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Abstract: Traffic waves in traffic flow significantly impact road throughput and fuel consumption
and may even lead to severe safety issues. Currently, in connected and autonomous environments,
the jam-absorption driving (JAD) strategy shows good performance in dissipating traffic waves.
However, the previous JAD strategy has mostly focused on wave dissipation without adequately
assessing traffic efficiency and safety. To address this gap, an optimal control problem for JAD in
mixed traffic is proposed to reduce traffic waves. The prediction model is developed using the
car-following model within a model predictive control (MPC) framework. The Helly model is
selected for the manual vehicle. This is because the Helly model is a linear model that describes
the car-following phenomenon accurately without delay effect. In addition, the objective function
of the prediction model considers both traffic safety and efficiency while satisfying mechanical and
safety constraints. Simulation results indicate that the proposed methodology can effectively reduce
traffic jams and improve traffic performance on a one-lane freeway. The optimal method is more
applicable to complex traffic wave scenarios, providing a new perspective for reducing traffic jams
on the freeway.

Keywords: connected and autonomous environment; jam-absorption driving; mixed traffic; model
predictive control; Helly model

1. Introduction

Stop-and-go waves are a special traffic phenomenon that is well-known empirically,
but it is a little difficult to describe them in traffic models. This is because there are
disturbances in the traffic flow that typically arise. Stop-and-go waves are amplified due to
the hysteresis effect of the acceleration and deceleration of the vehicle as they propagate
upstream [1,2]. Such irregular behavior in traffic flow can cause a series of traffic problems,
such as congested traffic, increased fuel consumption, and even a potential safety hazard.
Therefore, it is necessary to investigate the problem of traffic wave dissipation.

Many empirical studies have been developed and expanded on how to improve
the impact of traffic oscillation on traffic safety and traffic efficiency, and many theories
and models have been used to explain the mechanism of traffic oscillation. The key to
dissipating stop-and-go waves is to smooth traffic speed on both the temporal and spatial
dimensions, by which a stabler and safer flow can be achieved [3]. In the early stage, control
approaches using variable speed limits (VSLs) have been proposed, which can smooth
the traffic flow speed, optimize the traffic flow, and avoid stop-and-go waves and other
unstable states [4–6]. One notable example is SPECIALIST [7], using a controlled moving
bottleneck to stop-and-go wave dissipation. However, the disturbance cannot be handled
due to its feed-forward structure when the VSLs are activated with a demand increment.
Some studies developed a model predictive control (MPC) approach of VSLs to resolve jam
waves, where the design was based on extended cell transmission models and Eulerian
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Lighthill–Whitham and Richards (LWR) models [8,9]. However, the performance of VSLs
largely relies on the compliance rate and is limited to the installation location and number
of variable message signs on the road.

In recent years, with the advent of autonomous driving and communication technol-
ogy, more precise and emerging control strategies have provided new ideas for improving
traffic performance. Some studies have considered vehicle automation and communica-
tion systems, and a model-based quadratic programming problem has been developed to
minimize traffic congestion [10,11]. Many researchers concluded that cooperative ACC-
equipped vehicles can detect and suppress stop-and-go waves [12]. Some researchers have
experimentally demonstrated that autonomous vehicle (AV) driving algorithms can be
specifically designed to dissipate stop-and-go waves and have created an automated vehi-
cle control strategy called FollowerStopper (FS) [13,14]. Interestingly, the results showed
that FS can make the system more uniform, but it cannot increase the average velocity [15].
In connected and autonomous environments, some researchers have proposed a theoretical
jam-absorption driving (JAD) strategy to eliminate traffic jams [16] and have derived the
theoretical conditions for restricting secondary jams [17]. Additionally, a real-time control
system for operating JAD against multiple moving jams was presented on freeway sec-
tions [18]. Similarly, some studies have proposed the JAD based on different car-following
models to reduce traffic waves and improve traffic performance [19–21]. Some studies
focus on guiding vehicle trajectories to enhance traffic performance. Taking into account
fuel consumption and driving comfort, a piecewise trajectory optimization model was
proposed to smooth the platoon of CAVs [22].

MPC has been widely used in traffic control due to its capability of solving multivari-
able optimization problems, systematically accounting for constraints on both state and
control actions, and considering the anticipated future behavior of the system [23]. Recently,
some researchers have conducted a review of model predictive path tracking (PT) control
for automated road vehicles [24], considering the following MPC methods for PT control:
linear MPC [25,26], linear time-varying MPC [27], linear parameter-varying MPC [28],
nonlinear MPC [29], hybrid MPC [30], neural network MPC [31], robust MPC [32], and
learning MPC [33]. Some researchers have proposed a learning-based model predictive
control (LMPC) algorithm for a Formula Student (FS) autonomous vehicle to improve
the dynamic model accuracy of the vehicle [34]. Some researchers have summarized the
studies on learning-based MPC, focusing on the following three aspects [35]: (1) learn-
ing the system dynamics: taking into account the automatic adjustment of the system
dynamic model [36], both during operation and between different operational instances;
(2) learning the controller design: emphasizing the problem formulation [37,38], such as
defining cost functions, constraints, or terminal components, leading to improved closed-
loop performance; (3) MPC for safe learning: decoupling the optimization of the objective
function subject to constraint conditions [39]. To reduce traffic congestion and improve the
safety of bottleneck areas, a dynamic speed control method was proposed using connected
and autonomous vehicle (CAV) technology [40]. Based on the model predictive control
(MPC) framework and safety potential field (SPF) model, an alternative CAV platoon
dynamic control method was developed [41]. Some researchers proposed a multi-objective,
guaranteed feasible connected and autonomous vehicle (CAV) platoon control method
for signalized isolated intersections with priorities [42]. To capture hybrid traffic flow
dynamics, an MPC model embedded with a mixed-integer nonlinear program was de-
veloped [43]. To optimize a vehicle platoon system in terms of car-following behavior, a
decentralized MPC strategy for longitudinal velocity control was established [44]. Some
researchers proposed a comprehensive linear time-varying MPC design for a type of AV
to achieve good trajectory tracking in a practical driving scenario [45]. Some researchers
proposed a model of predictive control based on ACC to dampen traffic waves and reduce
traffic congestion [46,47]. A safety-enhancing eco-driving strategy for CAVs based on a
hierarchical distributed framework was proposed to optimize the trajectory of CAVs on a
signalized arterial in mixed traffic flow [48]. A polytopic model-based robust predictive
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control scheme was proposed to construct the path tracking of AVs [49]. For the cooperative
control system of CAVs, a distributed control architecture and hierarchical controller based
on a multi-agent system (MAS) were proposed to handle complex traffic scenarios [50].
Some researchers have proposed a hierarchical model predictive control framework that
can be used for the coordinated and integrated control of a motorway system to achieve
traffic flow efficiency, considering that serval vehicles were equipped with specific vehicle
automation and communication systems [51].

JAD is a behavior of mitigating traffic jams by dynamically changing the headway
of a single vehicle and consists of two actions termed “slow-in” and “fast-out” [52]. The
“slow-in” is the action to avoid being captured by a jam and to eliminate it by decelerating
and creating a long space headway proactively. The “fast-out” is an action that follows the
leading vehicle by quickly accelerating without unnecessary time intervals after the “slow-
in”. However, the JAD strategy focused on dissipating traffic waves without evaluating
both traffic efficiency and traffic safety fully. To address the gap, this study develops an
optimal control problem for JAD against traffic waves, which provides a good trade-off
between traffic efficiency and traffic safety. More specifically, the optimal controller is
established based on a microscopic car-following model formulated in a model predictive
control (MPC) scheme. The objective function of the proposed approach is to minimize
acceleration and safety indicators, minimize speed deviation of the last vehicle from the
maximum allowable speed, and maximize the total travel distance while satisfying the
mechanical and safety constraints.

This paper proceeds as follows: in Section 2, the overall framework is described.
Section 3 presents the mathematical formulation, providing explanations for the traffic
state dynamics and elaborating on the objective function and system constraints. Section 4
provides numerical design and simulation results. Section 5 presents the conclusions and
some topics for future research.

2. The Application Framework

It is well known that the key to JAD strategy is to avoid traffic jams by controlling the
headway and velocity of a single vehicle. The mechanism diagram of the JAD strategy is
depicted in Figure 1.
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Figure 1. The schematic diagram of the jam-absorption driving (JAD) strategy.

The description of the vehicle’s trajectory over some time in Figure 1 is as follows.
When the vehicles are in a congested state, absorbing vehicle m decelerates from point A to
point B at speed va to prevent the traffic wave from propagating upstream, and then the
absorbing vehicle m accelerates from point B to point C and travels at free flow speed to
eliminate the compression wave caused by a series of actions. Subsequent vehicles follow
vehicle m in a car-following behavior. The absorbing vehicle induces a compression wave
with speed ve and an expansion wave with speed v f arising from A and B, respectively.
Eventually, these two waves cancel each other out at point C. Hence, subsequent vehicles
at point C run at the initial speed vM.
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To dissipate stop-and-go waves, an MPC scheme is developed based on a car-following
model for the JAD strategy. Due to the linearity and intuitiveness of the Helly model, it is
chosen for modeling manual vehicles. The MPC is employed to predict the evolution of
traffic dynamics through the traffic flow model and compute the optimal control action
according to the current state of the system. The schematic view of the overall framework
system is depicted in Figure 2. In mixed traffic, connected vehicles use onboard sensors
to obtain the position and speed of the vehicle in real time and then transmit the vehicle
data back to the traffic management center through the roadside communication system.
The processing system analyzes the traffic information to determine if traffic oscillations
are occurring on the road. The optimal controller is activated once the phenomenon
is detected. In the optimization process, the control input (acceleration) of the system is
obtained according to the traffic state of the vehicle and the objective function and constraint
conditions. Consequently, vehicles adhere to the advised acceleration for navigation.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 15 
 

respectively. Eventually, these two waves cancel each other out at point C. Hence, subse-

quent vehicles at point C run at the initial speed Mv . 

To dissipate stop-and-go waves, an MPC scheme is developed based on a car-follow-

ing model for the JAD strategy. Due to the linearity and intuitiveness of the Helly model, 

it is chosen for modeling manual vehicles. The MPC is employed to predict the evolution 

of traffic dynamics through the traffic flow model and compute the optimal control action 

according to the current state of the system. The schematic view of the overall framework 

system is depicted in Figure 2. In mixed traffic, connected vehicles use onboard sensors to 

obtain the position and speed of the vehicle in real time and then transmit the vehicle data 

back to the traffic management center through the roadside communication system. The 

processing system analyzes the traffic information to determine if traffic oscillations are 

occurring on the road. The optimal controller is activated once the phenomenon is de-

tected. In the optimization process, the control input (acceleration) of the system is ob-

tained according to the traffic state of the vehicle and the objective function and constraint 

conditions. Consequently, vehicles adhere to the advised acceleration for navigation. 

 

Figure 2. The schematic view of the overall framework. 

3. System Description 

Consider a platoon of N (N > 1) heterogeneous vehicles, with each vehicle denoted 

by an index  1,2, ,i N  . Vehicle (i − 1) is the preceding vehicle of vehicle i, for all 

 2,3, ,i N , and vehicle N is the one in front of vehicle 1. Vehicle N is also referred to 

as vehicle 0. 

3.1. The Manual Vehicle 

In the MPC scheme, the Helly model is adopted for the manual vehicle. This decision 

is based on the fact that the Helly model, being a linear model, can precisely depict the 

phenomenon of car-following without introducing any delay effects. The Helly model is 

a simple differential equation, and it is related to the relative distance and speed between 

two vehicles [53]. To be practically applicable, the model is rewritten by the following 

equation: 

1 1( ) [ ( ) ( ) ( )] [ ( ) ( )]i x i i i v i iv t x t x t D t v t v t − −= − − + −  (1) 

( ) ( )i iD t d hv t= +  (2) 

where ( )ix t  and ( )iv t  are the position and velocity of vehicle i at time step t, the vehicle 

(i − 1) represents the preceding vehicle of vehicle i. The quantities x  and v  are sensi-

tivity parameters; ( )iD t  is the desired distance for vehicle i; d  is the minimum distance 

between two consecutive vehicles; and h  is the desired (time) headway. 

Optimization

Mixed traffic 
flow system 

Disturbances

On-board sensors

Processing system

x(t),v(t)

Vehicle operation

Interaction 
dynamics

Stop-and-go waves 
detection

( )a t

Figure 2. The schematic view of the overall framework.

3. System Description

Consider a platoon of N (N > 1) heterogeneous vehicles, with each vehicle denoted
by an index i ∈ {1, 2, . . . , N}. Vehicle (i − 1) is the preceding vehicle of vehicle i, for all
i ∈ {2, 3, . . . , N}, and vehicle N is the one in front of vehicle 1. Vehicle N is also referred to
as vehicle 0.

3.1. The Manual Vehicle

In the MPC scheme, the Helly model is adopted for the manual vehicle. This decision
is based on the fact that the Helly model, being a linear model, can precisely depict the
phenomenon of car-following without introducing any delay effects. The Helly model is a
simple differential equation, and it is related to the relative distance and speed between two
vehicles [53]. To be practically applicable, the model is rewritten by the following equation:

.
vi(t) = λx[xi−1(t)− xi(t)− Di(t)] + λv[vi−1(t)− vi(t)] (1)

Di(t) = d + hvi(t) (2)

where xi(t) and vi(t) are the position and velocity of vehicle i at time step t, the vehicle
(i − 1) represents the preceding vehicle of vehicle i. The quantities λx and λv are sensitivity
parameters; Di(t) is the desired distance for vehicle i; d is the minimum distance between
two consecutive vehicles; and h is the desired (time) headway.

However, if the gap between vehicles is infinite, the Helly model will cause the
continuous acceleration of vehicles and an infinite increase in vehicle speed. Therefore, it is
necessary to satisfy the collision-free behavior subjected to safety-related constraints in the
traffic dynamics. The string stability of the Helly model is analyzed using Laplace transforms.

By substituting (2) into (1), the formula is as follows:

.
vi(t) = λx[xi−1(t)− xi(t)− d − hvi(t)] + λv[vi−1(t)− vi(t)] (3)
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According to the relative distance xR(t) = xi−1(t)− xi(t) and the relative velocity
vR(t) = vi−1(t)− vi(t), the expression (3) can be written as:

.
vi(t) = λx(xR(t)− d − hvi(t)) + λvvR(t) (4)

According to the kinematic law, the following relationships between vehicle position
x(t), velocity v(t), and acceleration rate a(t) are satisfied:

.
x(t) = v(t),

.
v(t) = a(t) (5)

The derivative of both sides of (3) can be conducted:

..
vi(t) = λx[

.
xi−1(t)−

.
xi(t)− h

.
vi(t)] + λv[

.
vi−1(t)−

.
vi(t)]

= λx[vi−1(t)− vi(t)− h
.
vi(t)] + λv[

.
vi−1(t)−

.
vi(t)]

(6)

The Laplace transform of (6) is represented as:

s2Vi(s) = λx[Vi−1(s)− Vi(s)− hsVi(s)] + λvs[Vi−1(s)− Vi(s)] (7)

Using the transfer function, we get

G(s) = Vi(s)
Vi−1(s)

= λx+λvs
s2+λx+λxhs+λvs

(8)

String stability can be guaranteed if and only if |G(jω)| ≤ 1, ∀ω [54]. Therefore, the
string-stability condition is calculated as:

h ≥ −λv +
√

λv
2 + 2λx

λx
(9)

3.2. Traffic State Dynamics

In a mixed traffic flow environment, it is assumed that the real-time positions and
speeds of every vehicle can be obtained. Traffic states of the roadway stretch are represented
by the equations of motion at discrete time steps T indexed by k, where (actual) time t = kT.
This discrete-time system calls for using constantly accelerated motion law for the interval
(k, k + 1] (or (t, t + T]), which is described by

xi(k + 1) = xi(k) + Tvi(k) +
1
2

T2ai(k) (10)

vi(k + 1) = vi(k) + Tai(k) (11)

Substituting the discrete-time form of (4) into (10) and (11), the following formulae
are derived:

xi(k + 1) = xi(k) + Tvi(k) +
1
2

T2[λx(xi−1(k)− xi(k)− (d + hvi(k))) + λv(vi−1(k)− vi(k))] (12)

vi(k + 1) = vi(k) + T[λx(xi−1(k)− xi(k)− (d + hvi(k))) + λv(vi−1(k)− vi(k))] (13)

which, using matrix form, results in[
xi(k + 1)
vi(k + 1)

]
=

[
1 − 1

2 T2λx T − 1
2 T2λxh − 1

2 T2λv
−Tλx 1 − Tλxh − Tλv

][
xi(k)
vi(k)

]
+

[ 1
2 T2λx

1
2 T2λv

Tλx Tλv

][
xi−1(k)
vi−1(k)

]
+

[
− 1

2 T2λx
−Tλx

]
d (14)

In the discrete system, Xi(k) ∈ R2 the state vector of vehicle i at time step k is de-
fined as:

Xi(k) = [xi(k), vi(k)]
T (15)
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where xi and vi are the position and speed of vehicle i, respectively. Hence, the matrix (14)
can be equivalently rewritten as:

Xi(k + 1) = an,1Xi−1(k + 1) + an,2Xi(k + 1) + bn,1d (16)

Additionally, an,1 and an,2 ∈ R2×2(R) are the following vectors:

an,1 =

[ 1
2 T2λx

1
2 T2λv

Tλx Tλv

]
, an,2 =

[
1 − 1

2 T2λx T − 1
2 T2λxh − 1

2 T2λv
−Tλx 1 − Tλxh − Tλv

]
(17)

and bn,1 ∈ R2 is represented as:

bn,1 =

[
− 1

2 T2λx
−Tλx

]
(18)

From (5) and (15), we can obtain the following vector form:

.
X(k) = [

.
xi(k),

.
vi(k)]

T
= [vi(k), ai(k)]

T (19)

In the optimal control scheme, the state–space system model can be formulated as follows:

X(k + 1) = AX(k) + BU(k) (20)

Y(k) = CX(k) (21)

where the state vector X(k) is as depicted in (15), and the control input vector U(k) is
formed by the acceleration rate a and the minimum distance d. Then,

(
X(k), U(k) ∈ R2N)

can be expressed as:

X(k) =


X1
X2
...

XN

(k) =



x1
v1
x2
v2
...

xN
vN


(k), U(k) =

[
a(k)

d

]
(22)

where N represents the total number of vehicles, m signifies the number of vehicles im-
plementing the JAD strategy, d denotes the minimum distance, and n is the number of
human-driven vehicles (HDVs). The state matrix A ∈ R2N×2N is

A =



a1,0
0 a2,0

. . . . . .
0 am,0

a1,1 a1,2
. . . . . .

an,1 an,2


, am,0 =

[
1 T
0 1

]
(23)

where an,1 and an,2 are given by (17), am,0 ∈ R2×2 is a vector for the JAD strategy, and the
input matrix B ∈ R2N×2N is
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B =



b1,0
. . .

bm,0
b1,1

. . .
bn,1


, bm,0 =

[ 1
2 T2

T

]
(24)

where bn,1 is obtained from (18), and bm,0 ∈ R2 is a vector for the JAD strategy. The output
matrix C ∈ R2×2N is

C =

[
1 hm 0 . . . 0
0 1 0 . . . 0

]
(25)

where hm represents the minimum time headway from the vehicle in front, and hm is set to
1 s.

3.3. Objective Function

The objective function of the optimal control problem is constructed as:

min
U

J =
N−1

∑
k=0

[(vk,N − vmax)
2 +

1
2

m

∑
j=1

ak,j
2 −

N

∑
i=1

vk,i) +
1
2
(TITk + TETk)]∆t (26)

In this objective function, the first term represents the minimization of the speed
deviation of the last vehicle from the maximum allowable speed over time. It encourages
vehicles to maintain an appropriate speed in traffic to ensure safety and efficient driving.
The second term is formulated as the minimization of acceleration to guarantee a smoother
vehicle trajectory and reduce the fuel consumption for the vehicle traveling. The third term
strives to optimize the total travel distance of all vehicles on the roadway. The last term
avoids potential rear-end safety risks by introducing safety indicators.

3.4. System Constraints

The constraints are defined to guarantee that vehicle motion complies with the me-
chanical and safety constraints. Specifically, the vehicle’s speed is not allowed to reverse at
any time, and it should also not exceed the maximum speed vmax. The vehicles’ acceleration
is bounded between minimum acceleration amin and maximum acceleration amax. Thus,
the mechanical constraints are formulated as:

0 ≤ vi(k) ≤ vmax, i ∈ {1, 2, . . . , N} and k ∈ {0, . . . , N − 1} (27)

amin ≤ aj(k) ≤ amax, j ∈ {1, 2, . . . , m} and k ∈ {0, . . . , N − 1} (28)

To prevent the risk of rear-end collisions between vehicles, the distance between the
adjacent vehicles should be greater than or equal to the minimum distance d. Thus, the
safety constraint is represented as:

xi−1(k)− xi(k + 1) ≥ d, i ∈ {1, 2, . . . , N} and k ∈ {0, . . . , N − 1} (29)

where xi−1 and xi are the preceding and following vehicles, respectively. The value of d is
related to the vehicles’ length and it is set as 5 m because the length of most vehicles falls
between 4 and 4.5 m.

In mixed traffic flow, another safety constraint involves ensuring the satisfaction of the
safety threshold metric of the vehicle under speed control, expressed by the time-to-collision
(TTC) indicator. TTC serves as a safety performance metric, representing the time required
for a rear-end collision risk to occur when the leading and following vehicles maintain their
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current speeds. Two integrated safety metrics, time-exposed time-to-collision (TET)and
time-integrated time-to-collision (TIT), are utilized to evaluate the safety of traffic flow

TTC(t) = xn−1(t)−xn(t)−l
vn(t)−vn−1(t)

, vn(t) > vn−1(t)

TET =
N
∑

n=1

Tf

∑
t=1

∆t, 0 < TTC(t) < TTCthreshold

TIT =
N
∑

n=1

Tf

∑
t=1

[TTCthreshold − TTC(t)]∆t, 0 < TTC(t) < TTCthreshold

(30)

where l represents the length of the vehicle and l = 4.9 m; t is the time; Tf is the total
simulation time; n is the vehicle code; and N is the total number of vehicles. According to
the previous literature [55], TTCthreshold is set to 2 s.

4. Numerical Simulation
4.1. Experimental Design

To evaluate the effectiveness and practicability of the proposed optimization controller,
we conduct the simulation experiment using MATLAB for analysis and modeling. Due to
the randomness of the simulation experiment, the experiment is repeated 10 times, and the
results are averaged.

A hypothetical single-lane freeway stretch without on-ramps and off-ramps is consid-
ered. There are 10 vehicles (20 state vectors) on the road, including the guidance vehicle
(CAV, m = 1) and the human-driving vehicle (n = 9). To generate a speed-reduction traffic
oscillation, the preceding vehicle decelerates at the maximum comfortable deceleration.
After remaining at a low speed for a few seconds, the vehicle accelerates to its maximum
speed. According to the previous literature [56], the parameters of the Helly model are set
to λx = 0.7 s−2, λv = 0.5 s−1, h = 1.2 s. Moreover, the initial minimum distance for vehicles
is assumed to be 5 m. The value of the maximum speed vmax is set to 30 m/s. The temporal
horizon is 600 s, and the simulation time step is 0.1 s. Additionally, the upper and lower
bounds for the acceleration constraint are set to amin = −3 m/s2 and amax = 3 m/s2.

4.2. Results and Discussion

To evaluate the effectiveness of the proposed optimal control method, the experiments
were tested in scenarios involving both single traffic waves and multiple traffic waves.

4.2.1. The Scenario with a Single Traffic Wave

Given these parameters, a speed-reduction traffic wave was generated. Figure 3 shows
the experimental simulation results of the scenario with a single traffic wave, where the
black line represents the trajectory from the initial values. The vehicle trajectories and
vehicle velocity without control are shown in Figure 3a,b. The vehicle trajectories and
speed profiles followed the trajectory of the initial values.

The optimized vehicle trajectories and velocity profiles were compared against those
without control, as shown in Figure 3c,d. The trajectories suggested by the optimization
model satisfy all constraints in the cost function. By analyzing these profiles, it is observed
that the vehicle trajectories and speed profiles became smoother. Moreover, the vehicle
velocity was improved within the maximum speed limit, indicating that the optimal
control can enhance its fuel economy and traffic efficiency. In Figure 3e, the initial and
optimized acceleration profiles are denoted by the blue and red lines, respectively. Based
on the acceleration trajectories, it can be observed that optimized acceleration values were
relatively small, and they eventually stabilized at zero after 485 s. This demonstrated that
JAD optimal control can effectively smooth both high deceleration and acceleration rates,
thereby improving the comfort of the human driver.
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To better analyze the impact of the optimal control method on traffic congestion, the
traffic throughput and safety indicators for different methods were compared in the same
scenario. The results of the comparison of performance metrics are reported in Table 1. The
results indicated that both the JAD and the proposed optimization control method have
improved traffic throughput and reduced the risk of rear-end collisions compared to the no-
control case. The performance of the proposed optimal control strategy was superior to that
of the previous JAD strategy. Specifically, compared with JAD, the proposed optimization
strategy resulted in improvements of 6.05% and 1.66% in the safety indicators TET and
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TIT and a traffic throughput improvement of 2.65%. This reason is that the cost function
of the optimal method, taking into account traffic stability and safety, effectively reduces
acceleration. Therefore, the simulation revealed that the proposed optimal control method
can effectively dampen traffic waves and improve traffic performance.

Table 1. Comparison of performance metrics for different methods in the scenario of a single stop-
and-go wave.

Methods
The Change in Performance Metrics (%)

Throughput TET TIT

No control 0 0 0
JAD 58.46 −65.96 −73.65

Optimal control 61.11 −72.01 −75.31

4.2.2. The Scenario with Multiple Traffic Waves

Based on experimental parameters, multiple traffic waves induced by speed were
simulated. The results of a scenario with multiple traffic waves are summarized in Figure 4,
where the initial trajectory is represented by a black line. In Figure 4a,b, these trajec-
tories without control indicated that the vehicle experienced frequent acceleration and
deceleration rates. Similarly, the optimized vehicle and velocity trajectories are shown
in Figure 4c,d. The results indicated that, compared to the initial trajectory, the vehicle
trajectories tended to become stable after optimizing for smooth speed. According to the
constraint conditions, the vehicle velocity was maintained within 30 m/s and exhibited
improvement. In Figure 4e, the optimized acceleration trajectory illustrated that the vehicle
initially decelerated at a rate of −0.71 m/s2, gradually increased to 0.65 m/s2, and finally
tended to be stable and remained at zero after about 570 s. The optimized acceleration
became smoother, indicating that the JAD optimal control improved the comfort of the
human driver.

The simulation results demonstrated that JAD optimal control within the MPC frame-
work can effectively eliminate traffic oscillations. In addition, the elevation of vehicle speed
and the provision of smooth acceleration contribute to an enhancement in fuel economy,
traffic efficiency, and the comfort of human drivers. Most importantly, the cost function
takes into account the speed difference between the last vehicle and the maximum allowed
speed, ensuring the safety of the vehicles.

To demonstrate the feasibility of the proposed optimization control, the change in
traffic throughput and traffic safety for the JAD strategy and the optimal control method
were quantified in Table 2. It is evident that compared to the JAD strategy, the safety
performance indicators of the optimized method showed significant improvement, with a
reduction rate of 8.14% in TET and 4.22% in TIT. Simultaneously, there is a notable increase
in traffic throughput by 4.25%. The results indicated that the optimal method has better
performance in terms of traffic throughput and safety.

Considering the comprehensive analysis above, it can be readily inferred that the pro-
posed optimization control is capable of efficiently mitigating traffic oscillations, enhancing
both traffic efficiency and safety, thereby alleviating traffic congestion. It can be found that
the performance improvement of the optimized method in the scenario of multiple traffic
waves is slightly better than that in the scenario of a single wave. This reveals the proposed
method is robust and makes complex traffic flow more stable on a single-lane freeway.
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Table 2. Comparison of performance metrics for different strategies.

Methods
The Change in Performance Metrics (%)

Throughput TET TIT

No control 0 0 0
JAD 57.23 −65.06 −71.99

Optimal control 61.48 −73.20 −76.21
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5. Conclusions

To mitigate traffic waves and improve traffic performance, a Helly model-based op-
timal control problem was developed in mixed flow. This optimal controller takes into
account both traffic safety and traffic efficiency. In the MPC scheme, the optimal commands
(suitable acceleration values) for all vehicles are calculated to update optimal trajectories, ul-
timately resulting in a smooth guidance speed. To validate the effectiveness of the proposed
methodology, the vehicle trajectories, velocity trajectories, and acceleration trajectories
under the optimal method and the no-control case were compared and analyzed. The
changes in traffic throughput and safety indicators were computed for different methods
(no control, the JAD, and the proposed method). The results showed that the proposed
method made the vehicle trajectories and speed trajectories smoother and led to improved
speed and reduced acceleration. In terms of performance metrics, the optimization method
had better performance compared to the JAD. Interestingly, the performance improvement
of the optimal method in the scenario of multiple traffic waves is slightly better than that
in the scenario of a single wave. In other words, compared to the no-control case, the pro-
posed method resulted in a 61.48% increase in throughput, a 73.2% reduction in the safety
indicator TET, and a 76.21% reduction in the safety indicator TIT. The simulation results
demonstrated that the proposed methodology can effectively dampen traffic waves and
improve traffic performance, ultimately mitigating traffic congestion and promoting a more
stable traffic flow. More importantly, this result suggested that the optimization method is
more applicable to complex traffic wave scenarios, which is related to the multi-objective
functions. Simultaneously, this experimental simulation in mixed traffic was conducted on
a single-lane highway, which holds theoretical significance for alleviating traffic congestion
on the freeway.

To simulate real-world traffic conditions more accurately, this work will explore the
inclusion of different penetration rates of CAVs, multi-lane configurations, or more intricate
traffic scenarios in the future. Lane-changing maneuvers and external disturbances are
allowed in experimental tests. Furthermore, alternative car-following models or cost
functions will also be investigated to achieve system optimization.
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