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Abstract: The integration of a large number of voltage source converters (VSCs) into the power grid
decreases the small-signal stability of the power system. When several VSCs with different control
parameters are simultaneously connected to the power grid to form a multi-converter grid-tied
system, the potential destabilizing factors increase. Thus, parameter optimization for stability-
weakest parameters that have the greatest impact on the system stability becomes more significant
in addressing small-signal stability issues. This paper first proposes a stability evaluation function
based on the Gerschgorin disc theorem, which can assess the stability of the multi-converter grid-tied
system. Then a parameter sensitivity method is proposed to identify the stability-weakest parameters.
Finally, an iterative calculation-based parameter optimization method is developed to regulate the
identified stability-weakest parameters. Hence, the parameter optimization technique in this research
can improve the system stability without requiring eigenvalue solutions and has the merit of low
computational complexity. Simulation results based on both the MATLAB/Simulink (2023a) and the
RT-LAB (OPAL-RT 5700) platform of a multi-converter grid-tied system validate the correctness of
the theoretical analysis and the effectiveness of the parameter optimization method.

Keywords: multi-converter grid-tied system; stability-weakest parameters; identification;
Gerschgorin disc theorem; parameter optimization

1. Introduction

The promotion of new energy generation has become a global consensus to address
the energy crisis and environmental pollution [1,2]. An increasing number of power-
electrolyzed sources and loads, such as wind power, photovoltaics (PV), and flexible load,
are connected to power systems through voltage source converters (VSCs) [3–5]. However,
the wide-frequency dynamic characteristics of VSCs can easily interact with the power
grid, leading to small-signal instability in the system [6–8]. In a multi-converter grid-
tied system especially, the interaction between the power grid and VSCs becomes more
intense, leading to increased potential instability factors and further exacerbating the risk
of system instability.

Currently, the concepts and discussions on the small-signal stability issue of the multi-
converter grid-tied system have been well established. Optimizing the control parameters
of VSC is an effective method to improve system stability. Existing parameter optimization
can be mainly divided into two categories: the direct method [9–11] and the sensitivity-
based parameter optimization method [12–15].

The direct method of parameter optimization is to substitute specific values into the
impedance model of the VSC and observe the influence of control parameter changes on
the system stability to identify the patterns of parameter variations. Based on this law,
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parameter optimization is carried out to achieve system stability [9,10]. The patterns of
parameter variations obtained by substituting specific numerical values may be not applied
to parameter optimization for operating conditions with different parameter combinations.
A universal parameter optimization method is proposed in [11] based on an analytical
method used to uniformly analyze the influence of control parameters on the sequence
impedance of grid-forming converters. However, the impact of parameter changes on the
stability of a single-converter grid-tied system is analyzed but cannot guide the parameter
optimization of a multi-converter grid-tied system. The direct method can only optimize
parameters by qualitatively analyzing the impact of VSC control parameter changes on
system stability, lacking theoretical support.

The sensitivity-based parameter optimization method is to optimize parameters by
quantitatively analyzing the influence of variables on system stability [12]. Then, the
parameter optimization is carried out on this basis. The ports [13], subsystems [13], or
state variables [14] that have the greatest impact on system stability can be identified by
using participation factors. Then, only the parameters related to ports, subsystems, or
state variables need to be analyzed, reducing the range of parameters that may be used
for parameter optimization. A parameter optimization method is proposed based on
parameter sensitivity analysis [15]. Through quantitative analysis of the influence of each
VSC parameter on the system stability, the stability-weakest parameters are identified,
that is, the parameter that had the greatest impact on the system stability. This method
could minimally change the stability-weakest parameters to improve the system stability.
However, this method still needed to be tried step by step for the optimization of stability-
weakest parameters and could not provide specific parameter optimization values.

In the current parameter optimization of the multi-converter grid-tied system, it is
challenging to provide specific recommendations of control parameters for different units
to improve the system stability. The current parameter optimization can only analyze the
impact of parameter changes on system stability, and lacks specific quantitative parameter
optimization goals. Specific parameter optimization values cannot be obtained directly.
Naturally, the targeted theoretical guidance for enhancing system stability is insufficient.
Overall, the above discussions motivate us to propose a new method in this article to
optimize stability-weakest parameters to improve the stability of the multi-converter grid-
tied system. The major contributions and innovations of this research are reflected in the
following three aspects:

(1) Proposing a stability evaluation function for a multi-converter grid-tied system based
on the Generalized Nyquist Criterion (GNC) and the Gerschgorin disc theorem,
which provides an intuitive quantitative indicator for estimating system stability. By
considering the distance between the fastest intersection of the Gerschgorin disc with
the real axis and the point (−1, j0), the stability evaluation function in this paper can
overcome the misjudgment in parameter optimization direction caused by the change
in the Gerschgorin disc’s radius due to parameter variation.

(2) By using the derivative operation among the control parameters of VSCs and the
stability evaluation function, numerical results that characterize the impact of VSCs
control parameters on system stability are obtained. The parameters with large
absolute sensitivity values are identified as stability-weakest parameters.

(3) Developing a stability-weakest parameters-based optimization method by iterative
calculation, which can calculate the specific control parameter optimization value to
improve the system stability. It can compensate for the theoretical shortcomings of
traditional methods, i.e., that parameter optimization can only be attempted step by step
and lacks targeted theoretical guidance for the optimization of VSCs control parameters.

The rest of this article is organized as follows. Section 2 deduces the impedance model
of the multi-converter grid-tied system. Section 3 uses the GNC and the Gerschgorin disc
theorem to establish a stability evaluation function for the system. Additionally, it proposes
a method of parameter optimization based on the parameter sensitivity analysis. Section 4
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elaborates on the simulation results to validate the effectiveness of the proposed method.
Finally, Section 5 summarizes the conclusions and contributions of this article.

2. Impedance-Based Model of Multi-Converter Grid-Tied System
2.1. Equivalent Model of VSC

Figure 1 illustrates the system structure of the VSC controlled in the dq frame. In
Figure 1, Vdc is a DC voltage source. Lf is the filter inductance. Lg is the grid impedance.
Ug is the grid voltage. upcc is the point of common coupling (PCC) voltage. upccdq are
the PCC voltage in the dq frame. θpll is the output angle of the phase-locked loop (PLL).
Hpll = kpllp + kplli/s is a proportional-integral (PI) controller, where kpllp is the proportional
coefficient and kplli is the integral coefficient. io is the output current of the VSC. iodq are the
PCC current in the dq frame. Idqref are the instruction reference values in the dq frame. Idqref
are controlled by a PI controller Hci = kip + kii/s, where kip is the proportional coefficient
and kii is the integral coefficient. vmdq are the modulation signals output by current loop
control in the dq frame.
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Figure 1. Structure diagram of VSC controlled in dq frame.

In this article, the frequency range considered is within 1000 Hz which is much smaller
than the switching frequency of VSC. Therefore, pulse-width modulation (PWM) can be
approximated as a linear element [16]. vmdq can be written as follows:

vmd =
upccd − ω1L f iq

KPWM
(1)

vmq =
ω1L f id + upccq

KPWM
(2)

where KPWM is the proportional gain of the PWM. ω1 is the fundamental frequency of the
power grid.

The PLL is used to obtain the amplitude and phase information of the grid voltage
and ensure the synchronous operation of the VSC and the power grid. When small-signal
perturbations are added to the grid voltage, the system dq frame defined by the grid voltage
and the controller dq frame defined by the PLL do not align with each other. Therefore,
the state variables in the system dq frame and the state variables in the controller dq frame
need to be unified through a coordinate transformation. The relationship between the
state variables in the system dq frame, controller dq frame, and the phase difference ∆θ can
be deduced: {

∆γd,s = ∆γd,c − ∆θγq0,s
∆γq,s = ∆γq,s + ∆θγd0,s

(3)
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where γ denotes the state variables such as voltage, current, and duty cycle. ∆ represents
the fluctuation signals. The d and q in the subscript represent the state variables in the
d-axis and q-axis, respectively. The 0 in the subscript represents the steady state of the state
variables. The s and c at the end of the subscript represent the state variables in the system
dq frame and the controller dq frame, respectively.

Combined with the Equation (3) and the PLL model shown in Figure 1, the PLL output
angle can be derived as

∆θ =
HPI(s)

s + HPI(s)Upccd0,s
∆upccq,s (4)

where Upccd0,s is numerically equal to the phase voltage amplitude of the power grid. s is
the Laplacian operator.

Substituting Equation (4) into Equation (3), the transformation relationship between
the variables in two dq frames can be represented by

[
∆γd,s
∆γq,s

]
=

[
∆γd,c
∆γq,c

]
+

0 − Hpll(s)γq,s

s+Hpll(s)Upccd0,s

0
Hpll(s)γd,s

s+Hpll(s)Upccd0,s

[∆upccd,s
∆upccq,s

]
(5)

Considering one sampling period (Ts) for computational delay and a half-sampling
period (0.5 Ts) delay related to the pulse width modulator [17], the Pade approximation is
used to replace the control delay link, and its equivalent transfer function is [18]

Gdel(s) = e−1.5Tss ≈ 1 − 0.75Tss
1 + 0.75Tss

(6)

where Ts represents the sampling interval.
According to Equations (1)–(6), the small-signal mathematical model of VSC can be

obtained as shown in Figure 2. The transfer function model of each link is shown in the
following equation:

Gays1(s) =

0 − Hpll(s)Iq0
s+Hpll(s)Upccd0,s

0
Hpll(s)Id0

s+Hpll(s)Upccd0,s

 (7)

Gays2(s) =

0 − Hpll(s)vmq0,s
s+Hpll(s)Upccd0,s

0
Hpll(s)vmd0,s

s+Hpll(s)Upccd0,s

 (8)

Gi(s) =
[

Hci(s) 0
0 Hci(s)

]
(9)

Gde(s) =
[

Gdel(s) 0
0 Gdel(s)

]
(10)

where Gays1(s) and Gays2(s) are correction matrices for current and modulation signal,
respectively, taking into account PLL. Gi(s) represents the current loop matrix. Gde(s)
represents the delay loop matrix.
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Figure 2. The small-signal model of VSC controlled in the dq frame.

According to Figure 2 and Equations (7)–(10), the impedance of the VSC with PLL
working under a closed-loop condition is
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Yvsc(s) = [I2 + YL(s)KPWMGde(s)Gi(s)]
−1 · YL(s)[I2 − KPWMGde(s) · (Gays2(s) + Gi(s)Gays1(s))] (11)

where I2 is a second-order unit matrix.

2.2. Equivalent Model of Multi-Converter Grid-Tied System

Figure 3 shows a typical system with multi-paralleled grid-tied VSCs. According
to Equation (11), the VSC is equivalent to the Norton circuit. The transmission line is
represented with the equivalent grid inductance Lg. In the multi-converter grid-tied system,
the converter section and the power grid section are considered separate subsystems [19].
The converter subsystem includes all converters, while the power grid subsystem includes
transmission lines and the ideal power grid.
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Figure 3. Parallel operation of multiple VSCs.

Furthermore, the converter subsystem can be equivalent to the form of multiple
current sources and admittance in parallel as shown in Figure 3. Based on Kirchhoff’s
current law, its impedance model can be derived as

Y(s) =
x=n

∑
x=1

Yvscx(s) (12)

The power grid subsystem only contains inductance and an ideal grid and its impedance
matrix model can be accessed as

Zg(s) =
[

sLg −ω1Lg
ω1Lg sLg

]
(13)

According to the relationship between the voltage and current of PCC, the return ratio
matrix of the multi-converter grid-tied system can be obtained as [20].

L(s) = Y(s)Zg(s) =
[

L11 L12
L21 L22

]
(14)

where L11, L12, L21, L22 are the elements in the return ratio matrix L(s).
The small-signal stability of the multi-converter grid-tied system can be determined

by the L(s) [20].

3. Stability Analysis and Improvement in the Multi-Converter Grid-Tied System
3.1. Stability Analysis of the Multi-Converter Grid-Tied System

GNC [21,22] is the traditional method to analyze the stability of the multi-converter
grid-tied system. If the Nyquist curves for the eigenvalues of L(s) do not enclose the (−1,
j0) point, the system is stable. However, this method requires the complex eigenvalue
decomposition of L(s), which makes this method inefficient and impractical.
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To determine the system stability, it is not necessary to obtain the exact eigenvalues
of the L(s). Instead, it is sufficient to assess the rough trajectory range. Therefore, the
Gerschgorin disc theorem can be used to estimate the position of L(s) eigenvalues, which
can simplify the judgment of system stability. Gerschgorin disc theorem [23]:

Let A = (aij)∈Cn×n, where aij represents the element in the ith row and jth column of
matrix A, and C represents the set of complex numbers. Gerschgorin disc is a circle with aii
as its center and the sum of the modulus values of non-diagonal elements as its radius.

According to the Gerschgorin disc theorem, the eigenvalues λi of L(s) are located in
the union of n row Gerschgorin discs Or and n column Gerschgorin discs Oc. The accuracy
of the eigenvalue estimation of L(s) can be improved by the fact that any eigenvalue of L(s)
is located at the part T(L) intersecting the set of Or and Oc:

T(L) = Or ∩ Oc (15)

Or :
2
∪

i=1


z||z − Lii| ≤ Rri(L) =

2

∑
j = 1
j ̸= i

∣∣Lij
∣∣


(16)

Oc :
2
∪

j=1


z
∣∣∣∣z − Ljj

∣∣ ≤ Rcj(L) =
2

∑
i = 1
i ̸= j

∣∣Lij
∣∣


(17)

where z = (x,y) represents a set of points in the complex plane. Rri(L) and Rcj(A) represent
the radius of the ith row Gerschgorin disc and jth column Gerschgorin disc for L(s).

According to GNC, a criterion for system stability based on the Gerschgorin disc
theorem can be derived. When the trajectory of T(L) does not enclose the point (−1, j0),
the curves of the eigenvalues of L(s) do not enclose the point (−1, j0) and the system is
stable. In other words, when the trajectories of the row Gerschgorin discs or the column
Gerschgorin discs do not enter the region starting from the point (−1, j0) and extending to
the left, the system is stable. Here, the region starting from the point (−1, j0) and extending
to the left is defined as the forbidden zone P. The geometric condition for the stability of a
multi-converter grid-tied system according to the Gerschgorin disc theorem is as follows:

(Or ∩ P) ∪ (Oc ∩ P) = ∅ (18)

The shortest distance from the Gerschgorin disc boundary to [−∞, −1] (pink lines) is
used as the stability criterion, which is illustrated in Figure 4 [24].
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Combining Equation (18) and Figure 4, a stability evaluation function h(f ) for a multi-
converter grid-tied system can be constructed. The expression of h(f ) is given by Equation (19).
When the value of the lowest point M in the function h(f ) is greater than 0, the trajectories of
the Gerschgorin discs do not enter the forbidden zone and the system is stable.

h( f ) = max(hr( f ), hc( f )) (19)

where

hr( f ) =
{

min(|Im(Lii)| − Rri(L)), Re(Lii) ≤ −1
min(|Lii + 1| − Rri(L)), Re(Lii) > −1

(20)

hc( f ) =
{

min(
∣∣Im(Ljj)

∣∣− Rcj(L)), Re(Ljj) ≤ −1
min(

∣∣Ljj + 1
∣∣− Rcj(L), Re(Ljj) > −1

(21)

According to GNC, when the system is unstable, the farther the intersection point of
the Nyquist curve of the L(s) with the real axis is away from the point (−1, j0), the worse
the system stability is.

h(f ) only considers the shortest distance from the boundary of the Gerschgorin discs
to the range [−∞, −1] when Re(Lii(jj)) ≤ −1, without considering the distance between
the fastest intersection of the Gerschgorin disc with the real axis and the point (−1, j0).
Figure 5 shows that the Gerschgorin discs correspond to the lowest points M of the h(f )
function under different parameters. The function value M2 under parameter 2 is greater
than M1 under parameter 1. However, the intersection point between the Gerschgorin
disc and the real axis is farther from (−1, j0) under parameter 2 due to the change in
the Gerschgorin disc’s radius after parameter optimization, and the system stability is
worse. In this scenario, the theoretical direction of parameter optimization is opposite to
the actual correction direction when performing subsequent parameter sensitivity analysis
on the system.
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Based on the existing stability evaluation function, this article incorporates the distance
between the intersection point and (−1, j0) when the Gerschgorin discs intersect with the
real axis and Re(Lii(jj)) ≤ −1, as illustrated by the green double arrow line in Figure 6.
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Combining the geometric conditions for system stability defined by Equation (18) and
the proposed stability evaluation criterion introduced in Figure 6, a more comprehensive
stability evaluation function for the multi-converter grid-tied system can be formulated
as follows.

g( f ) = max(gr( f ), gc( f )) (22)

where

gr( f ) =


min[|Im(Lii)| − Rri(L), Re(Lii) + 1 −

√
Rri(L)

2 − |Im(Lii)|2], Re(Lii) ≤ −1&[|Im(Lii)| − Rri(L) ≤ 0]
min[|Im(Lii)| − Rri(L)], Re(Lii) ≤ −1&[|Im(Lii)| − Rri(L) > 0]
min[|Lii + 1| − Rri(L)] , Re(Lii) > −1

(23)

gc( f ) =


min[

∣∣∣Im(Ljj)
∣∣∣− Rcj(L), Re(Ljj) + 1 −

√
Rcj(L)

2 −
∣∣∣Im(Ljj)

∣∣∣2], Re(Lii) ≤ −1&[
∣∣∣Im(Ljj)

∣∣∣− Rcj(L) ≤ 0]

min[
∣∣∣Im(Ljj)

∣∣∣− Rcj(L)], Re(Ljj) ≤ −1&[
∣∣∣Im(Ljj)

∣∣∣− Rcj(L) > 0]

min[
∣∣∣Ljj + 1

∣∣∣− Rcj(L)], Re(Ljj) > −1

(24)

The rules for determining system stability based on the stability evaluation function
are illustrated in Figure 7. When the function value of the lowest point M of g(f ) is greater
than 0, it means that the trajectory of the Gerschgorin discs does not enter the forbidden
zone, and the system is stable. Otherwise, the system is unstable. Thus, M can be used to
quantitatively characterize the stability of a system, in which a larger function value for M
implies better system stability.
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Figure 7. Stability evaluation function for the multi-converter grid-tied system.

3.2. Parameter Optimization

The g(f ) function derived in Section 3.1 is used to evaluate the stability of the multi-
converter grid-tied system. When the system is unstable, researching the influence of
VSCs control parameters on system stability is vital. Parameter optimization based on the
identification of the stability-weakest parameters is essential for improving system stability,
which is performed based on the g(f ) function in this section.

Let g(f ) = g(f, x), where x = {x1, x2, . . ., xn} is the set of any adjustable parameter in the
multi-converter grid-tied system. As shown in Equation (22), g(f, x) is a piecewise function
about x. When the adjustable parameter changes slightly, the g(f ) function can be linearized
around the initial values x0 = {x10, x20, . . ., xn0}, according to the Taylor expansion:{

g( f , x) ≈ g( f , x0) + µx10( f )(x1 − x10) + µx12( f )(x2 − x20) + . . . + µxn0( f )(xn − xn0)

µxn0( f ) = ∂g( f ,x)
∂xn

|x = x0
(25)

Define µxi0(f ) as the sensitivity function of the adjustable parameter xi at the value of xi0.
According to Equation (22) and Figure 7, it can be observed that when the function value of the

lowest point M of g(f ) is less than 0, the multi-converter grid-tied system is unstable. The objective of
parameter optimization under this criterion is to modify the parameter x to ensure that the function
value of M is greater than 0, thereby achieving system stability.

Thus, the following parameter optimization criteria are applied to any adjustable parameter x:

(1) At a specific frequency, if the sensitivity function value µxi0(f ) > 0 for parameter xi, the parameter
xi needs to be increased to increase the value of function g(f ) according to Equation (25).
Conversely, if µxi0(f ) < 0, the parameter xi needs to be decreased.
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(2) If |µxi0(f )|>|µxj0(f )|, the variation of parameter xi has a greater impact on system stability at
this frequency. So the parameters with large absolute sensitivity values are defined as stability-
weakest parameters. When system stability cannot be satisfied by optimizing a single parameter,
parameter optimization can be performed by combining stability-weakest parameters.

(3) Perform parameter optimization for m (m ≥ 1) parameters. Assume that the sensitivity values
of these parameters have the same sign and equal optimization magnitude. Then, according to
Equation (25), the modified values for parameter xi|i=1,2,. . .,m, to ensure that the function value
of M is greater than 0, are given as:

xi = xi0 +
−g( f , x0)
m
∑

i=1
µxi0( f )

(26)

The process of system parameter optimization based on parameter sensitivity analysis in
Figure 8 is as follows.

Step1: Firstly, the return ratio matrix L(s) of the multi-converter grid-tied system is obtained.
Step2: Then, the stability evaluation function g(f ) of the system is constructed according to the
Gerschgorin disc theorem and GNC to determine the system stability.
Step3: If the system is unstable, get the function and the frequency value of the M, and calculate the
parameter sensitivity of each parameter.
Step4: Finally, the stability-weakest parameters are identified. The parameter optimization values are
calculated according to the parameter optimization criteria.

The parameter optimization value is calculated by several iterations until the function value of
M is above zero, which means the system satisfies the requirement of stability.
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4. Analysis and Simulation Verification
4.1. Optimization of One Parameter

To verify the effectiveness of the proposed method for analyzing and improving the stability of
the multi-converter grid-tied system, a three-VSC system is built as shown in Figure 3. Differentiated
control parameters for VSCs are employed to emphasize the distinctions between different VSCs. The
system under the grid parameters and control parameters of VSCs presented in Table A1 (Appendix A)
is defined as system A.

Obtaining the return ratio matrix L(s) of system A, the h(f ) and g(f ) functions are constructed
according to Equations (19) and (22) and plotted in Figure 9a,b, respectively. From Figure 9, it can be
observed that the function values of the lowest points M for both h(f ) and g(f ) are less than 0, and
system A is unstable.
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(b) g(f ) function.

When system A is unstable, parameter sensitivity analysis is required to identify the stability-
weakest parameters according to Equation (25). Existing research has shown that the proportional
parameters of the current loop [25] and PLL [26] in VSC have a greater impact on system stability
compared to the integral parameters. Therefore, this article focuses on analyzing the impact of the
proportional parameters in different VSCs on system A stability. The sensitivity results for each
parameter are presented in Table 1.

Table 1. Parameter sensitivity results of system A under initial condition.

Parameter kip1 kip2 kip3 kpllp1 kpllp2 kpllp3

parameter sensitivity of h(f ) 141.8 15.47 3.015 1.378 × 10−1 7.190 × 10−2 5.430 × 10−2

parameter sensitivity of g(f ) −915.7 −66.22 −66.29 −1.643 × 10−1 −3.334 × 10−1 −3.306 × 10−1

The sign of parameter sensitivity determines the direction of parameter optimization, according
to parameter sensitivity optimization criterion 1. The sensitivity calculation results for the h(f ) and
g(f ) functions exhibit opposite signs: positive values of parameter sensitivity for h(f ) indicate an
increase in the parameter, while negative values of parameter sensitivity for g(f ) suggest a decrease
in the parameter. The analytical conclusions of the traditional method and the method proposed in
this paper are contradictory.

The distance between the Nyquist curves of L(s) and the (−1, j0) point can be used to evaluate
the stability of system A. It can verify which method’s parameter optimization direction is correct.
Taking the parameter kip1 as an example, Figure 10 illustrates the changes in the Nyquist curves of
system A. Figure 10 only displays the curves of the eigenvalues that have a substantial impact on the
system. When kip1 increases, the Nyquist curves of system A move away from the (−1, j0) point, and
system A stability deteriorates. Meanwhile, when kip1 decreases, the Nyquist curves move closer to
the (−1, j0) point, and system A stability is improved. There is a misjudgment about the optimization
direction of the h(f ) function. It theoretically demonstrates that the method proposed in this paper can
overcome the defect of traditional methods caused by the misjudgment of parameter optimization
direction due to the change in the Gerschgorin disc’s radius after parameter optimization.

Following the second rule of parameter optimization, parameters with larger absolute sensitivity
values have a greater impact on the system stability. By sorting the parameters based on the absolute
values of their parameter sensitivities, the influence of each VSC parameter on system stability can be
determined as follows: kip1 > kip3 > kip2 > kpllp2 > kpllp3 > kpllp1.

When parameters change, the change degree of Nyquist curves can be used to judge the
influence of parameters on system A stability, to verify the correctness of parameter sensitivity
analysis. Figure 11 illustrates the Nyquist curves of system A when one control parameter of VSC is
altered −5.000 × 10−4 while keeping other parameters constant. It depicts that when all parameters
are reduced, the Nyquist curves of system A approach the point (−1, j0), and the system stability is
improved. Furthermore, according to the change degree of Nyquist curves, parameters are sorted
as follows: kip1 > kip3 > kip2 > kpllp2 > kpllp3 > kpllp1. This validation confirms the correctness and
effectiveness of the proposed parameter sensitivity analysis method.
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bining Equation (26) and Figure 9b, the calculation yields a new value for kip1 as 1.800 × 
10−3. The return ratio matrix of the new system is re-obtained to construct the g(f) function, 
as shown in Figure 12. It can be seen that the function value of the lowest point for the g(f) 
function is −2.682 × 10−1, which is larger than that of the previous g(f) function, but still less 
than 0. Therefore, parameter optimization needs to be continued. 
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To improve the stability of system A, parameter optimization is performed on the stability-
weakest parameter based on the third criterion of the parameter optimization rules. From Table 1,
the absolute sensitivity value of the kip1 parameter is significantly larger than that of other param-
eters; thereby, kip1 is the stability-weakest parameter. Combining Equation (26) and Figure 9b, the
calculation yields a new value for kip1 as 1.800 × 10−3. The return ratio matrix of the new system is
re-obtained to construct the g(f ) function, as shown in Figure 12. It can be seen that the function value
of the lowest point for the g(f ) function is −2.682 × 10−1, which is larger than that of the previous
g(f ) function, but still less than 0. Therefore, parameter optimization needs to be continued.
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Figure 12. g(f ) function after the first parameter optimization (kip1 = 1.800 × 10−3).

Based on the flowchart shown in Figure 8, the parameter optimization value of kip1 is finally cal-
culated as 4.600 × 10−4. Figure 13 shows system A’s function g(f ) under final parameter optimization,
and its function value at the lowest point is 4.700 × 10−3, which indicates the system is stable.
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Figure 13. g(f ) function of system A under final parameter optimization (kip1 = 4.600 × 10−4).

To verify the theoretical analysis results mentioned above, the time-domain simulations based
on MATLAB/Simulink are performed. Figure 14 shows the PCC voltage before and after modifying
different control parameters of the VSCs while keeping other parameters constant. Figure 14a presents
the waveform of PCC voltage during the optimization of kip1. System A is oscillated for 2 s. At 2 s,
kip1 is optimized to 1.800 × 10−3, reducing system A oscillations but still being unstable. At 2.2 s, kip1

is further optimized to 4.600 × 10−4, and system A regains stability. Parameter optimization of weak
stability parameters can effectively improve the stability of the system.

Furthermore, Figure 14b–f shows that as kip2, kip3, kpllp1, kpllp2, and kpllp3 decrease, the oscillation
of the PCC voltage is significantly improved. This is consistent with the sign results of parameter
sensitivity calculated in Table 1.
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Table 2 summarizes the harmonic content of the PCC voltage before and after the modification
of VSC parameters, as illustrated in Figure 14. From Table 2, it can be observed that kip1 has the
smallest change in parameter value, but the largest change in harmonic content. Minimally changing
the stability-weakest parameters can effectively improve the stability of the system.

Table 2. The harmonic content of PCC voltage before and after VSC control parameter modification.

Value Value Value Variation

kip1 Parameter 2.175 × 10−3 1.800 × 10−3 4.600 × 10−4 1.715 × 10−3

Harmonic Content 32.81% 30.68% 5.050% 27.76%

kip2 Parameter 6.500 × 10−3 3.600 × 10−3 1.400 × 10−3 5.100 × 10−3

Harmonic Content 32.81% 28.03% 12.22% 20.59%

kip3 Parameter 5.800 × 10−3 2.900 × 10−3 7.000 × 10−4 5.1000 × 10−3

Harmonic Content 32.81% 27.84% 8.060% 24.75%

kpllp1 Parameter 3.994 3.674 3.371 0.6230
Harmonic Content 32.81% 28.78% 27.99% 4.820%

kpllp2 Parameter 0.7189 0.3994 9.590 × 10−2 0.6230
Harmonic Content 32.81% 24.98% 12.22% 20.59%

kpllp3 Parameter 0.6390 0.3195 1.600 × 10−2 0.6230
Harmonic Content 32.81% 24.76% 14.02% 18.79%

The parameter change of kip2 and kip3 is the same, but the change in harmonic content for kip3
(24.75%) is greater than that for kip2 (20.59%). It indicates that kip3 has a greater impact on system A
stability compared to kip2. The corresponding change in harmonic content for kpllpi|i=1, 2, 3 is smaller
than that for kipi|i=1, 2, 3 when the variation of kpllpi is larger than that for kipi. Thus, kpllpi has a smaller
impact on system A stability compared to kipi. The remaining parameters are analyzed using the
same method. The ranking of the control parameters for VSCs based on their impact on system A
stability is as follows: kip1 > kip3 > kip2 > kpllp2 > kpllp3 > kpllp1, which is consistent with the theoretical
analysis results.

The above simulation results verify the correctness of the proposed method in this paper. This
method can intuitively and quantitatively analyze the impact of parameters on system stability, and
optimize the stability-weakest parameter to effectively improve system stability.

4.2. Optimization of Multiple Parameters
When the system stability cannot be satisfied by the optimization of a single parameter, it is

necessary to promote system stability through joint adjustment of multiple parameters. To verify
the adaptability of the method proposed in this paper to this situation, the control parameters of the
VSCs are modified. The control parameters are listed in Table A2. Define the system as system B.
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According to Equation (22), the g(f ) function is constructed by obtaining the L(s) for the multi-
converter grid-tied system, and is plotted in Figure 15. Figure 15 shows the minimum value of the
g(f ) is −6.446 × 10−1 less than 0 at point M, indicating the system is unstable.
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Figure 15. Stability evaluation function of system B under initial parameters (in Table A2).

The parameter sensitivity of each VSC parameter under the g(f ) at the point M is calculated,
respectively, according to Equation (25) and presented in Table 3. Sorting parameters based on the
magnitude of their sensitivities, the influence of each VSC parameter on system stability is as follows:
kip2 > kip3 > kip1 > kpllp2 > kpllp3 > kpllp1.

Table 3. Parameter sensitivity of system B under initial parameters (in Table A2).

Parameter kip1 kip2 kip3 kpllp1 kpllp2 kpllp3

parameter sensitivity 2.907 −107.8 −79.93 −0.2990 −0.3447 −0.3247

The same analysis method as in Figure 11 is used to verify the correctness of the parameter
sensitivity analysis method. The variation of kip1 is 5.000 × 10−4 and the variation of other parameters
is −5.000 × 10−4. Figure 16 depicts that increasing kip1 and decreasing other parameters both bring
the Nyquist curves of system B closer to the (−1, j0) point, and system B stability is improved.
According to the degree to which changing parameters makes the Nyquist curves approach (−1, j0),
the ranking of parameters is as follows: kip2 > kip3 > kip1 > kpllp2 > kpllp3 > kpllp1. This ranking aligns
with the result of the parameter sensitivity analysis method.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 22 
 

−20 0 20 40 60 80 100−100

−50

0

50

100

Im
ag

in
ar

y 
A

xi
s

Real Axis

kip1

kip2

kip3

kpllp1

kpllp2

kpllp3

origin

(a) 

(b) (c) 

−1.60064 −1.60042−1.5

0

1.5 10−4

−1.602 −1.584−0.01

−0.005

0

0.005

0.01

Real Axis

Im
ag

in
ar

y 
A

xi
s

Real Axis

Im
ag

in
ar

y 
A

xi
s

 
Figure 16. Nyquist curves of system B with different VSC control parameters: (a) integrated graph; 
(b) partial enlargement of (a); (c) partial enlargement of (b). 
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The parameter optimization is performed to stabilize the multi-converter grid-tied system. As
shown in Table 3, the absolute values of parameter sensitivity for kip2 and kip3 are much larger than
those for other parameters, so they are identified as the stability-weakest parameters. Following the
flowchart shown in Figure 8 the optimization values of kip2 and kip3 are iteratively calculated. The
calculation of kip2 and kip3 is 8.800 × 10−4. At this point, the g(f ) is illustrated in Figure 17, which
exhibits a minimum value of 4.100 × 10−3, indicating the system is stable.
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Figure 17. g(f ) function of system B under final parameter optimization (kip2 = 8.8000 × 10−4,
kip3 = 8.8000 × 10−4).

The waveforms of the PCC voltage before and after the optimization of kip2 and kip3 are illus-
trated in Figure 18. Figure 18a shows that the PCC voltage oscillates before parameter optimization.
After optimizing kip2 and kip3 from 6.600 × 10−3 to 8.800 × 10−4, system B is stable as shown in
Figure 18b. While only optimizing kip2 at the same magnitude, which has the highest absolute
sensitivity, the PCC voltage continues to oscillate as shown in Figure 19a. Continuing to reduce kip2,
the PCC voltage is still unstable as shown in Figure 19b. Reducing kip2 can significantly improve the
PCC voltage oscillation, but it cannot achieve system stability.
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Therefore, when single-parameter optimization is always unable to meet the requirements of
system stability, the system can be stabilized by optimizing multiple parameters in combination.

4.3. Real-Time Simulation-Based Validation
To further validate the effectiveness of the proposed parameter optimization method, a multi-

converter grid-tied system model is constructed on the RT-LAB platform. Figure 20 shows the details
of the RT-LAB platform. It contains a Canadian OPAL-RTLAB real-time simulation machine OP5700
(a Xilinx Virtex-7 FPGA with 32 Intel Xeon processing cores) and a host PC, which is utilized for the
real-time emulation of a multi-converter grid-tied system. The waveforms are measured through
the I/O ports of RT-LAB. The host PC and LeCroy oscilloscope save the real-time simulation-based
results. The parameters of the grid and VSCs are the same as in Tables A1 and A2.
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Figure 21 illustrates the PCC voltage before and after modifying the stability-weakest parameter
Kip1 of system A. Before optimization, system A is unstable as shown in Figure 21a. According to the
previous theoretical analysis, the parameter optimization value of Kip1 is 4.6 × 10−4. After optimizing
kip1 from 2.175 × 10−3 to 4.600 × 10−4, system A is stable as shown in Figure 21b. Figure 22 illustrates
the PCC voltage before and after optimization of the stability-weakest parameters Kip2 and Kip3 in
system B. Figure 22a shows the PCC voltage waveform of system B before parameter optimization. It
can be seen that system B oscillates and is unstable. According to the previous theoretical analysis,
the parameter optimization values of Kip2 and Kip3 are 8.800 × 10−4. After optimizing kip2 and
kip3 from 6.600 × 10−3 to 8.800 × 10−4, system B is stable as shown in Figure 22b. The real-time
simulation-based results are in agreement with the theoretical analysis and simulation results in
Figures 14a and 18. The real-time simulation-based results verify the correctness of the proposed
method. The proposed parameter optimization method can effectively improve the stability of the
multi-converter grid-connected system.
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5. Conclusions
For the small-signal instability caused by the multi-VSCs connected to the grid, existing methods

can only identify stability-weakest parameters without calculating the accurate parameter optimiza-
tion values. To address this issue, this article proposes a parameter optimization to improve the
stability of a multi-converter grid-tied system. The method can accurately identify the stability-
weakest parameters and calculate the corresponding parameter optimization values. Specifically, the
conclusions and contributions are summarized as follows:

(1) An improved stability evaluation function is constructed by considering the distance between
the intersection point and (−1, j0) when the Gerschgorin discs intersect with the real axis
and Re(Lii(jj)) ≤ −1. This method overcomes the misjudgment of parameter sensitivity cor-
rection direction when the radius of the Gerschgorin disc changes due to the changes in VSC
control parameters.

(2) In the multi-converter grid-tied system, the contribution of control parameters in each VSC to
the system stability varies. The proposed method can quantitatively analyze the influence of
VSC control parameters on the stability of the multi-converter grid-tied system, and identify
the parameters with large absolute sensitivity as the stability weak parameters.

(3) Based on stability evaluation functions and parameter sensitivity analysis, an iterative calculations-
based parameter optimization is developed. In the iterative calculations, one or multiple
stability-weakest parameters can be rolling-optimized based on the quantitative results of the
stability evaluation function. Theoretical analysis and simulation verify the correctness and
feasibility of this approach.
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Appendix A

Table A1 shows the grid parameters and the control parameters of VSCs in system A.

Table A1. Parameters of system A.

Equipment Parameter Symbol Value

Grid
Grid Voltage(line-to-line) Ug 690.0 V

Grid Inductance Lg 1.333 × 10−4 mH

VSC1

Filter Inductance L1 3.200 × 10−4 mH
Switching Frequency fs1 10.00 kHz

PI Controller of Current Loop kip1, kii1 2.175 × 10−3, 2.900 × 10−2

PI Controller of PLL kpllp1, kplli1 3.994, 8.870 × 10−2

VSC2

Filter Inductance L2 3.200 × 10−4 mH
Switching Frequency fs2 10.00 kHz

PI Controller of Current Loop kip2, kii2 6.500 × 10−3, 2.900 × 10−2

PI Controller of PLL kpllp2, kplli2 7.189 × 10−1, 1.600 × 10−2

VSC3

Filter Inductance L3 3.200 × 10−4 mH
Switching Frequency fs3 10.00 kHz

PI Controller of Current Loop kip, kii3 5.800 × 10−3, 2.900 × 10−2

PI Controller of PLL kpllp3, kplli3 6.390 × 10−1, 1.420 × 10−2

Table A2 shows the grid parameters and the control parameters of VSCs in system B.

Table A2. Parameters of system B.

Equipment Parameter Symbol Value

Grid
Grid Voltage(line-to-line) Ug 690.0 V

Grid Inductance Lg 1.333 × 10−4 mH

VSC1

Filter Inductance L1 3.200 × 10−4 mH
Switching Frequency fs1 10.00 kHz

PI Controller of Current Loop kip1, kii1 1.810 × 10−2, 3.622
PI Controller of PLL kpllp1, kplli1 3.515, 0.3905

VSC2

Filter Inductance L2 3.200 × 10−4 mH
Switching Frequency fs2 10.00 kHz

PI Controller of Current Loop kip2, kii2 6.600 × 10−3, 0.1449
PI Controller of PLL kpllp2, kplli2 1.198, 2.660 × 10−2

VSC3

Filter Inductance L3 3.200 × 10−4 mH
Switching Frequency fs3 10.00 kHz

PI Controller of Current Loop kip, kii3 6.600 × 10−3, 0.1449
PI Controller of PLL kpllp3, kplli3 8.786 × 10−1, 1.950 × 10−2
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