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Abstract: In this study, we present an innovative approach to quantum image classification, specifi-
cally designed to mitigate the impact of noise interference. Our proposed method integrates key tech-
nologies within a hybrid variational quantum neural network architecture, aiming to enhance image
classification performance and bolster robustness in noisy environments. We utilize a convolutional
autoencoder (CAE) for feature extraction from classical images, capturing essential characteristics.
The image information undergoes transformation into a quantum state through amplitude coding,
replacing the coding layer of a traditional quantum neural network (QNN). Within the quantum
circuit, a variational quantum neural network optimizes model parameters using parameterized
quantum gate operations and classical–quantum hybrid training methods. To enhance the system’s
resilience to noise, we introduce a quantum autoencoder for error mitigation. Experiments conducted
on FashionMNIST datasets demonstrate the efficacy of our classification model, achieving an accuracy
of 92%, and it performs well in noisy environments. Comparative analysis with other quantum
algorithms reveals superior performance under noise interference, substantiating the effectiveness of
our method in addressing noise challenges in image classification tasks. The results highlight the
potential advantages of our proposed quantum image classification model over existing alternatives,
particularly in noisy environments.

Keywords: quantum neural network; variational quantum algorithm; image classification; error
mitigation

1. Introduction

In recent decades, machine learning has rapidly emerged as a foundational technology
in the era of big data. Rooted in artificial intelligence and statistics, machine learning
explores learning strategies and uncovers latent structures from the available data, enabling
predictions and analyses through the derived models [1]. Its applications cover data mining
and facial recognition, natural language processing, and identifying biomedical features,
such as community detection on social networks [2], affecting all aspects of social life [2–4].

Quantum machine learning (QML) is an exceptionally promising interdisciplinary
research direction, aiming to harness the capabilities of quantum computing alongside
machine learning to overcome classical computing limitations. Numerous quantum al-
gorithms have been proposed to enhance various machine learning tasks [5–7]. Image
processing, a pivotal domain within digital image processing, encompasses all aspects of
image acquisition, representation, processing, and analysis. With the widespread adoption
of digital technology, image processing has found extensive applications, significantly im-
pacting scientific research and playing a crucial role in fields such as medicine, engineering,
and entertainment [8–11]. Image classification, a focal point in computer vision, has been
a significant research target, employing techniques such as support vector machines and
convolutional neural networks [12,13]. Chen et al. [14] innovatively incorporated classical
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deep reinforcement learning algorithms, including experience replay and target networks,
into variational quantum circuits with reduced weights. Additionally, a classification al-
gorithm combining quantum computing with the decision tree algorithm [15,16] exists.
The latter proposes the quantum representation of a binary classification tree with binary
characteristics based on a probability method [16].

With the rapid advancement of quantum machine learning, a pivotal question arises:
can quantum machine learning technology be trusted for image classification tasks amidst
adversarial noise interference? Label noise, particularly in scenarios like medical image
datasets with high-level label noise, can profoundly influence classification outcomes [17].
In autopilot systems, image classification identifies roads, pedestrians, vehicles, etc. Noise
introduces inaccuracies in driving decisions, escalating the risk of traffic accidents. Video
surveillance relies on image classification for object detection and identification. Noise
may lead to false positives or negatives, diminishing the reliability of the monitoring
system and compromising the accurate identification of potential threats [18,19]. Mod-
els are prone to overfitting noise labels, causing harm to representation learning and
hindering generalization, thereby impacting diagnostic accuracy. Quantum error correc-
tion techniques demand substantial quantum bit resources, presenting implementation
challenges [20–23]. To address this, error mitigation strategies, such as the autoencoders
proposed by Zhang et al. [24], have proven effective for error correction without the need
for additional quantum bits.

In a different domain, quantum neural networks (QNNs) represent a forefront research
area that merges quantum computing with neural networks. Various implementations of
quantum neural network models exist, with variational quantum circuits (VQCs) gaining
significant attention [25–27]. In the era of noisy intermediate-scale quantum (NISQ), VQC
offers practical feasibility as it can operate within the limitations of the currently available
qubits. VQC design not only emphasizes the hardware implementation of quantum com-
puting but also focuses on effective integration with classical computing to overcome the
limitations of noise and errors in current quantum computing [28–31]. Recent research on
quantum neural networks includes the work by Ban et al. [32], who proposed a quantum
neural network (QNN) with multi-qubit interactions, transforming the quantum perceptron
into a nonlinear classifier. The activation function chosen by the author is based on the
adiabatic evolution of the system. Experimenting with other forms of activation functions is
suggested to potentially enhance the network’s performance. Higham et al. [33] proposed
leveraging the quantum annealer to address classification tasks. However, overcoming
the limitations of the binary nature of variables in quantum computing to handle more
complex data types remains a challenge. In [34], a quantum recurrent neural network
(QLSTM) is employed to optimize the training process of quantum reinforcement learning.
Although the article mentions quantum error correction and noise resistance, practical
applications still pose significant challenges in these aspects.

Building on the description provided earlier, this paper introduces a novel hybrid
quantum network designed to tackle the performance challenges faced by quantum clas-
sifiers in the presence of noise interference. The hybrid network seamlessly combines a
convolutional autoencoder (CAE) and a quantum neural network (QNN). Initially, the
CAE is utilized to extract features from the image, and amplitude coding is introduced
for encoding these features. The classification task is then executed using a variational
quantum circuit (VQC). Furthermore, we integrate a quantum autoencoder to effectively
reduce errors in quantum circuits, with the goal of enhancing the model’s performance in
the presence of noise interference while optimizing resource utilization.

This study investigates the dependability of quantum machine learning technology in
image classification tasks under noise interference. It explores the integration of variational
quantum circuits with error mitigation techniques to achieve robust image classification.
The paper is organized as follows: Part II provides a comprehensive introduction to foun-
dational theories and relevant work on convolutional autoencoders and quantum neural
networks. Part III addresses noise-related issues in image classification, discusses the limi-
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tations of traditional methods, and proposes a hybrid classical–quantum approach utilizing
variational algorithms and error mitigation. Part IV outlines the experimental design and
presents the results. The conclusion summarizes research findings and discusses prospects
for future studies in the realm of quantum machine learning and image classification.

2. Background
2.1. Convolutional Automatic Encoder

The autoencoder (AE) represents a specialized instantiation within the broad domain
of feedforward neural networks, featuring a distinctive architecture consisting of two
essential components: an encoder and a decoder. The primary function of the encoder
is to compress input data, facilitating a transformation into a low-dimensional code that
encapsulates the latent space inherent in the input. Conversely, the decoder intricately
reconstructs the output based on this condensed representation, orchestrating a process
of data synthesis aimed at faithfully replicating the original input. This paradigm is
typically characterized by the inclusion of fully connected layers in both the encoder and
decoder modules.

In the evolutionary trajectory of neural network architectures, CAE emerges as a
refined iteration, particularly distinguished by its enhanced efficacy in extracting textural
features from images [35,36]. The CAE paradigm manifests a distinct structural augmenta-
tion, wherein the encoder is imbued with successive convolutional layers, and the decoder
integrates transposed convolutional layers, all enveloping a strategically embedded sparse
inner layer. The consequential outcome is an autonomously functioning CAE encoder that
assumes a pivotal role in the extraction of low-dimensional representations, specifically
tailored for the realms of image feature extraction and the reduction in dimensionality.
The training regimen for the CAE involves exposure to raw, unprocessed image data,
facilitating the acquisition of a profound understanding of a low-dimensional representa-
tion. Unlike the traditional AE, CAE deviates by utilizing convolutional layers in both the
encoder and decoder networks, replacing the previous reliance on fully connected layers.

The structural augmentation of the CAE is not arbitrary but rooted in its pursuit of
heightened performance in processing image data while meticulously preserving spatial
structural information. A defining attribute of the convolutional layers in the CAE is their
demonstration of translation invariance, a quality that imparts a remarkable capability
to capture local features and spatial relationships within the intricate tapestry of image
data. This intrinsic characteristic contributes substantively to the CAE’s efficacy, rendering
it a potent tool in the realm of image processing and analysis. In summary, the CAE
represents a sophisticated and refined instantiation of neural network architectures, with its
convolutional underpinnings endowing it with a distinctive prowess in the extraction and
preservation of intricate features within the visual domain. In this paper, we only utilize
the encoder for image feature extraction and dimensionality reduction.

2.2. Quantum Neural Network

Quantum circuit-based networks, as demonstrated by Matsui and Maeda’s
method [37,38], utilize quantum gate circuits featuring rotation and controlled-NOT gates.
These circuits process quantum states as inputs, and a weight update process, akin to tradi-
tional forward propagation algorithms, is presented in complex number representation.
Matsui and Maeda introduced an innovative approach to constructing neural networks
based on quantum gate circuits. Their methodology employs fundamental quantum com-
puting components, specifically a single-qubit quantum rotation gate and a controlled-NOT
gate. These gates collectively form the neural network, with quantum states serving as
input. The network’s weight update process adheres to a complex-valued formulation
derived from the traditional forward propagation algorithm. The network architecture,
visually depicted in accompanying diagrams, showcases the integration of quantum gates
in the neural network framework.
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Variational quantum circuits, pivotal in quantum machine learning, comprise three
essential components. First, the feature map F facilitates the mapping of classical data
points x onto a z-qubit quantum state |φ(x)⟩. This state preparation is expressed as

|φ(x)⟩ = F(x)|0⟩⊗z (1)

Later, an ansatz, denoted by α and parameterized by a vector θ, operates on the
quantum state through a sequence of entangling and rotation gates. The resulting quantum
state is then determined as

|φ(x, θ)⟩ = α(θ)|φ(x)⟩ (2)

Finally, the observable O is measured, recording eigenvalues corresponding to the
resultant quantum state. The QNN diagram is shown in Figure 1.

0

0

0

0

𝐹 𝑥 𝛼 𝑥 𝑂⋮

（a）Classical neural network （b）Quantum neural network

Figure 1. (a) Classical neural networks typically comprise three layers: an input layer, a hidden layer,
and an output layer. Each layer contains multiple neurons, and the connections between neurons
have varied weights. (b) In contrast, QNN involves three layers: F(x) serves as the coding layer, α(x)
acts as the variable layer, and O functions as the measurement layer.

In the realm of machine learning, the variational quantum circuit is executed multiple
times with specific inputs x and parameter vectors θ. This iterative process allows the
circuit’s expectation value, denoted by f , to approximate the desired output:

f (x, θ) = ⟨ϕ(x, θ)|O|ϕ(x, θ)⟩ (3)

This expectation value serves as a crucial approximation for the model’s output in
various machine learning applications, where the variational quantum circuit offers a
quantum-enhanced approach to computational tasks.

3. Construction of Mixed Variational Quantum Neural Network and Error
Mitigation Model

Initially, a classical convolutional autoencoder is used for image feature extraction. Fol-
lowing this, amplitude coding is applied to encode the extracted feature vectors, and the re-
sulting quantum states are input into the quantum classifier for classification tasks. The clas-
sifier consists of a quantum neural network and a quantum self-encoder. The variational
quantum circuit predicts the input quantum state, followed by error mitigation through the
quantum self-encoder. The classification process is then finalized through measurement.

3.1. CAE (Feature Extraction and Dimension Reduction)

The convolutional autoencoder (CAE), inspired by Masci’s seminal work [39], serves
as a paradigm in unsupervised learning neural network models, designed to proficiently
capture data representations and extract salient features.

CAE Architecture and Weight Sharing: In preserving spatial locality, CAE employs
weight sharing across all positions in the input, adhering to a structural resemblance with
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traditional autoencoders. The latent representation, denoted as hm, for the m-th feature
map of a single-channel input tensor, is intricately expressed as

hm = ω(t ∗ Wm + bm) (4)

where ω represents the activation function, and ∗ symbolizes 2D convolution. Recon-
struction Process in CAE: The reconstruction process within CAE unfolds through a linear
combination of fundamental image blocks contingent upon the latent code. The reconstruc-
tion equation takes the form

I = ω( ∑
m∈H

hm ∗ W̃m + c) (5)

where H denotes the set of latent feature maps, W̃ embodies a two-dimensional weight-
flipping operation, and ∗ denotes the 2D convolution operation. Cost Function and Opti-
mization in CAE: The imperative cost function guiding CAE’s training regimen is the mean
square error (MSE), formalized as

E(θ) =
1

2n

n

∑
i=1

(ti − Ii)2 (6)

To minimize this cost function, the optimization process leverages backpropagation
to compute gradients of the error function concerning the parameters. The gradients are
ascertained through convolution operations, expressed as

∂E(θ)
∂Wm = t ∗ δhm + h̃m ∗ δI (7)

where δh and δI denote the incremental changes in hidden states and reconstruction,
respectively.

Stochastic gradient descent plays a crucial role in optimizing the CAE model by
iteratively adjusting weights to improve overall performance. Grayscale images, with their
straightforward structure, allow for direct feature extraction. However, for color images,
conversion of RGB values to corresponding grayscale values is necessary before applying
this algorithm. Figure 2 illustrates an example of multi-channel image feature extraction.

Input image

filters

3×3×3

8×8×4

6×6×4

CONV POOL FC

Figure 2. The image includes convolution automatic encoder for feature extraction and dimensionality
reduction, and convolution automatic encoder includes convolution layer (CONV), pooling layer
(POOL), and full-connection layer (FC).
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3.2. Amplitude Coding

In this study, we explore the utilization of amplitude encoding as an alternative to
the encoding layer within QNN for image feature representation. The primary objective
is to alleviate the complexity associated with traditional classification models. Moreover,
employing amplitude coding in advance holds the potential to mitigate noise interference
and bolster the robustness of resulting quantum states. This proactive approach contributes
to the improvement of accuracy and stability in image classification tasks.

Amplitude encoding serves as a powerful technique for mapping classical data onto
quantum states [40]. Through this process, classical image data undergo a transformation,
becoming embedded within the unique characteristics of quantum states. The intrinsic abil-
ity of quantum states to handle complex coherence and entanglement positions amplitude
encoding as a potentially superior method for certain image processing tasks, particularly
those requiring intricate feature extraction and classification.

A notable advantage of early amplitude encoding lies in its capability to mitigate noise
interference. The resulting quantum states exhibit enhanced robustness, a critical factor
in the context of image classification. The reduction in noise interference contributes to
an overall improvement in accuracy and stability, making amplitude encoding a valuable
preprocessing step. For a given dataset, D′ = {tj}l′

j=1, tj =
(

tj
1, tj

2, · · · , tj
n

)
, l′ represents the

total number of samples in the dataset, and n represents the number of features per sample.
the representation function is defined as

f
(

D′) = 1
C

l′

∑
j=1

n

∑
i=1

tj
i |i, j⟩ (8)

where C is the normalization constant. This representation provides a structured basis for
further exploration and analysis. Efficiency in amplitude encoding is highlighted by the
fact that, for datasets with a length ln that is a power of 2, only log(ln) quantum bits are
required to encode ln amplitudes. The amplitude coding problem can be simplified to give
a single-point set T = {t = (t0, · · · , tN−1)} ⊂ RN . Neglecting the normalization constant

f (T) = ∑ ti|i⟩ (9)

To optimize runtime considerations, the introduction of N quantum bits allows for
an expanded choice of amplitude encoding bases. The selection of the W-state basis
exemplifies the strategic choices made in our approach.

Here, we use bottom–top amplitude coding. The adoption of bottom–top amplitude
encoding involves the construction of a quantum circuit with O(n) width and O(⌈log2N⌉)
depth. Notably, the structure of the angle tree, specifically the leftmost subtree (α0, α1, α3),
corresponds to the output qubit, with others serving as auxiliary qubits. The construction
is meticulously illustrated in accompanying diagrams. The build form is shown in the
following Figure 3.

In conclusion, our investigation into amplitude encoding as a preprocessing step
for image feature representation within a quantum framework highlights its potential to
enhance classification models. The decrease in complexity, reduction in noise interference,
and the enhanced robustness of quantum states collectively contribute to a more accurate
and stable image classification process. The strategic considerations in amplitude encoding
efficiency and the structured circuit construction further underscore the viability of this
approach in the realm of quantum image processing.
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0
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𝛼4
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𝛼6

𝑅𝑦 𝛼6
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Figure 3. The figure show s an example of bottom–top amplitude coding. The black dots in the
circuit represent the control relationship between qubits, and the crosses represent the interaction or
coupling between two or more qubits. Where the quantum logic gate corresponding to the circuit
in the figure is the controlled SWAP gate, which is used to exchange auxiliary bits and output bit
quantum states.

3.3. Construction of QNN by Variational Quantum Circuit

In this research endeavor, we delve into the realm of quantum machine learning, specif-
ically exploring the integration of amplitude encoding within QNN for image classification.
Our methodology draws inspiration from the QNN model proposed by Wu et al. [41],
where VQC is leveraged for constructing the QNN. This novel approach seeks to har-
ness the quantum advantage in processing and representing image features through the
amplitude encoding scheme.

Quantum neural networks operate on quantum input data through a sequence of
parameter-dependent quantum gates. The representation of a QNN can be expressed as:

U(θ) =
N
Π

c=1
VcUc(θc) (10)

Here, θ represents the trainable parameters, Vc and Uc(θc) are quantum gates acting on
the data, forming a powerful quantum circuit capable of complex transformations. Given
an input, x, and trainable parameters θ, the amplitude encoding scheme transforms the
input into a quantum state

|Ψ⟩ = Uθ |x⟩ (11)

For binary classification, observable projections O+
k andO−

k on the PauliZ basis are
defined, corresponding to spin +1 and −1, respectively.

P1(|Ψ⟩) = ⟨Ψ|O+
k |Ψ⟩ (12)

Similarly, P2(|Ψi⟩) is defined for Class 2. Classification for a new input |Ψi⟩ is deter-
mined based on the product of probabilities, with the class receiving the highest probability
being assigned as the prediction. The output of the QNN is based on the measurement
results of quantum bits. The expectation value E is used as the QNN output, defined as:

E = ⟨Ψx|U†(θ)VU(θ)|Ψx⟩ (13)

Here, V is a linear combination of Pauli operators applied to the observable of the
reading quantum bit, providing a probabilistic representation of the quantum state.

The construction of the quantum classifier involves a variational quantum circuit
utilizing s data quantum bits. These bits load local features extracted through CAE and
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amplitude encoding. The prediction is obtained through a single quantum bit output,
with the number of reading quantum bits determined by the classification task. In our
approach, the Ising coupling gate entangles the qubits. Similar to classical neural networks,
the variable component subgate functions as a neuron, and the block serves as a layer in
QNN. A block is defined as m gates continuously acting on m pairs of data and readout
qubits. This block can be repeated to construct a complex QNN with more parameters.
The prediction layer for the data is denoted as Up(θp), and the predicted result for a given
instance x is represented as:

y′ = ⟨ΨT |U†
p
(
θp
)
VUp

(
θp
)
|ΨT⟩ (14)

where |ΨT⟩ is the quantum state T whose extracted features are encoded by amplitude.
The circuit is shown in Figure 4. The prediction layer utilizes a VQC that employs double-
qubit parametrized gates, inducing entanglement between quantum bits. The optimization
strategy follows the scheme proposed by Ren et al. [42], incorporating the cross-entropy as
the chosen loss function. The loss function is defined as the negative log-likelihood of the
predicted probabilities compared to the true labels. For a binary classification task, it takes
the form:

L( f (x; θ), A) = −∑
k

rk log jk (15)

Here, A ≡ (r1, · · · , rm) represents the labels in one-hot encoding, f is the hypothesis
function determined by the QNN, and G ≡ (j1, · · · , jm) represents the probability of output
categories. Gradient descent is then employed to iteratively adjust the parameters to
minimize the loss function.

0

0

0

0

⋮

H

𝑈 𝜃1

𝑈 𝜃2

𝑈 𝜃1

0

𝑈 𝜃2

𝑈 𝜃3

𝑈 𝜃3

𝑈 𝜃s

𝑈 𝜃sMeasure

Figure 4. The circuit of the predictor uses s data qubits to load the local features extracted using the
coding unit, and uses a readout qubit to output the prediction result.

More specifically, for the amplitude coding scheme:

jk = ⟨x|U†
θ OkUθ |x⟩ (16)

The derivative of the loss concerning the parameters is computed through the parame-
ter shift rule. For a binary classification task, it takes the form:

∂L( f (x; θ), A)

∂θ
= −∑

k

rk
jk

∂jk
∂θ

(17)

The optimization strategy involves iteratively updating the parameters using gradient-
based optimization techniques, ensuring convergence to a set of parameters that minimizes
the loss function.

In conclusion, our research navigates the intricate landscape of quantum machine
learning, integrating amplitude encoding within the QNN framework. The combination of
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amplitude encoding, VQC, and optimization strategies contributes to the development of
robust quantum classifiers with potential applications in image classification tasks.

3.4. Error Mitigation

Our discussion utilizes the concepts outlined in [24]. In this work, the authors employ
a generic detection-based error-mitigation strategy utilizing quantum autoencoders, pre-
senting a novel protocol for quantum error correction. The method crucially relies on the
identification of singular unitary operators capable of compressing quantum data from
the entirety of the Hilbert space to a designated subspace, which is particularly effective
when specific quantum datasets exhibit discernible underlying structures. The assumption
is made that the Hilbert space and the supporting subspace S share common underlying
structures. For clarity, parameters X ≡ dimH and M ≡ dimS are defined. The subspace
S is presumed to have an orthogonal basis |Si⟩, with the introduction of a latent subspace
L characterized by dimL = M, defined by another orthogonal basis |Li⟩. The encoding
unitary operator Ue is introduced with flexibility, allowing it to be set as any unitary satis-
fying ⟨Li|Ue|Si⟩ = 1. These elements collectively form a comprehensive framework for a
quantum error-correction protocol utilizing autoencoders and singular unitary operators,
offering insights into the challenges and strategies for effective error mitigation in quantum
information processing systems.

Using the unitary encoding Ue to manipulate the encoded and variational processed
quantum state q̃, we denote the tilde as representing a noisy quantum state and the prime as
indicating reduced errors. The compressed noisy quantum state q̃c ≡ Ue q̃U†

e transforms into
(1 − ε)qc + εUeqerrorU†

e ,{ML} and {MJ} are projectors onto L and orthogonal projectors,
respectively. Considering the subspace of qc, we have

ML q̃c M†
L = (1 − ε)qc + εUeΛerror

s U†
e (18)

where Λerror
s ≡ MSqerror M†

S, Λerror
s to the supporting subspace S . When ε is small, the states

gather in the potential subspace L, and they become

q′c =
(1 − ε)qc + εUeΛerror

s U†
e

1 − ε + εtr(Λerror
s )

=
[

ps + O
(

ε2
)]

+
[
ε + O

(
ε2
)]

UeΛerror
e U†

e (19)

Here, ε and tr(Λerror
s ) determine higher-order terms. These states are projected into

the garbage subspace with a low probability of 1 − ps. In such cases, errors are identified,
and the corresponding quantum data are eliminated. Finally, the error-mitigated state is
obtained by applying the decoding unitary U†

e to q′c, where q′ ≡ U†
e q′cUe.

We use programmable circuits, as shown in the figure. Global entanglement unitary
e−iHτ and a set of arbitrary single-qubit rotations exist in each layer (we set τ = 1), where

H =
n

∑
i=1

∑
σ=x,z

hσ
i qσ

ci +
n

∑
i=1

n

∑
j≥i

∑
σ=x,y,z

Jσ
i,jq

σ
ciq

σ
cj (20)

Here, hσ
i and Jσ

i,j are adjustable parameters necessitating iterative experimentation to
identify the suitable dimension of the subspace dimL for compression. Notably, a shallow
error-mitigation circuit with Nly = 1 suffices, and increasing Nly provides no additional ben-
efit. Consequently, our approach involves training a single-layer shallow error-mitigation
circuit to compress input states to the subspace. During compression, the last qubit is
considered an “auxiliary qubit,” as it is not utilized for classification. Thus, no additional
qubits are required, enabling error mitigation within the constraints of the currently avail-
able limited qubits. The compressed quantum states are effectively confined to the hidden
subspace, while errors are retained outside it, subsequently eliminated through measure-
ment and post-selection. The working principle of the error mitigation layer is shown in
Figure 5.
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𝑈𝑒
†

Error
detection

L layer

（a）Error detection process （b）Programmable circuit
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Figure 5. (a) The process of error mitigation. Ue moves error-free items to the potential subspace,
while most errors remain in the garbage subspace. Then, we use measurements to project the state
onto the potential subspace and remove errors in the garbage subspace. Finally, Ue is used to recover
quantum data. The dots represent standard qubits and the stars represent incorrect qubits. (b) The
programmable circuit of quantum self-encoder Ue with L-layer network.

4. Simulation and Analysis
4.1. Experimental Settings

In this study, we chose classical MNIST [43] and FashionMNIST [44] datasets for
image classification tasks, both widely used benchmark datasets. MNIST consists of hand-
written digit images, and we conducted benchmark testing using the MNIST dataset
in Section 4.2.1. FashionMNIST includes images of clothing and accessories, and we
performed noise-resistant experiments using the FashionMNIST dataset in Section 4.2.2.
Our objective is to explore quantum computing-based image classification in the noisy
intermediate-scale quantum (NISQ) era. Considering the potential impact of noise on
quantum devices in practical applications during the NISQ era, we specifically focused
on the influence of noise on image classification tasks. In our simulation experiments, we
employed the depolarizing channel model to simulate the effects of noise, a widely used
noise model for describing real quantum devices.

We utilized the PennyLane library, which offers robust support for quantum neural
networks and seamlessly integrated it with the PyTorch interface to facilitate the training
process of quantum and classical neural networks [45]. To simulate the effects of quantum
computing, we selected the Qulacs quantum simulator [46], known for efficiently simu-
lating the evolution of quantum circuits. In our experimental setup, we set the learning
rate to 0.001, a common hyperparameter setting to balance model convergence speed and
stability. Additionally, we defined the batch size to optimize training efficiency and framed
the task as a four-class classification task to align more closely with real-world applica-
tions. In our experiment, after testing, we set up 8 data qubits, four classifications require
2 readout qubits, and the entire circuit has 56 adjustable parameters. In this simulation
experiment, we aim to enhance our understanding of how noise affects image classification
tasks in quantum computing. Furthermore, we aim to assess the performance of the sug-
gested hybrid classical QNN classification model in the NISQ era. Additionally, we aim to
demonstrate the effectiveness of our combined training strategy for hybrid quantum neural
networks and error-mitigation strategies in image classification, as well as the model’s
robustness and generalization capabilities in the presence of noise.

4.2. Simulation and Analysis

In this section, we conduct several sets of experiments to identify the optimal model
and optimization strategy through training and testing. The ultimate results are presented.
The accuracy of the model proposed in this article for image classification is comparable to
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that of current quantum classifiers. Moreover, in simulated noisy environments, it consis-
tently maintains high accuracy, demonstrating superior anti-noise capabilities compared to
other models.

4.2.1. MNIST Accuracy Test

In this experimental section, we employed the classification model designed in this
paper to perform a four-class classification task on the MNIST dataset. Each sample in
the MNIST dataset is a grayscale image of size 28 × 28 pixels. The dataset used here is
MNIST, which is a collection of digit images covering the numbers 0 to 9. In this experiment,
we have selected a subset of images containing digits 0 to 3 for conducting a four-class
classification. We selected 400 training image samples (100 samples for each of the digits
0, 1, 2, and 3) and 200 test image samples. For the four-class classification task, four
measurements and outputs were set at the end of the circuit. The variational quantum
circuit was tested with four, five, and six layers. In the benchmark test, optimization was
conducted over 100 epochs. As shown in Figure 6, the classification capability does not
necessarily improve with an increase in variational blocks in our limited design. The best
classification performance was achieved with five layers of variational quantum blocks,
reaching a maximum accuracy of 0.98. Therefore, in the subsequent experiments, we
consistently adopted five layers of variational quantum blocks, measuring the first four
quantum bits for the four-class classification.

The classification model designed in this paper achieved a classification accuracy of
over 0.9 in a relatively short number of epochs. The accuracy obtained in the four-class
classification study using the MNIST dataset is not significantly superior to the current
best classical classification algorithms. However, the demonstrated classification accuracy
and optimization of the model affirm the feasibility of our designed classifier in image
classification, showcasing commendable classification performance.

a b

Figure 6. (a) Test accuracy of classification models using variable component sub-blocks of different
layers on MNIST datasets. (b) Test loss of classification models using variable component sub-blocks
of different layers on MNIST datasets.

4.2.2. FashionMNIST Accuracy and Anti-Noise Test

In this experimental section, we conducted simulation experiments on the Fashion-
MNIST dataset to explore the performance and noise resilience of our designed hybrid
QNN denoising classification model in image classification tasks. FashionMNIST, a com-
monly used benchmark dataset for image classification, contains images of clothing and
accessories. We selected images from four categories in FashionMNIST, with each category
having 150 training samples, totaling 600 image samples, and 400 test samples. In the
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experiments, we consistently utilized five variational quantum blocks as the building units
for the classifier. These variational quantum blocks manipulate the input quantum states
through a series of quantum gates and parameterized operations. To simulate noise effects
in real-world scenarios, we set two different levels of noise: 0.03 and 0.1. These noise
values represent mild and significant random perturbations on pixel values in the images.
The experimental results will be evaluated using metrics such as accuracy and loss values
to gain insights into the performance and noise resilience of variational quantum blocks in
image classification tasks on the FashionMNIST dataset.

As depicted in the experimental results, the curves in Figure 7 illustrate the generaliza-
tion ability of our model in image classification tasks. Even under the slight interference of
noise with a value of 0.03, our model still achieves an accuracy of around 0.92. Under the
more substantial interference of noise with a value of 0.1, the accuracy remains above 0.85,
approaching 0.9, demonstrating commendable performance. Table 1 shows the confusion
matrix of the classification results of the 100th cycle without noise interference. These
results indicate the effectiveness of our design and suggest further potential enhancements.
Enhancing system robustness involves incorporating more intricate quantum transfor-
mation layers in the experimental framework, and employing optimization methods can
elevate the system’s classification performance. Error mitigation plays a significant role in
mitigating noise effects on the images to a certain extent.

a b

Figure 7. (a) The training and testing accuracy and loss of the classification model using five-layer
variable component sub-blocks on FashionMNIST datasets are carried out in the depolarization
channel with a noise value of 0.03. (b) The training and testing accuracy and loss of the classification
model using five-layer variable component sub-blocks on FashionMNIST datasets are carried out in
the depolarization channel with a noise value of 0.1.

Table 1. Confusion matrix of classification results on FashionMNIST.

True Class1 True Class2 True Class3 True Class4

Prediction class1 95 3 5 0
Prediction class2 1 91 2 4
Prediction class3 2 3 90 1
Prediction class4 2 3 3 95

We compare the model proposed in this paper with other recent quantum neural
network classification algorithms in noisy environments. Here, we classify the test subset
of the FashionMNIST dataset using SQNN [47] and RQNN [48]. This experiment still
selected 400 test samples. The range of noise is set from 0.01 to 0.1. Figure 8 illustrates
that the accuracy of our newly proposed classifier improves as the noise level increases,
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and its accuracy under noise interference surpasses that of SQNN and RQNN. Our method
effectively mitigates the impact of line noise on experimental results.
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Figure 8. RQNN, SQNN, and the model presented in this article analyze and compare the quaternary
classification of the FashionMNIST dataset.

4.2.3. Comparison of Noise Effects

In this section, we compare the hybrid variational QNN model proposed in this paper
with other quantum algorithms, specifically classical QNN image classification and QCNN
image classification [49]. The circuit diagrams for the methods used by QNN and QCNN
are depicted in Figure 9. For QNN, parameterized rotation gates and entanglement gates
are applied. Given a specific number of layers, these gates transform the qubit states.
The transformed qubit states are then measured by obtaining the expectation value of
the Hamiltonian. These measurements are decoded into the appropriate output data
format. Subsequently, the parameters are updated via the optimizer. QCNN convolutional
circuits identify hidden states by applying multiple qubit gates between adjacent qubits.
The quantum convolutional layer applies a filter to the input feature map, generating a
new feature map composed of updated data. In cases where the system size is small, fully
connected circuits are employed to predict classification results.
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（a）Quantum Neural Network （b）Quantum Convolutional Neural Network

Figure 9. (a) QNN diagram illustrating input, parameters, and linear entanglement structure.
(b) Example of quantum convolutional layer for image classification.

Comprehensive model performance and training efficiency: Our model utilizes eight
data qubits and incorporates five layers of variational blocks. In this classification task,
the number of variables and optimization efficiency of our model are comparable to those
of QNN and QCNN. Our model can achieve higher classification accuracy faster, but after
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more training iterations, the classification accuracy of the three methods is close in a noise-
free environment. We conduct quaternary classification tests for MNIST and FashionMNIST
datasets in environments with noise values of 0, 0.03, and 0.1, respectively. The variable
component sub-block is set to 5, and the test results are shown in Figure 10. As seen in
the figure, in FashionMNIST image classification, the accuracy of our classification model
can reach about 0.97 in a noise-free environment, which is comparable to other quantum
classification algorithms. In the noise test with 0.03 slight noise, our model exhibits clear
advantages and can still achieve a classification accuracy of more than 0.9. When the
noise reaches 0.1, our model can still achieve an accuracy of more than 0.85, which is
approximately 20% higher than that of the QNN model and about 17% higher than that of
the QCNN model.

Here, we demonstrate that our proposed hybrid variational QNN framework can
achieve high accuracy in multivariate image classification. Our quantum neural network,
combined with error mitigation, effectively reduces the impact of noise on experimental
results. Experiments conducted on FashionMNIST datasets reveal that the classification
performance of our model surpasses that of existing quantum classifiers.
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a b

Figure 10. (a) The classification performance of the three classification methods of QNN, QCNN, and
this model in the environment of different noise values of MNIST datasets. (b) Comparison with
FashionMNIST.

5. Conclusions

In this study, we successfully developed a hybrid variational quantum neural network
architecture to tackle the challenge of noise interference in quantum image classification.
Our architecture utilizes a convolutional autoencoder for feature extraction, offering robust
support for subsequent variational quantum circuits by capturing essential image features.
The use of amplitude coding simplifies the model by directly converting image information
into a quantum state, reducing complexity and enhancing the model’s resistance to noise.
To further improve the system’s anti-noise capabilities, we introduce a quantum autoen-
coder for error mitigation. Experimental results demonstrate a substantial improvement in
image classification accuracy in noisy environments, achieving a high level of 92%. Com-
pared to other traditional quantum algorithms, our method exhibits superior robustness,
confirming the excellent performance of our hybrid quantum neural network classifier in
addressing noise interference in image classification tasks.

This study introduces a novel approach to advancing quantum image classification,
showcasing significant potential with the mixed variational quantum neural network
architecture, especially in noisy environments. The experimental demonstration, using
quaternary classification, serves as an illustrative example of our algorithm’s performance.
Future research directions may involve exploring the method’s efficacy in more complex
datasets and practical applications, along with gaining a deeper understanding of the
integration between quantum computing and machine learning. While there may still
be some disparity between our model and its classical counterpart, ongoing efforts will
concentrate on refining our model to minimize resource consumption and ensure its
practical utility in future quantum computers. We are optimistic that our model will play a
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pivotal role in supporting the widespread application of quantum computing in the field of
image processing.
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