≤ M. If we use standard DTW with allowable (∆x, ∆y) transitions
{(0, 1), (1, 0)} and corresponding weights {w1, w2}, then we can adaptively set w1 = 1 and
w2 = M

N for each pair of sequences to be aligned. This weighting scheme ensures that both
axes contribute the same weighted Manhattan distance cost from (0, 0) to (N − 1, M − 1),
regardless of the values of N and M. (Note that if w1 = w2 = 1, the axis along the shorter
sequence contributes less to the total path cost simply because it is shorter in length.) This
prevents one axis from dominating the total path cost. Similarly, we can use standard DTW
with allowable (∆x, ∆y) transitions {(0, 1), (1, 0), (1, 1)} and corresponding weights {w1,
w2, w3}, where we can adaptively set w1 = 1, w2 = M

N , and w3 = 1 + M
N . This preserves

the property that both axes contribute equally to the total path cost, and it allows (1, 1)
transitions as well.

2.4. Non-Uniform Transition Patterns

A fourth way to deal with severe time warping is to use non-uniform transition
patterns at different positions in the cost matrix. This approach is identical to standard
DTW except that the set of allowable transitions at each position (i, j) in the pairwise cost
matrix may be different. Consider a nominal set of allowable transitions {(0, 1), (1, 0), (1, 1)}
with corresponding weights {1, 1, 2} and a desired maximum time warping factor Wmax. If
we remove the (1, 0) transition from all positions (i, j) where i%Wmax == 0, and likewise
remove the (0, 1) transition from all positions (i, j) where j%Wmax == 0, then we effectively
impose a maximum time warping factor of Wmax. Figure 1 shows an illustration of the
case when Wmax = 3. The benefit of this approach is that it can handle more extreme time
warping, but it limits horizontal/vertical degenerate paths and avoids the computational
cost of adding additional transition types.

Figure 1. An example of a pairwise cost matrix in which the set of allowable transitions at each
position (i, j) is different. The pattern shown above assumes nominal transitions of (0, 1), (1, 0), and
(1, 1), but where (0, 1) transitions are removed in every third row and (1, 0) transitions are removed
in every third column. The resulting pattern allows for a maximum time warping factor of 3.
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In Section 3, we will characterize how effective the above methods are in dealing with
varying global time warping conditions.

3. Results

In this section, we describe how we constructed a benchmark to perform a controlled
study on the effects of global time warping (Section 3.1), and then share the results of our
experimental study (Section 3.2).

3.1. Experimental Setup

Our benchmark is a modification of the Mazurka Dataset [46]. The Mazurka Dataset
contains historic audio recordings of five Chopin Mazurkas, along with beat-level annota-
tions. This dataset has been used to study various audio-related tasks that require precise
timing information, such as audio synchronization, beat tracking, and tempo estimation
(e.g., [18,35,47,48]). Table 1 shows the number of recordings for each Mazurka and de-
scriptive statistics for the recording duration. For each Mazurka, every possible pairing
of recordings is considered, the two recordings are aligned, and the predicted alignment
is compared to the ground truth annotations to evaluate alignment accuracy. Note from
Table 1 that the global time warping conditions in the original dataset range from 1 to 2.3
(between the longest and shortest recordings for Opus 63, No 3). We set aside the Op. 17
No. 4 and Op. 63 No. 3 Mazurkas for training/development and used the remaining three
Mazurkas for testing. Because our interest in this work is in the alignment algorithm, in
all experiments we simply use standard chroma features and a cosine distance metric. For
computing chroma features, we used librosa [49] with default settings: 22,050 Hz sampling
rate, 512 sample hop length, and spanning seven octaves between C1 and C8.

Table 1. Overview of the original Chopin Mazurka dataset [46]. This is used as the source data to
generate a benchmark suite in which the global average time warping factor is controlled. The top
two pieces are used for training and the bottom three pieces are used for testing. All durations are
in seconds.

Piece Files Median Mean Std Min Max

Opus 17, No 4 64 254.9 259.7 32.5 194.4 409.6
Opus 63, No 3 88 128.2 129.0 13.4 96.2 162.9

Opus 24, No 2 64 136.7 137.5 13.9 109.6 180.0
Opus 30, No 2 34 87.3 85.0 9.2 68.0 99.0
Opus 68, No 3 51 99.6 101.1 19.4 71.8 164.8

We created seven different modified versions of the Mazurka Dataset. Our goal was
to construct datasets that would allow us to measure alignment accuracy across a wide
range of carefully controlled global time warping conditions. The modified datasets were
constructed in the following manner. First, for each Mazurka, we calculated the median
duration of all recordings, which we denote as Lmed. In Table 2, the Lmed values for each
Mazurka are indicated in the column labeled “×1.000”. Second, we determined a set of
seven target durations: 0.500Lmed, 0.630Lmed, 0.794Lmed, 1.000Lmed, 1.260Lmed, 1.588Lmed,
and 2.000Lmed. Note that these target durations are spaced evenly on a log scale and
span a factor of 2.000

0.500 = 4. Finally, we time-scale modified each individual recording
to its target durations, and also modified the beat annotations accordingly. Time-scale
modification (TSM) is a technique in which the tempo (and thus duration) of a piece of
music is altered without changing the pitch. We used the approach described in [50], in
which the audio waveform is first separated into percussive and harmonic components,
the percussive component is time-scale modified with a basic overlap-add method, the
harmonic component is time-scale modified with a phase vocoder [51], and the resulting
time-scale modified components are added. (Note that most existing implementations
of TSM use a hop size that is rounded to the nearest audio sample, which results in an
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effective TSM factor that is slightly different than what is specified. Because we wanted
precise control over the recording durations, we implemented our TSM from scratch,
including a re-implementation of the STFT function that allows for a non-integer hop
size in samples.) The end result of this process is a set of seven different versions of the
Mazurka Dataset, which we refer to as median_x0.500, median_x0.630, median_x0.794,
median_x1.000, median_x1.260, median_x1.588, and median_x2.000. Table 2 provides an
overview of these modified datasets. In each of these seven datasets, all of the recordings of
the same Mazurka have exactly the same duration. So, for example, in the median_x2.000
dataset, all of the Op. 30 No. 2 recordings are approximately 174.6 seconds in duration.

Table 2. Overview of the modified Mazurka Datasets. We constructed seven modified versions of the
Mazurka Dataset to study alignment accuracy under controlled global time warping conditions. All
recordings of the same Mazurka are time-scale modified to a target duration, where target durations
are calculated as the median duration multiplied by a constant scaling factor (0.500, 0.630, 0.794, 1.000,
1.260, 1.588, 2.000). Recording durations for the seven modified datasets are shown in the table and
are expressed in seconds.

Piece Files Durations
×0.500 ×0.630 ×0.794 ×1.000 ×1.260 ×1.588 ×2.000

Opus 17, No 4 64 127.5 160.6 202.4 254.9 321.2 404.8 509.9
Opus 63, No 3 88 64.1 80.8 101.8 128.2 161.6 203.6 256.4

Opus 24, No 2 64 68.3 86.1 108.5 136.7 172.2 217.0 273.4
Opus 30, No 2 34 43.7 55.0 69.3 87.3 110.0 138.6 174.6
Opus 68, No 3 51 49.8 62.8 79.1 99.6 125.6 158.2 199.3

We then ran experiments by considering pairs of modified datasets, as shown in
Table 3. Each pairing of datasets constitutes a benchmark with a fixed average global time
warp factor, where the global time warp factors range between 1.000 and 4.000. Note that
there are multiple different pairings of modified datasets that could achieve the same fixed
global time warp factor. Among the possible pairings, we adopted the strategy of pairing
a dataset that is “sped up” with a dataset that is “slowed down”, in order to minimize
artifacts from performing TSM with extreme factors. For each pairing of datasets, we then
ran an experiment exactly as before: we considered every possible pair of audio recordings
(A, B) of the same Mazurka (where A is taken from one modified dataset and B is taken
from the other modified dataset), aligned the pair of recordings, and then evaluated the
accuracy of the predicted alignment. Note that, in each of the seven benchmarks described
above, we have exactly the same number of recording pairs as in the original Mazurka
Dataset benchmark: (64

2 ) + (88
2 ) = 5844 pairs for training and (64

2 ) + (34
2 ) + (51

2 ) = 3852 pairs
for testing. The difference is that in each pairing of recordings (A, B), the durations of A and
B have been modified via TSM to achieve a fixed global time warping factor. For example,
when pairing the median_x2.000 and median_x0.500 datasets, every pair of recordings
from Opus 17 No 4 will have a global average time warping factor of 509.9s

127.5s = 4.0, and every
pair of recordings from Opus 24 No 2 will also have a global average time warping factor
of 273.4s

68.3s = 4.0, etc.
We evaluate alignment accuracy in the following manner. Given a predicted alignment

between two recordings A and B, we determine the predicted timestamp in B that corre-
sponds to each ground truth beat timestamp in A. The difference between the predicted
timestamp in B and the actual ground truth beat timestamp in B is the alignment error.
We can then calculate the percentage of predictions that are incorrect (error rate), where
we define an incorrect prediction as one that has an alignment error greater than a fixed
threshold value (error tolerance). Thus, there is a tradeoff between error rate and error
tolerance. Figure 2 shows the process of calculating the error rate for a predicted alignment
with two different error tolerances. With a small error tolerance (left), two out of six beat
timestamps are considered incorrect, resulting in an error rate of 2

6 = 33.3%. With a larger
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error tolerance (right), all six beat timestamps are considered correct, resulting in an error
rate of 0%. In our experimental results in Section 3, error rates are computed across all
predicted alignments in the benchmark, and we report error rates at multiple different error
tolerances.

Table 3. The pairings of modified Mazurka Datasets used to study fixed global time warping ratios.
For example, to study performance at a global time warping ratio of 2, we consider pairs of audio
recordings (A, B) where A is selected from the median_x1.588 dataset and where B is selected from
the median_x0.794 dataset.

Global Time Warping Ratio Dataset 1 Dataset 2

1.000 median_x1.000 median_x1.000
1.260 median_x1.260 median_x1.000
1.588 median_x1.260 median_x0.794
2.000 median_x1.588 median_x0.794
2.521 median_x1.588 median_x0.630
3.175 median_x2.000 median_x0.630
4.000 median_x2.000 median_x0.500

Figure 2. Example showing how we evaluate alignment accuracy. Red points indicate ground truth
beat timestamps, the blue trajectory indicates a predicted alignment, and the black vertical bars
indicate error tolerance. With a small error tolerance (left), the error rate is 2

6 = 33.3%. With a larger
error tolerance (right), the error rate for the same predicted alignment is 0%. We report error rates at
multiple error tolerances.

There is one subtle yet very important detail regarding evaluation. Consider the
evaluation of a predicted alignment between two recordings A and B. At the ground truth
beat timestamp in A, let us say that the predicted alignment error in B is 50 ms. If we take
the exact same predicted alignment but elongate the time axis in B by a factor of two, the
predicted alignment error in B will be 100 ms. Clearly, the predicted alignment has not
gotten any worse in quality—it has simply been projected into a time axis that is elongated.
To account for this issue, when calculating the alignment error, we project all predicted
alignments into the median_x1.000 time axis and then apply a fixed error tolerance. This
ensures that alignment errors in different time scales are compared fairly. One way to
think about this is that we are using an error tolerance that is (roughly) a fixed fraction of a
musical beat, rather than a fixed absolute duration of time.

3.2. Experimental Results

We evaluated the performance of 17 alignment algorithms. The first seven systems
explore the use of different transition types and weights for standard DTW, as described
in Section 2.1. The next four systems explore the use of sequence length normalization,
as described in Section 2.2. The next two systems explore the use of adaptive weighting
schemes, as described in Section 2.3. The last four systems explore the use of non-uniform
transition patterns, as described in Section 2.4. Table 4 defines each of these 17 systems,
grouped into the four categories described above. We ran experiments with many other
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variants and only included the best-performing ones in the 17 listed in the table. For exam-
ple, we tried applying sequence length normalization to other transition and weighting
schemes, but only present results with DTW2 since it yielded the best results. Likewise,
we considered several other weighting schemes with standard DTW, but only present the
best-performing ones.

Table 4. Explanation of the 17 systems whose performance is compared in Figure 3. Systems are
grouped into four different categories: standard DTW, sequence normalization, adaptive weighting,
and selective transitions.

System Description

DTW1 Standard DTW with (1, 1), (1, 2), (2, 1) transitions and weights 2, 3, 3.
DTW2 Standard DTW with (1, 1), (1, 2), (2, 1) transitions and weights 1, 2, 2.
DTW3 Standard DTW with (0, 1), (1, 0), (1, 1) transitions and weights 1, 1, 2.
DTW4 Standard DTW with (0, 1), (1, 0), (1, 1) transitions and weights 1, 1, 1.
DTW5 Standard DTW with (0, 1), (1, 0) transitions and weights 1, 1.
DTW1-add3 Standard DTW with (1, 1), (1, 2), (2, 1), (1, 3), (3, 1) transitions and weights 2, 3, 3, 4, 4.
DTW1-add4 Standard DTW with (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1) transitions and weights 2, 3, 3,

4, 4, 5, 5.

DTW2-downsampleNN Downsample the longer sequence to match the shorter sequence using nearest neighbor
interpolation, then use standard DTW with (1, 1), (1, 2), (2, 1) transitions and weights 1,
2, 2.

DTW2-downsampleLin Downsample the longer sequence to match the shorter sequence using linear interpolation,
then use standard DTW with (1, 1), (1, 2), (2, 1) transitions and weights 1, 2, 2.

DTW2-upsampleNN Upsample the shorter sequence to match the longer sequence using nearest neighbor interpola-
tion, then use standard DTW with (1, 1), (1, 2), (2, 1) transitions and weights 1, 2, 2.

DTW2-upsampleLin Upsample the shorter sequence to match the longer sequence using linear interpolation, then
use standard DTW with (1, 1), (1, 2), (2, 1) transitions and weights 1, 2, 2.

AdaptiveWeight1 Standard DTW with (0, 1), (1, 0) transitions and adaptive weights w1 = 1, w2 = Lmax
Lmin

, where
the second sequence is assumed to be longer.

AdaptiveWeight2 Standard DTW with (0, 1), (1, 0), (1, 1) transitions and adaptive weights w1 = 1, w2 = Lmax
Lmin

,

w3 = 1 + Lmax
Lmin

, where the second sequence is assumed to be longer.

SelectiveTransitions-max2 Modified DTW with (0, 1), (1, 0), (1, 1) nominal transitions and weights 1, 1, 2, but with (1, 0)
transitions removed from locations (i, j) where i%Wmax == 0 and (0, 1) transitions removed
from locations (i, j) where j%Wmax == 0, with Wmax = 2.

SelectiveTransitions-max3 Same as above, but with Wmax = 3.
SelectiveTransitions-max4 Same as above, but with Wmax = 4.
SelectiveTransitions-max5 Same as above, but with Wmax = 5.

Figure 3 shows the alignment accuracy of all 17 alignment methods on our benchmarks.
The seven groups along the horizontal axis correspond to the seven different benchmarks,
where each benchmark has an average global time warping factor between 1.0 and 4.0.
Within each group, the colored bars correspond to the 17 different alignment methods.
Note that bar colors have been chosen to group similar alignment methods together, so
that variations of the same method are indicated with a gradient of the same hue. Each
individual bar indicates the error rate at an error tolerance of 200 ms when projected onto
the median_x1.000 time scale. On top of each bar, we have also overlaid two horizontal
black lines indicating the error rates at tolerances of 100 ms (above) and 400 ms (below).
The y-axis indicates error rate, so lower is better.
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Figure 3. Assessing the robustness of various alignment methods to global time warping conditions. The seven groups along the horizontal axis correspond to
seven benchmarks with different average global time warping factors. Colored bars indicate the error rate at 200 ms error tolerance, and the black horizontal lines
indicate error rate at error tolerances of 100 ms (above) and 400 ms (below). Note that the bar colors are grouped by category, so that similar algorithms are shown as
different shades of the same hue.
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There are many things to notice about Figure 3. We will unpack and interpret the
results for each color group in the paragraphs below.

First, consider the two yellow systems (DTW1, DTW2). These two systems have
allowable transitions (1, 1), (1, 2), (2, 1) with two different weighting schemes. This set
of allowable transitions is often used in audio–audio alignment, so these systems can be
interpreted as a type of baseline. We see that both systems have good performance for low
global time warp factors, but that performance is terrible for global time warp factors of
2.0 and higher. This makes intuitive sense, since the set of transitions (1, 1), (1, 2), (2, 1)
imposes a maximum allowable time warping factor of 2. Thus, we can summarize the
performance of our baselines in the following way: they perform well with moderate global
time warping (<2), but they cannot handle severe global time warping (≥2) at all.

Second, consider the three blue systems (DTW3, DTW4, DTW5). What these three
systems have in common is that they allow (0, 1) and (1, 0) transitions, which theoretically
should be able to handle an infinite amount of time warping. Their performance thus
addresses the question, “Can we handle severe global time warping by including (0, 1) and
(1, 0) transitions in standard DTW?” We can see in Figure 3 that the performance of these
systems is relatively invariant to the global time warp factor. For example, the error rate
of the DTW3 system only degrades from about 32% to 37% as the global time warp factor
increases from 1.0 to 4.0. However, the error rates of all three systems is relatively high, and
they do not have competitive performance compared to the other systems under any global
time warp conditions. So, the short answer to the question above is: no, adding (0, 1) and
(1, 0) transitions is not an effective method of handling severe global time warping.

Third, consider the two orange systems (DTW1-add3, DTW1-add4). These two sys-
tems add additional transitions like (3, 1) and (4, 1) to the standard set {(1, 1), (1, 2), (2, 1)}.
These systems address the question, “Can we handle more severe global time warping
conditions by adding more extreme transitions to standard DTW?” We can see in Figure 3
that the performance is degraded for low global time warp factors, but that the two systems
are indeed able to cope with more extreme time warping. For example, DTW1-add3 has
reasonably good performance for global time warp factors < 3.0, and DTW1-add4 has
reasonably good performance for global time warp factors < 4.0. However, we must also
keep in mind that these systems require more computation, since each step in the dynamic
programming stage must consider more possibilities (e.g., seven for DTW1-add4 compared
to three for DTW1). So, the short answer to the question above is that adding more extreme
transitions can make DTW more robust to severe global time warping, but it comes at a
heavy computational cost and a moderate degradation in accuracy.

Fourth, consider the four purple systems (DTW2-downsampleNN, DTW2-downsampleLin,
DTW2-upsampleNN, DTW2-upsampleLin). These four systems all perform some form of
sequence length normalization before applying DTW with standard settings. We can see
in Figure 3 that these four systems have the best performance among all systems across
all seven global time warp factors. Furthermore, the performance is largely invariant to
the global time warp factor. Interestingly, all four systems have very similar accuracy, with
the upsampling variants showing a slight performance benefit at high global time warp
factors. Given that upsampling results in much longer sequences (and therefore more
computation in performing DTW), the most practical option is DTW2-downsampleNN
due to its simplicity. In summary, the sequence length normalization technique is the clear
winner among the four methods—it has the best performance across all conditions and is
largely invariant to the global time warping factor.

Fifth, consider the two green systems (AdaptiveWeight1, AdaptiveWeight2). These
systems have (0, 1) and (1, 0) transitions with weights that are computed at run time
based on the lengths of the two sequences. We can see in Figure 3 that these systems have
roughly the same behavior as the other systems that include (0, 1) and (1, 0) transitions.
The adaptive weighting does not seem to provide additional benefit in handling global
time warping conditions.
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Finally, consider the four red systems (SelectiveTransitions-max{W} where
W = 2, 3, 4, 5). These systems all have (0, 1), (1, 0), (1, 1) nominal transitions but se-
lectively remove the (0, 1) and (1, 0) transitions from selected locations (i, j) in the pairwise
cost matrix. We can see in Figure 3 that this scheme does indeed provide robustness to
extreme time warping. For example, SelectiveTransitions-max2 has reasonable performance
for global time warp factors < 2.0, SelectiveTransitions-max3 has reasonable performance
for global time warp factors < 3.0, etc. However, compared to the best-performing sys-
tems, these variants show a moderate degradation in alignment accuracy. One difference
between this approach and DTW1-add3 and DTW1-add4 is the computational cost: since
we are removing transitions (rather than adding additional transitions), we do not need to
consider as many possibilities and the resulting computational cost is lower (in theory). So,
non-uniform transition patterns do seem to make DTW more robust to global time warping
conditions, but they come with a moderate reduction in accuracy.

4. Discussion

In this section, we conduct two additional analyses to gain a deeper insight into our
experimental results.

The first analysis is to characterize the runtime of different algorithms. We can do
this in two ways: a theoretical analysis and an empirical analysis. The theoretical runtime
can be considered in the following manner. Let N and M represent the sequence lengths
of the two sequences to be aligned, where we assume N ≤ M without loss of generality.
Let T represent the number of possible transition types at each location in the cost matrix.
Then, the computational complexity of standard DTW is O(NMT). This applies to the
seven systems that explore the use of different transition types and weights (DTW1-5,
DTW1-add3, DTW1-add4) and the adaptive weighting schemes (AdaptiveWeight1-2). For
the sequence length normalization methods, the computational complexity is O(N2T)
when downsampling and O(M2T) when upsampling. For the non-uniform transition
patterns, the average number of transition types per location is reduced to T − 2

Wmax
, so the

computational complexity is O(NM(T − 2
Wmax

)) ≈ O(NMT).
We used the following procedure to measure the empirical runtime. Given two se-

quence lengths, N and M, we randomly initialize two feature matrices of size 12 × N and
12 × M, where the 12 is selected to simulate a chroma feature representation. We begin pro-
filing after the feature matrices have been generated, and we include feature preprocessing
(e.g., downsampling for sequence length normalization), pairwise cost matrix computation,
dynamic programming, backtracking, and any postprocessing (e.g., compensating for
downsampling). For each setting of (N, M), we repeat this process 10 times and report the
average runtime. All experiments were run on a 2.1 GHz Intel Xeon processor with 192 GB
of DDR4 RAM, and all alignment algorithms are implemented in cython.

Figure 4 compares the runtime of all 17 alignment algorithms. Each group along the
horizontal axis corresponds to one setting of (N, M), where N and M indicate the lengths
of the shorter and longer sequence, respectively. We have included results for N = 1k,
3k, 10k, 30k, and M = N, 2N, 4N. These settings allow us to see the effect of both the
sequence length and the global time warp factor. For ease of viewing, the groups have
been split into two subplots. Within each group, the different bars correspond to the 17
alignment algorithms; we use the same color scheme as in Figure 3. The height of each bar
indicates the average runtime across 10 runs, where runtime is shown on a log scale. Note
that the results for (30k, 120k) are missing for the two upsampling systems—this is because
the upsampling approach creates a 120k × 120k pairwise cost matrix and cumulative cost
matrix, and this exceeded the RAM limits for our server.
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Figure 4. Comparison of runtimes for aligning two sequences of length N and M, where N = 1k, 3k, 10k, 30k and M = N, 2N, 4N. This selection of (N, M) settings
allows us to assess the effect of sequence length as well as average global time warping factor. The reported runtimes are the average of 10 trials. Note that the y-axis
is shown on a log scale.
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There are several things to notice about Figure 4. First, the DTW1 through DTW5
systems have similar runtimes, since all are standard DTW with three allowable transitions.
This is a baseline that represents typical DTW usage. Now, we consider the remaining
groups. DTW1-add3 and DTW1-add4 (orange) have increased runtimes compared to the
baseline, since they require more transition possibilities to be considered at each step of
the dynamic programming stage. The sequence normalization methods (purple) have
the most interesting runtime trends. When N ≈ M, the runtimes of all four sequence
normalization methods are similar to the baseline. However, as the global time warping
factor M

N increases, the downsampling variants show a significant decrease in runtime
compared to the baseline, while the upsampling variants show a significant increase in
runtime. This makes sense: when N = 10,000 and M = 40,000, the downsampling variants
will perform DTW on a 10,000 × 10,000 pairwise cost matrix while the upsampling variants
will perform DTW on a 40,000 × 40,000 pairwise cost matrix. The adaptive weighting
schemes (green) show similar performance to the baseline, with a decrease in runtime
for the variant that only has two allowable transitions. Interestingly, the systems with
non-uniform transition patterns (red) show a significant increase in runtime compared to
the baselines. While in theory these methods require fewer transition possibilities to be
considered, in practice the implementation of non-uniform transition patterns requires
additional logic within the nested loops, which results in an increase in runtime.

The main takeaway from our runtime analysis is this: the downsampling sequence
normalization methods are the clear winner. They have the best alignment accuracy across
all global time warping conditions, and they also have the best runtime characteristics.
The runtime of these methods roughly matches standard DTW when N ≈ M, and it
substantially reduces the runtime under more extreme global time warping conditions.

The second analysis is a sanity check. We have performed extensive experiments un-
der carefully controlled global time warping conditions, and we have found a clear winner:
sequence length normalization with downsampling. But the real question is this: does this
method help in practice under real conditions? To answer this question, we compared the
performance of the best standard DTW configurations (DTW1, DTW2) with their corre-
sponding sequence normalized methods (DTW1-downsampleNN, DTW1-downsampleLin,
DTW2-downsampleNN, DTW2-downsampleLin) on the original Mazurka Dataset. Table 5
compares the error rates of these six systems at three different error tolerances: 100 ms,
200 ms, and 500 ms.

Table 5. Comparing the error rates of the best standard DTW configurations and the best sequence
length normalization methods on the original Chopin Mazurka dataset. Numbers in the table indicate
error rate at three different error tolerances.

System Error Tolerance
100 ms 200 ms 500 ms

DTW1 17.5% 8.8% 3.6%
DTW1-downsampleNN 17.1% 8.1% 2.7%
DTW1-downsampleLin 17.1% 8.2% 2.6%

DTW2 14.1% 7.3% 3.6%
DTW2-downsampleNN 13.2% 6.3% 2.6%
DTW2-downsampleLin 13.1% 6.3% 2.6%

There are two things to notice about Table 5. First, we see that sequence normalization
consistently improves alignment accuracy. This improvement holds across different weight-
ing schemes (DTW1, DTW2) and across all error tolerances. This suggests that the sequence
normalization method may be useful as a general best practice, and not just when there
is extreme global time warping. Second, we observe that the improvement is more pro-
nounced for larger error tolerances. For example, when applying sequence normalization to
DTW2, the error rate at a 100 ms tolerance decreases from 14.1% to 13.2% (a 6.4% reduction
in errors), and at a 500 ms tolerance decreases from 3.6% to 2.6% (a 27.8% reduction in
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errors). Intuitively, we do not expect that downsampling a sequence will greatly improve
its fine-grained alignment accuracy since downsampling throws away fine-grained infor-
mation. But the main effect we are observing here is that sequence normalization reduces
the likelihood that the ground truth alignment path will exceed a maximum allowable
time warping factor (imposed by the selected set of allowable transitions). This results in a
substantial improvement in alignment accuracy at mid- and coarse-level error tolerances.

It is important to point out the limitations of our study. The audio–audio alignment
task we have selected has several distinctive characteristics that may limit the generalizabil-
ity of our findings: (a) sequence elements (e.g., chroma features) have strong correlations
over time, (b) sequence elements are continuous valued rather than discrete symbols,
and (c) the true alignment path is (roughly) monotonically increasing, meaning that the
alignment is a one-to-one mapping (rather than a many-to-one mapping). We cannot
say if our conclusions and findings will necessarily generalize to settings in which these
characteristics are different. For example, if the sequences consist of discrete tokens with
no temporal correlation, then downsampling may have a very different effect. Nonetheless,
we are eager to study to what extent these conclusions may generalize to other domains in
future work. Furthermore, we also point out that the sequence normalization method has
two restrictions. First, it requires knowing the average global time warping factor a priori,
usually through a boundary assumption, in which we assume that both sequences begin
and end together. For situations like subsequence DTW, in which the boundary conditions
are not known a priori, sequence normalization methods cannot be applied. Second, it
only provides benefit in handling global (rather than local) time warping conditions. For
example, if the true alignment path has an average global time warping factor close to
one but contains a local section with extreme time warping, the sequence normalization
method will not provide any benefit. This is also an area to explore in future work.

5. Conclusions

We have proposed a framework for studying the effect of global time warping condi-
tions in an audio–audio alignment task. We characterize the behavior of standard usages
of DTW, along with several strategies for improving robustness to global time warping.
Our main findings are (a) standard usages of DTW perform well when both sequences
are comparable in length but completely fail to handle severe global time warping; (b) us-
ing (0, 1) and (1, 0) transitions in DTW leads to poor alignment quality and is not an
effective solution; (c) several strategies like adding more extreme transitions and using
non-uniform transition patterns can improve robustness to global time warping, but come
with a computational cost and reduction in alignment quality, and (d) the most effective
strategy we found is to perform sequence length normalization using downsampling be-
fore invoking DTW. This approach achieved the best alignment accuracy across a wide
range of global time warping conditions, while simultaneously maintaining or reducing
runtime compared to standard usages of DTW. Because it never degrades performance
and may offer substantial improvement in both runtime and accuracy, we recommend
using downsampling sequence normalization as a default practice when invoking DTW.
For future work, we would like to (a) determine a set of best practices for handling severe
time warping conditions in the subsequence DTW case, where the global time warp factor
between both sequences is unknown a priori; (b) study to what extent our findings may
generalize to other domains with different data characteristics; and (c) further explore the
effect of sequence normalization when changing the lengths of both sequences.
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