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Abstract: Nowadays, drug delivery has an important role in medical therapy. The use of biopoly-
mers in developing drug delivery systems (DDSs) is increasingly attracting attention due to their
remarkable and numerous advantages, in contrast to conventional polymers. Biopolymers have
many advantages (biodegradability, biocompatibility, renewability, affordability, and availability),
which are extremely important for developing materials with applications in the biomedical field.
Additionally, biopolymers are appropriate when they improve functioning and have a number of
positive effects on human life. Therefore, this review presents the most used biopolymers for biomed-
ical applications, especially in drug delivery. In addition, by combining different biopolymers DDSs
with tailored functional properties (e.g., physical properties, biodegradability) can be developed.
This review summarizes and provides data on the progress of research on biopolymers (chitosan,
alginate, starch, cellulose, albumin, silk fibroin, collagen, and gelatin) used in DDSs, their preparation,
and mechanism of action.
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1. Introduction

Nowadays, technology is continuously developing, and the highest priority of re-
searchers is the standard of medical care. Medication distribution and therapeutics are an
important concern for scientists because the effectiveness of many drug delivery systems
(DDSs) is a constant issue. The major problems experienced in drug delivery include
different and many side effects, toxicity, non-specificity, low bioavailability, brief drug
delivery, and rapid degradation [1–3]. To date, promising studies have been performed
for the development of DDSs based on biopolymers due to their multiple characteristics
and advantages.

Natural or plant-based resources, such as various bio-wastes from horticulture and
crops, are used to make biopolymers, which are then produced as byproducts [4]. These
materials are readily biodegradable because they contain atoms of carbon, oxygen, and
nitrogen that compose their structural backbone. They are broken down into carbon
dioxide, water, biomass, organic macromolecular material (humic matter), and other natural
substances during the biodegradation process. Therefore, materials that are naturally
recycled through biological processes are known as biopolymers [5]. Among the advantages
of biopolymers are renewability, biocompatibility, affordability, and the release of less
carbon (Figure 1). Also, a very important advantage of biopolymers is that they are
environmentally friendly [4]. Biopolymers are proven to be non-toxic, non-carcinogenic,
non-thrombogenic, and easy to extract [6–8].
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Figure 1. The main characteristics of biopolymers. 

Numerous factors, like the kind of material employed as a structural matrix (confor-
mation and distribution), the preparation circumstances (pH, concentration, temperature, 
solvent, etc.), and the type and concentration of additives (antimicrobials, antioxidants, 
plasticizers, crosslinking agents, etc.), all have a precise impact on these qualities [9]. 

The presence of hydroxyl, amino, or carboxyl functional groups in the structure of 
natural biopolymers provides good chemical reactivity and adaptability, which are com-
parable with synthetic biopolymers. For example, it was demonstrated that these reactive 
groups allow for changes that lead to an increase in the stability of biopolymers in differ-
ent biological media. Also, cross-linking procedures with aldehydes and polyethylene gly-
col were studied for stability enhancement in order to avoid the rapid degradation of var-
ious biopolymeric coatings [10–12]. 

Even though biopolymers have many benefits, there are still a number of processing-
related restrictions, beginning with the extraction and concluding with the isolation of the 
finished biomaterial. Because it is a completely natural material, the final properties of the 
biopolymer significantly depend on the source of the primary starting material [13]. To 
obtain and reach comparable results with DDSs in which conventional materials are used, 
research on DDSs based on biopolymers is still developing [14]. In controlled drug deliv-
ery, biopolymers are used as hydrogels, microcapsules, micro/nanospheres, and lipo-
somes (Figure 2). 
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Figure 1. The main characteristics of biopolymers.

Numerous factors, like the kind of material employed as a structural matrix (confor-
mation and distribution), the preparation circumstances (pH, concentration, temperature,
solvent, etc.), and the type and concentration of additives (antimicrobials, antioxidants,
plasticizers, crosslinking agents, etc.), all have a precise impact on these qualities [9].

The presence of hydroxyl, amino, or carboxyl functional groups in the structure
of natural biopolymers provides good chemical reactivity and adaptability, which are
comparable with synthetic biopolymers. For example, it was demonstrated that these
reactive groups allow for changes that lead to an increase in the stability of biopolymers in
different biological media. Also, cross-linking procedures with aldehydes and polyethylene
glycol were studied for stability enhancement in order to avoid the rapid degradation of
various biopolymeric coatings [10–12].

Even though biopolymers have many benefits, there are still a number of processing-
related restrictions, beginning with the extraction and concluding with the isolation of the
finished biomaterial. Because it is a completely natural material, the final properties of
the biopolymer significantly depend on the source of the primary starting material [13].
To obtain and reach comparable results with DDSs in which conventional materials are used,
research on DDSs based on biopolymers is still developing [14]. In controlled drug delivery,
biopolymers are used as hydrogels, microcapsules, micro/nanospheres, and liposomes
(Figure 2).
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Researchers are interested in nanotechnology as a potential remedy for the issues
with traditional DDSs. The interest is therefore shifted towards nanotechnology drug
delivery systems (NDDSs). The main advantages of these systems are their flexibility in
composition; the fact that, due to their design at the nano-level, they present free movement;
biocompatibility; and non-toxicity, which is also very important [15,16].
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This review aims to summarize the most commonly used biopolymers in the biomedi-
cal field, especially in DDSs. It also includes the progress so far in this field and the potential
applications of biopolymer nanocomposites. Emphasis was placed on the mechanisms of
action of DDSs developed so far—a less detailed aspect addressed in previous reviews.

2. Types of Biopolymers Used in Drug Delivery Systems

Based on their origin, biodegradable polymers are classified into four major categories:
(i) from biomass (agro-biopolymers), (ii) from microorganisms, (iii) from biotechnology,
and (iv) from petrochemical products.

Biopolymers obtained from biomass products, which are by far the most studied,
consist of various compounds, such as polysaccharides [17], proteins of animal and vegetal
origin [18,19], and lipids [20,21]. It is possible to create a large variety of biopolymers
from natural sources such as agro-wastes, plants, animals, and microorganisms, including
algae [22]. Biopolymers have been prepared from different agro-sources (e.g., bananas, rice,
maize, corn, etc.), vegetable waste (e.g., from tomatoes, apples, pineapples, etc.), and animal
sources (e.g., pigs, cattle, etc.) [23,24]. The materials obtained from these products present
elasticity, softness, and gel-like properties, combining the characteristics of a solid and
fluid [25,26].

The features of biopolymers based on polysaccharides and proteins—such as their
biodegradability, biocompatibility, low immunogenicity, and antibacterial activity—make
them more interesting than synthetic ones [27].

The selection of the biomaterial to be used for drug delivery is a very important
step because of the potential toxicity of the products resulting from their degradation.
For example, polysaccharides are known to have high biocompatibility and are non-toxic,
although they are biodegraded by enzymes (e.g., guar gum is degraded in the human colon
by enzymes of colonized bacteria), leading to different degradation byproducts whose
biocompatibility needs to be understood assiduously before using them in DDSs [28].

2.1. Polysaccharides

Polysaccharides are derivates of monosaccharides with repeating units and have a
high molecular weight. The most used surface modified polysaccharides (Figure 3) in DDSs
are chitosan, alginate, starch, and cellulose [29].
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2.1.1. Chitosan

One of the most prevalent and non-toxic biopolymers that has been thoroughly studied
for a variety of medicinal uses is chitosan [30–32]. This cationic polysaccharide, which
is composed of N-acetyl and D-glucosamine, is produced from the naturally occurring
polymer chitin. Naturally, chitosan is found in the exoskeletons of crustaceans, fungi [33],
annelids, mollusks, and insects. Also, chitosan is biocompatible, adhesive, hemostatic,
and mucoadhesive [31,32,34].

Chitosan is non-toxic, odorless, biocompatible, biodegradable, and has antibacterial
properties. Frequently, this biopolymer is used for microencapsulation for cells that need a
cationic medium. Chitosan has been used in DDSs in different forms, such as gels, films,
beads, oral tablets, and microspheres for oral, nasal, ocular, and transdermal routes [35,36].
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Also, the anti-tumor and fungal properties of chitosan play an important role in the de-
velopment of bio-dental materials and the treatment of periodontitis, as well as dental
pulp regeneration [37]. Chitosan can be administered parenterally, intravenously, nasally,
vaginally, or via injection. One major benefit of utilizing chitosan in DDSs is that drug
absorption and stability can be achieved while controlling drug diffusion from the material
to the target dosages [38].

By mixing chitosan with various natural and synthetic polymers, such as sodium
alginate, polylactic acid, polycaprolactone, poly(ethylene oxide), poly(vinyl pyrrolidine),
and graphene oxide, one can alter the material’s characteristics [39,40]. Chitosan’s -NH2
and -OH groups allow it to interact with biological molecules and other polymers. As
a result, chitosan alone or combined with other materials represent an applicable sub-
strate for obtaining different new nanocarriers (e.g., films, hydrogels, foams, beads, gels,
nanoparticles, nanofibers, and sponges [41,42]). These combinations improve the drug
properties regarding the release process and improve their mechanical and physical proper-
ties [43]. Chen and coworkers developed a hydrogel prepared from chitosan using sodium
dialdehyde alginate and dopamine via grafting, crosslinking, and compounding for drug
delivery and bladder cancer treatment. The obtained drug-delivery hydrogel demonstrated
strong organ-wall adhesion and targeting capacity. Also, the developed hydrogel showed
antibacterial and antimicrobial properties (98%) and biocompatibility (99%) [44]. To treat
breast cancer, a hybrid nanoparticle of calcium phosphate and folate-functionalized car-
boxymethyl chitosan loaded with curcumin was created. The resulting materials showed
good biocompatibility, stability, and pH-responsive drug release. The outcomes demon-
strated that the materials based on carboxymethyl chitosan had an organelle-targeting
cancer therapeutic method [45].

A recent study performed by Aranda-Barradas et al. demonstrated that the molecular
weight (20.6 and 57.5 kDa) of chitosan has an important role in the physicochemical,
morphological, and biological properties of polyplex nanoparticles designed for gene
delivery. Their research demonstrated that the low molecular weight of chitosan and
the low nitrogen/phosphorus ratio were suitable for designing chitosan-based nonviral
vectors for gene therapy because of their physicochemical and biological properties. Also,
the stability of the obtained nanoparticles was greater than those formulated with chitosan
of a higher molecular weight [46]. An important role of the nanoparticle assembly for gene
therapy is the degree of deacetylation to form poly-D-glucosamine [47]. Thus, the amine
groups of D-glucosamine make its conjugation possible with some crosslinkers to form
covalent bonds with molecules, which permits directed gene therapy to specific cell types.
In conclusion, these very important characteristics qualify chitosan as a suitable polymer
for designing new nonviral vectors [48].

Due to their excellent functional properties in DDSs and decisive, non-invasive, and fo-
cused tissue locations, injectable hydrogels have attracted attention lately. Thus, designing
DDSs to be responsive to hydrogel stimuli and release a drug to an external stimulus while
having different advantages is an ambitious task. In this regard, chitosan-based hydrogels
offer high potential for tissue engineering and drug delivery due to their biocompatibility,
mucosal adhesion, and hemostatic activity [49].

2.1.2. Alginate

Because of its remarkable encapsulating qualities and function in the healing of bruises,
alginate is also a highly utilized biopolymer in the pharmaceutical and medical sectors.
Since its first isolation in the 1980s, alginate has found numerous uses because of its many
benefits, including being a mucoadhesive, biodegradable, biocompatible, renewable, and
easily accessible substance. It is also non-toxic and immunogenic. This biopolymer is
used to treat reflux esophagitis and is regarded as an excipient in the pharmaceutical
sector [50,51].

Alginate is extracted from brown algae (Macrocystis pyrifera, Laminaria hyperborea,
Saccharina japonica, and Ascophyllum nodosum) and is found as sodium, calcium, and magne-
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sium salts of alginic acid. Its synthesis can be performed by different species of bacteria
(Azotobacter vinelandii and various Pseudomonas species) [52]. Alginate can be extracted by
grinding the raw material from algae, cleaning it with acid, and then using heated alkali to
extract it. The obtained alginic acid is filtered, precipitated with calcium, and then acidified.
By processing insoluble alginic acid with oxides, metallic carbonates, and hydroxides,
the required alginate salt can be produced [53].

Solutions of alginate quickly form gels in the presence of various divalent cations,
calcium being the most extensively used. These gels are stable in the temperature range of
0 to 100 ◦C. These gels may dissociate in the presence of acids. The experimental conditions
of forming gels (e.g., alginate concentration, temperature, cation type, etc.) need to be
correctly controlled in order to produce gels with a homogeneous composition. In contact
with intestinal fluids, the alginate particles break down due to the presence of Na+ ions
and acids. To avoid this disintegration, most of the time, alginate is used in combination
with one or more biopolymers for developing DDSs [54].

Hoang et al. developed dual cross-linked chitosan/alginate hydrogels for pH-responsive
drug delivery. The hydrogels that were developed demonstrated a hydrophobic drug
loading capacity of 44% (wt./wt.) and did not cause any cytotoxicity on human cells
when evaluated, showing their biocompatibility [55]. Li and colleagues created a pH-
and temperature-responsive pectin/chitosan biopolymer hydrogel for use in medication
delivery systems. The hydrogels that were created had a strong ability to mend themselves
and were shown to be biocompatible, causing no adverse reactions in mouse fibroblast
cells [56].

2.1.3. Starch

The use of natural and modified starches as biodegradable, renewable, biocompatible,
and non-toxic polysaccharides has been widely used in several medicinal applications,
including tissue engineering and drug delivery [57–62]. Natural sources including wheat,
rice, corn, and potatoes can be utilized to separate starch, which is then employed primarily
as a carrier and in some applications like bone replacement and healing [29]. Besides these
advantages, native starch also presents some disadvantages such as low water solubility, the
formation of gel or pastes with non-uniform texture and viscosity, deterioration in different
conditions of high temperature and pHs, and freeze–thaw variations [63,64]. Therefore,
in order to improve native starch’s physicochemical or biological properties and make it
suitable for producing DDSs, several modifications (chemical, physical, and enzymatic) are
required [65].

Using broken rice, Xiao and colleagues created a novel nanoparticulate system for
acetylated starch nanocrystals. Acetylated starch nanocrystals with different degrees of sub-
stitution were prepared using acetic anhydride as an acetylating agent through a reaction
with starch nanocrystals. These findings suggest that the acetylated starch nanocrystals
made from broken rice are a potentially useful tool for the regulated administration of dox-
orubicin in cancer treatment [66]. Other examples of starch derivatives that demonstrated
benefits for drug delivery applications are presented in Table 1.

Table 1. Starch types used for intravenous drug delivery.

Starch Type Drug References

Oxidized starch Tobramycin; colistin [67]
Acetylated starch Ibuprofen [68]

Hydroxyethyl starch Doxorubicin [69]

Starch-modified alginate nanoparticles for drug delivery were developed by Thomas
and coworkers using an environmentally friendly method. For the determination of their
potential in controlled drug delivery applications, theophylline and bovine serum albumin
were used as model drugs. The obtained nanoparticles had good encapsulation efficiency,
and the in vitro drug release studies showed pH dependency characteristics. Also, it was
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shown that the created nanoparticles were biocompatible with L929 fibroblast cell lines.
Thus, the developed materials were demonstrated to be a promising tool for drug delivery
application [70].

2.1.4. Cellulose

As the most prevalent biopolymer, cellulose exhibits biodegradability, renewability,
and high strength. It is composed of glucose units, and it has abundant hydroxyl groups
in its backbone. Some of the disadvantages of cellulose are its very low solubility in
water and common organic solvents, thus having limited applicability [71–73]. Because
it is environmentally friendly, simple, and presents low cost and toxicity, an aqueous
sodium hydroxide (NaOH)/urea solution is frequently used to dissolve cellulose [74,75].
Cellulose from different and diverse sources represents an adaptable and adequate material
for DDSs [76,77]. AL-Rajabi and Teow developed a sustainable synthesis method for
a thermoresponsive Pluronic F127 composite hydrogel reinforced with cellulose taken
from empty fruit clusters of oil palm for silver sulfadiazine drug delivery. Their study
demonstrated that the developed material from rich agricultural biomass is sustainable,
environmentally friendly, and cost-effective for being used as DDSs [78].

2.1.5. Hyaluronan

Hyaluronan is a linear polysaccharide with disaccharide repeats of d-glucuronic
acid and N-acetyl-d-glucosamine. Even though it is a simple linear chain, it has several
important biomechanical properties [79]. Hyaluronan was demonstrated to present bio-
compatibility, biodegradability, high viscoelasticity, and can also be mixed with specific
receptors on the cell surface [80].

Hyaluronan has attracted attention as a drug delivery vehicle because it can recognize
specific receptors that are overexpressed on the surface of tumor cells, and cancer drugs
can be targeted to the tumor cells to better destroy them. Hyaluronan has been used
extensively in controlled-release and targeted DDSs. Until now, most studies are only in
an in vitro experimental phase; studies utilizing in vivo tests are very rare. However, it is
believed that the prospect of hyaluronan as a drug carrier will be larger with the discovery
of new materials and the development of new technologies. The literature presents much
research on hyaluronan as a carrier for various drugs, but most of them are just in a
laboratory study phase. Because of the complex processes involved, hyaluronan is difficult
to industrialize [81].

2.1.6. Dextran/Cyclodextrins

Among the mentioned polysaccharides, dextran has earned great interest for nanoscale
drug carriers due to its availability, hydrophilicity, biocompatibility, non-toxicity, non-
immunogenicity, and biodegradability [82]. Dextran is biosynthesized intra- or extra-
cellularly by several microorganisms. Commercial dextran is usually obtained from
L. mesenteroides or L. dextranicum fermentation in a media with sucrose and is an important
nitrogen source. For obtaining highly biocompatible DDSs, it is recommended that dextran
obtained by fermentation to be minimally modified. Contrarily, if the l structure of dextran
is affected, a decrease in the biocompatibility or an increase in cytotoxicity is observed.
Thus, many DDSs containing acetylated, diethyl aminoethyl-dextran, carboxymethyl, or the
sodium salt of dextran sulphate have been eliminated from in vivo or clinical studies. Many
DDSs with dextran were developed in the form of microspheres, micro- and nanoparticles,
micelles, liposomes, hydrogel, and medical adhesives for medical and pharmaceutical
applications [83]. Lately, the formation of micelles using grafted dextran for DDSs in
anticancer therapy has received great attention [84]. For obtaining amphiphilic polymers
with the capacity to form micelles and trap chemotherapeutic agents, dextran is bound
with lipids such as oleic acid, stearic acid, and cholesterol. These kinds of polymers have
great stability and rapidly reach the target cell and avoid kidney extraction [85].
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Cyclodextrins are biocompatible and biodegradable materials produced by the enzy-
matic degradation of starch. In recent decades, cyclodextrins and derivates represent an
important class of pharmaceutical excipients that contribute to increasing the therapeutic
efficiency of many drugs. They are the smallest nanocarrier used in DDSs [86]. Pedotti et al.
developed a release system using β-cyclodextrin for the antiviral drug Acyclovir. They
evaluated its hydrolysis in simulated physiological media to analyze the potentiality of this
prodrug for its use through different ways of administration. The release of Acyclovir was
tested in both acidic and neutral conditions and in the presence of porcine liver esterase. In
all cases, the 100% release of free Acyclovir and Aciyclovir succinate at differing rates as a
function of hydrolysis conditions was observed within 7 days [87].

Di Cagno et al. evaluated the potential of novel β-cyclodextrin -dextran polymers
for drug delivery. The results concluded that all the studied polymers had suitable sizes
for parenteral administration. The presence of the dextran backbone structure did not
influence the stability of the polymer/drug complex, in comparison to the native polymer
and other commercially available derivatives. The drug release studies showed that the
diffusion of the hydrocortisone drug was influenced by the solubilization induced by the
developed polymer derivatives [88].

2.2. Proteins

Proteins are compounds with high molecular weight and are frequently used in DDSs.
Silk fibroin, collagen, gelatin, and albumin are the most used animal-originated proteins
for DDSs [29].

2.2.1. Albumin

Albumin plays a crucial physiological role in the human body and is the protein found
in plasma with the largest amount (it comprises 50% of all plasma proteins) [89,90]. More
specifically, albumin is an internal source of amino acids. It also contributes to preserving
the constant osmotic pressure of plasma. Albumin has up to 40% water solubility at a pH
of 7. Thus, albumin can be combined in vivo with various insoluble chemical compounds
and inorganic ions to generate soluble complexes using albumin as a non-specific transport
protein. Among the advantageous characteristics of albumin are its biocompatibility, non-
immunogenicity, and biodegradability [91].

Lately, research on protein-based delivery systems with albumin for use in ocular appli-
cations has shown an increase. However, proteins require certain designing strategies to de-
liver at specific places because they are always susceptible to enzymatic destruction [92,93].
Interestingly, albumin is a highly charged protein that is suitable for the electrostatic ad-
sorption of charged bioactive compounds. Thus, drug delivery with albumin is intensely
researched and explored. Among various albumin, and compared with ovalbumin and
human serum albumin, bovine serum albumin was demonstrated to have therapeutic and
medicinal applications [94].

The use of mixtures of albumin and hyaluronic acid was demonstrated to be suit-
able nanocarriers with significant advantages such as efficient targeting, pH- and/or
hyaluronidase-sensitive drug release, reducible particle size, mixing capacity for different
drugs, and great stability. Additionally, skin tissue, joints, cancers, and the vitreum have
all been treated with drugs delivered via albumin and hyaluronic acid-based nanoparti-
cles. Additionally, this combination has prospects for both theranostics and combined
therapy [95].

2.2.2. Silk Fibroin

Silk fibroin is composed of a collection of proteins which originate from silkworms
and spiders. Silk consists of a crystalline structure (fibroin) and an amorphous protein
(sericin) [96]. Silk is a naturally occurring protein that is thought to be a beneficial biomate-
rial for creating DDSs [97]. Silk has multiple advantages (e.g., biocompatibility, biodegrad-
ability, non-toxic degradation products, a versatility of options for sterilization, soft aqueous
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processing that keeps the medication’s bioactive qualities, mechanical stability, and self-
assembly properties), which are applicable for developing sustainable DDSs [98]. Also,
multiple preparation methods are used to obtain silk delivery system applications, (mi-
crospheres, lyophilized sponges, silk-coated polymeric particles, nanoparticles, hydrogels,
films, and nanofibers) [99].

To reduce the medication’s dosage and adverse effects on healthy tissues, studies
are developing DDSs in which silk is combined with other polymers or nanoparticles.
For example, the drugs cis-dichloro diamino platinum and Paclitaxel, inserted in silk
nanoparticles, reduced tumor growth and efficiency. More than that, due to the silk’s
pH sensitivity, DDSs based on silk are a suitable alternative because drug release kinetics
appear regularly at low pH values [100]. A silk fibroin-polymethacrylate copolymer coating
was recently developed for oral dosage forms. In vitro and in vivo research showed that
the capsules coated with the newly developed silk fibroin formulation facilitate pancreatin-
dependent drug release. This novel formulation and its extensions demonstrated the ability
to produce more effective and tailored DDSs for sensitive patients that have affected and
variable intestinal physiology [101]. Other research presents a silk fibroin hydrogel used
as a carrier for vincristine in Wilms tumors and the ultrasound as a method to accelerate
the release of the drug. The study demonstrated that the ultrasound started increasing cell
death rates, but the Wilms tumor cells were resistant to higher concentrations of released
drugs [102].

2.2.3. Collagen and Gelatin

Collagen is a natural protein, richly present in animals. This biopolymer has been used
in different DDS applications [103], mostly in oral drug delivery due to its biodegradability
and biocompatibility. Also, collagen is non-antigenic, non-toxic, and presents synergism
with bioactive compounds. Collagen has functional groups that can be quickly modified
to obtain suitable properties for oral drug delivery. Moreover, it was demonstrated that
collagen is the major component of some tumor microenvironments. This property is
favorable in cancer therapy because the collagen compound is capable of infiltrating the
tumor area to deliver anti-cancer agents [104].

Gelatin is a natural biopolymer derived from collagen by acid/alkaline hydrolysis.
Gelatin has suitable properties for the delivery of chemotherapeutics, and it is simple to
cross-link with other compounds [105,106]. The bioavailability of gelatin increases when it
is modified to enhance drug encapsulation efficiency. Also, gelatin can be tailor modified
to be appropriate for loading a desired drug. Thus, gelatin is excellent for the oral drug
delivery of hydrophobic chemotherapeutics [107].

The co-solvent method was used to create nanometric vesicles using a poly(styrene-b-
ethylene oxide) block copolymer that included adapalene. The vesicles were combined with
free adapalene and silver sulfadiazine and incorporated into collagen and gelatin matrices.
The created material was demonstrated to function as a skin dressing that combined a
longer and slower release of adapalene to promote skin healing with a gradual release
of significant amounts of medicines within the initial hours of use (to stop the growth of
the infection) [108]. In another study, ionic medication (ionized cromoglicate sodium and
ipratropium bromide) release via inhalable dry powders including gelatin was investigated.
It was demonstrated that the developed drug-loaded gelatin microspheres have excellent
aerodynamic performances that are highly dispersible and biocompatible. Additionally,
the materials’ swelling profiles showed that, by preventing macrophage absorption, particle
size can lengthen lung residence time. Therefore, because of its adjustable charge and
swelling properties, gelatin may be a suitable and authorized excipient for pulmonary
DDSs [109].

2.3. Nucleic Acids

Nucleic acids are supramolecular biopolymers that exist universally in living or-
ganisms. The best known are DNA and RNA that play fundamental roles in biological
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processes. DNA stores, encodes, and transfers genetic information to other components
of cells, while RNA serves as an intermediate messenger for gene expression [110,111].
In addition to this, they participate in the catalysis of certain biochemical reactions and in
the regulation of certain activities in the cells [112].

Nucleic acids have utility in various biomedical applications. Unmodified nucleic
acids cannot be used in drug delivery. However, multivalent nucleic acid nanostructures
and nucleic acid aptamers have led to a rapid increase in the number of drug delivery
systems with a potential for controlled release [113].

3. Other Polymers Used in DDSs
3.1. Polyamide/Poly(amino acid) Polymers

Among the above-mentioned polymers, polyamides or poly(amino acid)s present
distinct properties such as great biocompatibility, gradual degradability, and adjustable
physicochemical properties. Polyamide has repeating units linked by amide bonds. A group
of small polyamides containing multiple amino acids of the same types linked through
amide bonds are generally called poly(amino acid)s. Polyamide appears naturally or can
be obtained synthetically [114]. Among naturally occurring polyamides are mentioned
proteins (e.g., silk and wool), while synthetically obtained ones include different materials
such as nylons, sodium poly(aspartate), and aramids [115]. Also, polyamides can be
classified into homopolyamides (with one kind of monomer) and copolyamides (with
different constituents) [116].

The use of these polymers in DDSs presents several important advantages, such
as localized target site action, constant release, and stabilization. There are also some
disadvantages, such as the possibility of microbial contamination, extreme hydration,
and reduced viscosity in storage [117].

Synthetic poly(amino acid)s are also used in designing DDSs because they have a
similar structure to the naturally occurring ones [118]. Poly(amino acid)s are mostly used in
the design of chemotherapeutics for obtaining selective delivery for an acceptable duration
of time. These polymers used in DDSs increase anti-tumor efficacy and lessen drug-related
side effects [119].

Polyaspartamide biopolymer has recently gained attention as being non-toxic, ex-
tremely biocompatible, and biodegradable. Supplementarily, for different biological applica-
tions, its physicochemical properties present flexibility in functionalizing with different com-
ponents, such as DNA and pharmaceuticals (doxorubicin or biotin) [120,121]. For cancer
diagnosis and therapy, Nguyen et al. recently synthesized superparamagnetic iron oxide
nanoparticles by a thermal decomposition method and encapsulated them in a polyas-
partamide biopolymer to form a hydrophilic and biocompatible construct. In addition,
polyaspartamide was conjugated with biotin and doxorubicin functional groups to increase
the targeting of cancer cells. In vivo tests demonstrated that the developed bio-construct
decreased the magnitude of cancer tumor volume growth by three times, compared to the
control cells [122].

Di Meo et al. developed a new polymeric product based on α,β-poly(N-2-hydroxyethyl)
(2-aminoethylcarbamate)-d,l-aspartamide copolymer covalently linked with doxorubicin
for its application in anticancer treatment. In vitro tests demonstrated that the newly
developed polymers had a retarded cytotoxic effect on tumor cells. Also, there was a
noticeable improvement in the in vivo antitumor activity of the newly developed polymer
and a survival advantage of the treated NOD-SCID mice [123].

3.2. Dendritic Polymers

Dendritic polymer architectures show promising therapeutic properties, with potential
applications in drug-delivery systems. Also, the dendritic polymer architecture is more
advantageous for delivery applications than linear polymers, having mono-dispersity, high
symmetricity, and surface polyvalency [124].
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Depending on the mechanism, a dendrimer can capture a drug through empty spaces
(molecular capture), through branching points (hydrogen bonds), or external surface
groups (charge–charge interactions). The most used dendrimers for drug delivery sys-
tems are PAMAM dendrimers (Poly(amidoamine) dendrimers), commercially available
with amine, hydroxyl, carboxylate, and pyrrolidinone surfaces, along with corresponding
generations [125].

Also, core–shell architectures of easily accessible hyperbranched polymers have
been reported. Thus, based on commercially available dendritic structures (polyglyc-
erol and poly-(ethylene imine)), pH-sensitive shells were attached through acetal or imine
bonds, obtaining pH-sensitive nanocarriers [126]. Such dendritic structures are dendritic
polyglycerol-co-polycaprolactone (PG-co-PCL)-derived block copolymers used for gemc-
itabine delivery for pancreatic ductal adenocarcinoma therapy [127].

Functional dendritic polymer architectures as stimuli-responsive nanocarriers for the
delivery of bioactive agents were obtained using several chemical linkers that respond to
external stimuli [128].

Narayanan et al. developed a fourth-generation poly-lysine dendritic nanocarrier
to target epidermal growth factor receptor-overexpressed breast cancer for methotrexate
delivery. The methotrexate was incorporated into the nanocarrier using a cathepsin B
cleavable spacer (glycine-phenylalanine-leucine-glycine). The in vitro analysis showed
that developed DDSs were highly effective. The efficacy analysis using NOD-SCID mice
also demonstrated that the DDS reduced tumor volume. The mice treated with the DDSs
developed gained weight faster than those treated with the free drug, which allowed for a
conclusion that dendrimer is more tolerated by mice than the free drug [129].

4. Preparation Methods for Obtaining Biomaterials Used in DDSs

Multiple methods are used for the preparation of the biomaterials that are further used
in DDSs. Among them, important to be mentioned, are supercritical fluid extraction [130],
electrospraying [131], desolvation [132], spray freeze-drying [133,134], layer-by-layer self-
assembly [135], and microemulsion [136].

These multiple types of preparation methods allow for the obtaining of important
carriers for different drugs (e.g., different molecule sizes, protein, and gene drugs). Prop-
erties such as swelling and crosslinking can be tailored by changing the ratio between
biomaterials and the modifying materials [29].

Generally, every preparation method has advantages and disadvantages. Thus, de-
solvation using solvents (e.g., ethanol, acetone) is the easiest method that can be used
for the preparation of protein-based nanoparticles. The amount of additional desolvating
chemicals supplied and the flow rate can regulate the size of the nanoparticles [137,138].

Electrospray is an electrohydrodynamic single step technique that is adaptable and has
very good reproducibility. Through this technique, small-sized particles are formed from
a macroscopic mass, a process controlled by electrostatic forces that break up a dielectric
liquid [139]. This technique is an emerging technology in fabricating drug carriers that
can produce highly homogeneous materials at room temperature [140]. Electrospraying
demonstrated benefits for preparing particles. Most of the time, a regulated and tight
particle size distribution is seen together with a high drug-loading efficiency [141]. Another
advantage of the electrospray technique is that biopharmaceuticals are not degraded during
the encapsulation process [142].

Table 2 outlines various DDSs, containing different biopolymers loaded with various
active drugs.
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Table 2. Procedures for preparation and a list of medications included in the created biopolymer-based
nanoparticles.

Natural
Biopolymer

Chemical Method
Preparation

Physical Method
Preparation Drug References

Chitosan Ionic gelation Dacarbazine [143]

Chitosan Freeze-drying Methotrexate [144]

Chitosan Freeze-drying Curcumin [145]

Starch Electrospinning Chlorpheniramine maleate [146]

Starch Reduction Hydroxycamptothecin [147]

Starch Dissolution Doxorubicin [66]

Carboxymethyl cellulose Freeze-drying Doxorubicin [148]

Passion fruit peel cellulose Hydrolysis Tetracycline [149]

Cellulose Solvent evaporation Felodipine [150]

Albumin Desolvation Irinotecan [151]

Bovin serum albumin Desolvation and chemical
co-precipitation Curcumin [152]

Albumin Extrusion Diazepam [153]

Silk fibroin Crosslinking 5-fluorouracil [154]

Methacrylated silk fibroin Photocrosslinking Mouse articular chondrocytes [155]

Silk fibroin Supercritical CO2 Ibuprofen [156]

Collagen Ionic gelation Doxorubicin [157]

Collagen Electrospinning Ciprofloxacin [131]

Collagen Desolvation Cardamom extract [158]

Gelatin Supercritical CO2 5-fluorouracil [130]

Gelatin Crosslinking by
desolvation Econazole nitrate [159]

For compounds that are very sensitive to temperature and pressure, the spray freeze-
drying technique is used [160]. This technique involves a two-step process, involving
the spray freezing step and freeze-drying step. This technique is highly used in the food
and pharmaceutical industries [161,162]. In the spray freezing step, the pharmaceutical
dissolved or suspended in the liquid is further atomized to obtain fine droplets that are
directly frozen, generally in liquid nitrogen. The resulting frozen particles are then put
through a process called freeze-drying, which produces dried and porous particles by
sublimating the solvents at low pressure and temperature [160]. This technique enhances
drying efficiency and increases the production yield and capacity. The solutions used for
spray freeze-drying are non-toxic aqueous-based suspensions with content of dispersed
nano- or micro-sized hydrophobic active pharmaceutical ingredients. Liquid nitrogen has
been the most popular refrigerant for spray freeze-drying up until now [163,164].

Multilayer sequential film formation is performed with a novel layer-by-layer self-
assembly method. This is achieved through electrostatic, hydrophobic interactions,
and hydrogen bonding between the layers. Through these kinds of interactions, a deposi-
tion of alternate layers of oppositely charged biomaterials can be performed, which offers
precise control of nanoscopic features (e.g., thickness, composition, and surface characteris-
tics) of the film by using additional buffers, such as acid, base, and salt buffers [165,166].
This technology is frequently used for fabricating hollow microcapsules with certain sizes,
compositions, and properties. Among the advantages of this technique are simple prepa-
ration conditions, various loading methods, and favorable surface functionalization [5].
Obtainable capsules with particular structures and small wall-to-diameter ratios have an
exceptional capacity for encapsulation, good stability, fluidity, and deformability [6]. Addi-
tionally, their semipermeable nature is also a decisive trait that allows them to communicate
with external enclosing structures [167].
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Microemulsions are obtained via dispersion of the biopolymer in two immiscible
liquids, with the use of emulsifiers or surfactants. The nanomaterials produced by this
process typically have a diameter of 10–100 nm, are optically transparent, isotropic, ther-
modynamically stable, and have strong drug-solubilizing qualities [168,169]. With a polar
head and a non-polar tail, surfactants are amphiphilic substances that adjust at the inter-
face between the water and oil phases. Thus, surfactants reduce the overall tension and
promote miscibility. Microemulsions are predominantly used in lipophilic drug delivery
(79.4%) through oil-in-water microemulsions and non-ionic surfactants (90%) used for oral
or topical administration [169]. Microemulsions are versatile DDSs due to their different
advantages (small particle size, capacity to incorporate hydrophilic and hydrophobic drugs,
and easy emulsification preparation process) [170].

5. Mechanisms Involved in Drug Delivery Systems

Innovative drug delivery systems are widely studied nowadays due to the increasing
demands on their quality [171]. DDSs are preferred due to reasons such as the fact that
drugs can be administered in their active form or, on the other end, can be stabilized by the
functionalization of the carrier. Moreover, the presence of a DDS ensures administration
through body cavities that in other ways could be impractical. Therefore, these qualities lead
these systems to be characterized by low costs, higher efficiency, and better therapies [172].
Drugs can be administrated using different systems depending on the necessities of the
patient. The most common are the ones that ensure an immediate release or a controlled
and prolonged release. An immediate release is accomplished through pills, capsules,
and injections, and even though they have very important clinical applications, they
do not have a good pharmacokinetic profile, meaning they cannot be used for different
therapies [173]. A prolonged release is obtained using implantable devices that can allow
the drug to be released over weeks, months, or even years. The most common applications
are in contraception and cancer therapies. However, the installed devices are mostly
made of non-biodegradable polymers, meaning that, after the end of the therapy, they
need to be surgically removed [174]. The controlled release systems made of biopolymers
or other biomolecules are preferred to the others due to their advantages compared to
conventional ones, such as improved efficacy, improved patient compliance, and reduced
toxicity [175,176]. The first parameters to study in order to develop a highly efficient drug
delivery system are the parameters that characterize the drug, such as its physicochemical
properties, pharmacokinetics, and pharmacodynamics [177].

The study of the physicochemical properties of the drug is crucial for the optimization
of the delivery system; some of the key properties are, for example, drug solubility, molecu-
lar weight, chemical stability, and surface tension. For instance, the diffusivity of a drug is
strictly dependent on its molecular weight; thus, the carrier chosen for a small molecule and
a polypeptide should differ to enhance the delivery capacity [178]. Once these parameters
are studied, the right carrier must be found, and the drug must be loaded. One of the
most crucial aspects of the system is drug loading, which is the process of integrating the
medication into the carrier. The ideal loading strategies for the introduction have to be
determined through a study of the compatibility between the elements that characterize
the entire system (drug, carrier, and excipients), but release environment should be also
taken into account for a better experiment yield.

Therapeutics can be introduced by both covalent and non-covalent interactions, such
as ionic interactions, dipole interactions, hydrogen bonding, etc., but also via physical
encapsulation and surface absorption [179]. Covalent bond-based systems, which are used,
for example, in small drug–drug complexes, linear polymer prodrugs, and dendritic drugs,
are mostly used when the drug’s solubility and biocompatibility need to be improved.
These properties are achieved by linking hydrophobic or hydrophilic segments, forming
an amphiphilic structure. Not all covalent bonds can be used for this strategy because,
to ensure the release, these bonds must be susceptible to enzymes, pH, T, or other possible
external stimulations [180].
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Non-covalent systems are valid alternatives to covalent ones due to qualities such as
their reversibility, biocompatibility, bioactivity, and their natural responsive behavior to
stimuli, allowing the system to be adaptable to any changes in physiological conditions,
offering targeted and stimuli-responsive release. Examples of these systems are micelles
and dendrimers. Non-covalent interactions are the driving force for the formation of stable
micelles that can ensure, due to the presence of both a hydrophilic and hydrophobic part,
kinetic stability, increased drug loading efficiency, and release capacity [181]. A large num-
ber of micelles made with biopolymers have already been studied with protein, peptides,
and polysaccharides [71].

Dendrimers are equally important and have similar characteristics to micelles, which
makes them very useful for the controlled and targeted release of a drug. However,
dendrimers are synthetic polymers, and their combination with biopolymers to create
hybrid materials is still being explored [182,183].

It is important to wisely choose which type of loading is needed by keeping in mind the
type of release—immediate, non-immediate, sustained, and in situ-specific—and the dosage
wanted [184]. Once the drug is loaded on the most compatible and efficient system, the last
step is the release of it. Many release mechanisms can occur in a solution, and usually,
there are more happening at the same time, but the final classification and kinetic study
of controlled drug delivery systems depends on the primary mechanism that occurs. The
simplest is dissolution, a process in which the molecules of a solute are dissolved in a
solvent. In the case of drug delivery systems, this means that the drug molecules pass
from solute to solvent until the solution reaches the solubility limit at the established
pressure and temperature conditions. The rate of dissolution is directly proportional to the
solubility of the drug when no chemical reaction occurs, and the solubility coefficient of
the therapeutic molecule decreases with its increasing melting point and increases with
increasing chemical compatibility with the solution. Consequently, the dissolving process
may be expressed numerically as [185]

dC
dt

= D·A·(Cs − C) (1)

where the surface area of solid A, the diffusivity coefficient of solute D, and the difference
between solute concentration Cs and solid solubility C determine the dissolving rate dC/dt.

In the work of Salamanca et al., it is evidenced that the dissolution rate depends on
the characteristics of the biopolymer, such as its molecular weight and chemical structure.
The authors have done a comparative study on the delivery mechanism by dissolution,
using DDSs with xanthan gum and tragacanth gum, which are both biopolymers but with
different properties. They observed different drug release profiles that are dependent
on the biopolymer used. In the case of tragacanth gum, due to its molecular weight of
840 kDa and polarity, the polymer is poorly soluble in aqueous media, resulting in a release
profile of the drug that was similar to the behavior of classical tablets, which ensured
an immediate release of the therapeutics and was not compatible with a prolonged and
sustained release. However, the opposite results were obtained with xanthan gum, which
was characterized by the presence of anions in its chains and has a molecular weight of
2000–16,000 kDa. Due to these characteristics, in the case of xanthan gum, the release of
the drug was sustained, prolonged, and pH-dependent because, at neutral pH values,
the repulsion of the carboxyl groups in the chain causes the polymer’s backbone to extend,
which decreases interaction with the drug, favoring the release. However, at that pH,
the interaction with the medium is more beneficial, leading to an apparent gelation process
that further modulates the release; at acidic pH values, on the other hand, this process is
unfavorable, decreasing swelling and increasing matrix erosion [186].

Another mechanism usually involved in the release of therapeutic molecules is diffu-
sion. This process is defined as the mass transfer of molecules from one part of the system
to another carried by random molecular motions such as a concentration gradient.
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The equation that describes this process is [185]

J = −D·dC
dx

(2)

where J—the rate of diffusion per unit area on the section studied, C—the concentration
of the molecule diffused, x—the distance between the two points of the section consid-
ered, the minus means that diffusion occurs in the direction of concentration decreasing,
and D—the coefficient of diffusion that, in very diluted solutions, can be considered con-
stant, but in the case of polymers, is highly dependent on concentration, and it is a measure
of the molecule’s mobility in the medium. Since large molecules diffuse more slowly than
small ones, viscous liquids should slow this diffusion. Furthermore, Brownian motion is
driven by the heat agitation intensity.

Although diffusion is not effective over longer distances and is strictly related to
the geometry of the carrier, this mechanism is a simple, efficient, and secure strategy to
reach a sustained and controlled release of a drug and can usually happen when paired
with dissolution and swelling. Moreover, it can produce a zero-order model of kinetic
release, making it very advantageous [185]. Diffusion can occur in different phases of the
release, as shown in the work by Harting et al. where the authors analyzed the release
from polyester blends. It was shown that there is a four-phase drug release mechanism
where dissolution was observed in the first initial burst of release and again in the second
burst release, although the release was mostly modulated by the degradation process of
the carrier [187].

What can be considered a crucial mechanism for drug delivery in polymers is swelling.
Swelling is a process where a material put in a liquid tends to increase in size and volume
due to absorption phenomena. It is observed in various materials, including biopolymers,
and can result in changes in the physical properties of the material (permeability, strength,
flexibility, etc.), leading to the release of the drug. Hydrogels are especially affected by
this mechanism and can absorb many times their weight in water. In glassy hydrogels,
the slow structural relaxations of the swelling polymer affect the kinetics of water uptake,
which influences the release of the drug. The forces of osmotic, electrostatic, and entropy-
favored dissolving of the polymer in water are typically balanced to drive the process
of water intake and swelling [188]. These systems strictly refer to cases where water not
only activates the release of the drug but is also the rate-controlling mechanism of drug
release. Especially for hydrophilic polymers, swelling is coupled with diffusion, leading to
the stabilization of an otherwise dissolution-controlled drug release rate as already seen
in the work by Salamanca et al. [186]. Swelling behavior has been largely studied for
both biopolymers and hybrid-enhanced biopolymers, leading to many publications over
the years.

Osmosis is another important mechanism that is also part of the swelling mechanism.
It is defined as the process in which a solvent is transferred through a membrane that is
permeable to smaller solvent molecules and not permeable by larger ones in an attempt to
equalize the concentrations of the not-permeable solute on both sides of the semipermeable
membrane. Osmotic pressure is the energy that powers the process and directs the release,
and it is regulated by the equation [185]

∆π =
dV
dt

· h
A
·1
k

(3)

where h is the thickness of the membrane, A is the cross-sectional area for transport, k
is the effective permeability of the membrane, dV/dt is the volume flow of the solvent
through the membrane, and ∆π is the osmotic pressure. Osmotic systems are typically
more complicated to build and less volume efficient than other drug delivery systems
since they typically consist of a drug core surrounded by a membrane that allows water to
permeate and create osmotic pressure, which causes the release of the medication. However,
osmotic methods also often offer higher percentages of medication loading at zero-order
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delivery rates and superior zero-order delivery [189]. It is possible to notice in the literature
that drug delivery systems characterized by an osmotic driving force are usually made of
cellulose and its derivatives, due to their structural and chemical characteristics that allow
for the controlled permeability of the membrane [190].

Erosion and degradation were mentioned before as “assistants” to sustained drug
delivery, but these processes can also be the leading driving force. When diffusion is the
main driving force of the process, it can be said that the polymer has a relatively passive role,
but when the carriers go through a process of degradation or erosion, these processes can
delay the velocity of the distribution, leading to a more active role. Erosion/degradation
can be caused by many reasons—the more common being chemical reactions or due to
the application of external stimulation (pH, T, mechanical stress, etc.). These systems are
very useful for implantable or injectable therapies where the removal of the carrier can be
avoided, leading to less discomfort for the patient [185].

Because they may offer consistent and adjustable release kinetics, the impacts of degra-
dation and erosion on drug delivery are the subject of research. Additionally, the use of
combinatory materials in the design of drug release systems may increase drug bioavail-
ability [176].

Another way to stimulate the release of a drug is the application of external stim-
ulation over the system to induce a process that allows for the release. The application
of internal stimuli has already been studied, especially for the therapy of tumors via
utilization of smart nanocarriers [191]. The problem with internal stimuli such as pH,
temperature, and enzymatic and redox activities is the difficulty in controlling them [192].
Suffice to say, problems in the use of external stimuli such as ultrasounds [193], mag-
netic fields [194], lights [191], and electrochemical devices connected to apps are being
explored [195]. The choice of the external stimulus applied is strictly related to the carrier
employed because it triggers a reaction that is related to the chemical and/or physical
structure of the polymer.

6. Conclusions

Even if the outstanding research regarding DDSs using biopolymers has revolution-
ized the medical and pharmaceutical fields, studies are still needed to explore the constant
and economical environmental changes. Biopolymers contained in developed DDSs were
demonstrated to be effective and appropriate in many different medical conditions. Even
so, there are ongoing studies to develop reliable guidelines for (bio)polymer applications
for improving adaptability, safety, and biopotency and avoiding contamination. Also,
the same regime of necessity involves studies on the optimization of technical param-
eters, different formulations regarding encapsulations, the capacity of product loading,
and metabolic activity.
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