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Abstract

:

In 2021, approximately 4.1 billion tonnes of cement were globally produced and the annual CO2 emissions from cement plants reached almost 2.8 billion metric tonnes. In recent years, many efforts have been made to manufacture low-CO2 cements. In this regard, great consideration has been given towards calcium sulfoaluminate (CSA) binders for both their technical features and sustainable properties, principally connected to their industrial process. The use of blended cements composed by CSA binders and supplementary cementitious materials (SCMS) can be an effective way to (a) reduce the CO2 footprint and (b) produce greener binders. This scientific work studied the utilization of different amounts (15–35 wt%) of calcined reservoir sediments (RS) as SCMS in blended CSA binders, where the binders were cured for up to 56 days and characterised by various analytical techniques. It was found that thermally treated RS were particularly noteworthy as their utilization allowed for a dilution of the CSA clinker, thus implying a decrease in CO2 emissions and a reduction in costs related to their production. However, compared to a plain CSA cement, the blended systems showed rather similar volume stability levels, whilst their compressive strength and porosity values were, respectively, lower and higher at all the investigated aging periods.
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1. Introduction


The cement manufacturing process is one of the main contributors to global warming as well as climate change [1]. In 2021, approximately 4.1 billion tonnes of cement were manufactured [2] and the total carbon dioxide produced in cement plants was equal to approximately 2.8 billion metric tonnes, namely, about 7% of global anthropogenic CO2 emissions [3]. It has been estimated that cement manufacture will rise between 12% and 23% by 2050 [4]. Nowadays, the cement industry is aiming at reducing its CO2 emissions to 1.9 billion metric tonnes/year by the end of 2050 [5]; therefore, cement producers and researchers have suggested several approaches aimed at reducing carbon dioxide emissions, namely, (1) the use of non-fossil fuels and alternative raw materials (e.g., non-carbonated sources of calcium oxide for limestone in a raw mix for the synthesis of clinkers) [6,7]; (2) a reduction in the burning temperature (e.g., by means of mineralisers and/or fluxes) [8]; (3) an improvement in the technological process efficiency [2]; (4) the application of carbon capture and storage/utilization techniques to cement plants [9]; (5) a clinker-to-cement ratio reduction using supplementary cementitious materials [SCMs, e.g., ground granulated blast furnace slags (GGBFS), coal fly ash (CFA), silica fume, natural pozzolan, and calcined clay] to make blended cements [10,11,12,13,14]. Even if also in the future Portland cements will continue to play a leading role in the building sector, a further reduction in CO2 will come from the manufacture of alternative binders (SCs). SCs display peculiar technical properties that are useful in specific fields of application; in addition, their compositions can be exploited to give more environmentally friendly features to their production process. At present, there are several CO2-reducing cements, including belite-rich cements, alkali activated binders, geopolymers, magnesia cements, and calcium sulfoaluminate (CSA) binders [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46].



In this regard, there is noticeable interest in calcium sulfoaluminate (CSA) cements for their relevant technical properties [47,48,49,50,51,52,53,54,55,56,57,58] coupled with their environmentally friendly features [59,60]. CSA cements are obtained by mixing a clinker (derived from heating a meal composed of natural gypsum, bauxite, and limestone) with a source of calcium sulfate (e.g., anhydrite or natural gypsum). CSA binders contain calcium sulfoaluminate (3CaO·3Al2O3·CaSO4, ye’elimite) as a principal constituent and, on the basis of the burning temperature and the type and proportion of the raw materials, calcium sulfates, dicalcium silicate (2CaO·SiO2, belite), calcium aluminium ferrite (brownmillerite, 4CaO·Al2O3·Fe2O3) calcium sulfosilicate (sulfospurrite, 4CaO·2SiO2·CaSO4), and several calcium aluminates.



CSA cement’s technical features (e.g., its rapid hardening, high impermeability, and excellent dimensional stability) are mainly due to the ye’elimite’s hydration with CaSO4, which leads to the formation of 3CaO·Al2O3·3CaSO4·32H2O (ettringite).



Compared to ordinary Portland cement, CSA cements display the following sustainable characteristics: (1) reduced synthesis temperatures (<1350 °C); (2) lower limestone demand (usually <35%) in the clinker-generating raw meal; (3) lower energy requirements for the cement milling; and (4) a wider utilization of industrial wastes in the cement manufacturing process [61,62,63,64,65,66,67,68,69,70,71]. In order to further decrease the generation of CO2 and reduce their high costs (mainly depending on the utilization of bauxite), CSA cements can be blended with SCMs [72,73,74,75,76,77,78,79,80]. Nevertheless, in the near future, the availability of the traditional and most widespread industrial SCMs (e.g., GGBFS and CFA) will decrease because of the move in steel production to scrap recycling (from blast furnaces) as well as the gradual closing coal-fired power stations [11,13,81,82,83]. In this regard, to widen the availability of SCMs, it is necessary to look for alternative SCMS beyond GGBFS or CFA. The utilization of new waste materials undoubtedly represents an appealing opportunity to avoid them being disposed of in landfills, and offer valuable applications as SCMs.



Water reservoirs store fresh water which is generally piped to electric power stations and/or used for drinking as well as irrigation. The most important issues for these basins are silting phenomena which cause a reduction in the original storage capacity. To recover the original capacity, dredging operations are carried out, and they generate large amounts of sediments which are generally disposed of in landfills. The research conducted so far to avoid landfill disposal has evaluated the utilization of dredged sediments for the manufacture and production of lightweight aggregates, Portland cement clinker, concrete, and bricks as components for stabilised road-base as well as supplementary cementitious material in ordinary Portland-blended cements after a proper calcination treatment [84,85,86,87,88,89,90,91,92,93,94,95,96,97,98].



This study aimed at investigating the use of thermally treated (TT) clayish reservoir sediments (RS) as SCM in blended CSA binders, and the best treatment temperature (BT) allowed for the total conversion of the crystalline clay phases in the amorphous constituents (the process of dehydroxylation) [94]. Four TTRSBT-based CSA binders were investigated by means of hydration and physical-mechanical tests for curing times falling within the interval of 4 h–56 days. A plain CSA binder was employed as a benchmark. The effect of TTRSBT on both the hydration evolution and the technical behaviour of the CSA-blended binders was evaluated by using differential-thermal-thermogravimetric (DT-TG) and X-ray diffraction (XRD) measurements coupled with mercury intrusion porosimetry (MIP), dimensional stability, and mechanical tests.




2. Materials and Methods


2.1. Materials


An Italian cement manufacturer supplied the calcium sulfoaluminate binder and the RS came from the “Camastra” basin in Basilicata (Italy). Six sediment samples were taken from different locations within the bottom of the reservoir, and they were heated at 110 °C to remove the surface moisture; afterwards, they were all mixed together and milled to pass through a 90 μm sieve.




2.2. Methods and Evaluation Techniques


Three 100 g batches of RS were heated in a fixed electric oven for 120 min at 750 °C, 830 °C, and 900 °C ± 2 °C for evaluating the BT, which allowed for the total dehydroxylation process to occur, and the resulting materials were finely ground to below 90 μm in an FP6 mill (10 min at 450 rotations per minute) and characterised by XRD analysis.



The chemical analyses of the CSA binder, RS, and TTRS (obtained at the optimal synthesis temperature (TTRSBT)), determined using the X-ray fluorescence equipment (Explorer S4, BRUKER, Karlsruhe, Germany), are displayed in Table 1, and the most important CSA cement mineralogical phases are also shown. The XRD patterns of the RS and the three TTRS (Figure 1) were collected using a MINFLEX 600 (RIGAKU, Tokyo, Japan) diffractometer with CuKα radiation and a scan rate of 0.02°/step.



The following four CSA-based cements were examined: a pure CSA cement (C_R) and three CSA binders containing TTRSBT as a substitute for part of the C_R (15%, 25%, and 35% by mass; C_15, C_25, and C_35, respectively). Cementitious pastes were obtained by employing a water-to-cement (w/c) ratio of 0.50, and they were transferred into plastic cylindrical containers and stored in thermostatically controlled water (20 °C). After each chosen curing period (comprised in the interval of 4 h to 56 days), the hardened cylindric pastes were broken into the following two parts: one piece that underwent MIP analysis (Pascal 240 and 140, Thermo-Finnigan, Segrate (MI), Italy, Series porosimeters) and one that was milled (grain size of <90 μm) for the DT-TG (using NETZCH-TASC 414/3 equipment, Selb, Germany, operating at 10 °C/min in air) and XRD (using a D4 Endeavor, Bruker, Karlsruhe, Germany apparatus with CuKα-radiation and a scan rate of 0.02/step) analyses. The hydration stoppage was carried out by means of a solvent exchange method employing acetone (to remove free water) and diethyl ether (to reduce the acetone evaporation time), and finally, the hardened samples were stored in a desiccator over silica gel and soda lime to mitigate the actions of the water vapour and carbonation, respectively.



For the dimensional stability (expansion–shrinkage) tests, 24 prisms of cementitious paste (15 × 15 × 78 mm) were put into air at an ambient temperature for 24 h, and afterwards, they were demoulded. For each system, three prisms were submerged in water at 20 °C, and the other three were left in thermostatically controlled equipment (20 °C and 65% relative humidity). A mechanical length comparator device was employed to determine the dimensions of the paste samples at various hydration times. The mean length value was then calculated as the average of the three measurements.



The cement mortars were realised in accordance with the European Standard EN 196-1. The size of each specimen was 40 mm × 40 mm × 160 mm; they were subjected to both flexural and compressive strength tests at curing times falling in the range of 4 h–56 days.





3. Results and Discussion


3.1. Chemical and Mineralogical Characterization of the Raw Materials


The chemical analyses of the CSA cement, RS, and TTRSBT are illustrated in Table 1, which also shows the mineralogical composition of the binder evaluated by the Rietveld method (normalizing the results to only the detected crystalline phases).



The chemical analysis of the C_R revealed the presence of calcium, aluminium, sulfur, and silicon oxides (listed in the order of its main components). Moreover, the Rietveld evaluation denoted that 4CaO·3Al2O3·SO3 (43.0 mass%), β-2CaO·SiO2, 4CaO·Al2O3·Fe2O3, 3CaO·Al2O3 (tricalcium aluminate), and 2CaO·Al2O3·SiO2 (gehlenite) were, in the order, its main crystalline components; CaSO4, mainly coming from the added natural anhydrite to the clinker, was also present. As far as the reservoir sediments were concerned, from the results of the chemical composition, it was found that the silicon and aluminium oxides represented their principal components; additionally, CaO, was also revealed by the DT-TG investigation, and it was present as CaCO3. Therefore, the RS l.o.i. was due to both the CO2 and water in the argillaceous minerals.



Figure 1 displays the XRD patterns for the RS together with its corresponding thermally treated (at 750 °C, 830 °C, and 900 °C) materials.



Muscovite, kaolinite, quartz, and calcite were the key crystalline components of the RS. XRD patterns for the TTRS displayed the following: (I) the disappearance of the kaolinite at 750 °C; (II) reductions in the muscovite with increasing temperatures; and (III) the presence of alumoakermanite (identified for the first time at 830 °C), whose main peak increased as the temperature rose. Consequently, 830 °C (BT) represented the best temperature for avoiding the generation of novel unwanted phases coupled with the disappearance of phases already present. The Blaine specific surface areas (European Standard EN 196-6) were 4500 for the CSA and 3750 cm2/g for the TTRSBT.




3.2. DT-TG Results


Figure 2 reports the DT results for the C_R, C_15, C_25, and C_35 samples cured at 4 h and 1, 28, and 56 days. From the data published in [99], the following endothermal effects (in order of the increasing temperatures) were assigned to ettringite (E) and Al(OH)3 (aluminium hydroxide (AH)).



Except for the peak of the CaCO3, no relevant thermal (either exo/endo) effects were present above 500 °C, and for the examined cement pastes, the endothermal dehydration peaks, attributed to E and AH (already detectable after 4 h of hydration), were observed at 164 °C ± 5 °C and 287 °C ± 4 °C, respectively.



Overall, the thermogravimetric analyses revealed that the hydration behaviour was basically due to the reaction of the 4CaO·3Al2O3·SO3 with the CaSO4. The hydration behaviour of the systems was also assessed by means of the determination of the bound water content (CBW, Figure 3). It was evaluated considering the weight loss values up to 500 °C, normalised to 100 g of dry cement.



From Figure 3, it can be argued that the four systems followed an analogous trend during the first 24 h of aging. For that period, the hydration rate was quite high because of the fast ettringite formation; from 7 to 56 days of curing, the curves exhibited an almost constant value.




3.3. XRD Results


The XRD patterns (Figure 4) almost confirmed the indications obtained from both the DT analyses and bound water results; therefore, concerning the hydration products, ye’elimite and calcium sulfate reacted quickly and the 3CaO·Al2O3·3CaSO4·32H2O concentration grew for up to 28 days of aging. The aluminium hydroxide main peak was also found in all the hydrated systems.



Furthermore, belite was virtually not involved in the hydration process, owing to both the higher reaction kinetics of the calcium sulfoaluminate and the related rapid water consumption. Quartz signals, already present in the TTRSBT samples, were detected in all the investigated CSA-blended cements. Figure 5 shows the evolution of the ettringite vs. the curing time. Elevated quantities of ettringite had already formed after 4 h of hydration in all the systems; after 2 days, the 3CaO·Al2O3·3CaSO4·32H2O concentration almost reached its maximum value, and after that, it slightly rose until 28 days of curing.




3.4. Dimensional Stability Results


The curves related to the expansion (under water)–shrinkage (in air) tests are reported in Figure 6.



Both in air and submerged under water, the behaviours of the three blended cements were almost similar to each other and to that of the reference system. When aged in air, it was evident that there was constant shrinkage until nearly 2 weeks, when the lowest values were attained (−0.18%, −0.13%, −0.08%, and −0.07% for the C_R, C_15, C_25, and C_35 samples, respectively); afterwards, the shrinkage results were almost consistent. The highest values of expansion under water were reached after approximately 20 days of aging, and they were in the range 0.06–0.17%.




3.5. MIP Results


In Figure 7 the plots of the porosimetric tests for the pastes of the four examined cements are reported; its left and right sides, respectively, represent the derivative and cumulative pore volume (CPV) curves related to the intruded mercury for the calcium sulfoaluminate-based cements towards the pore radius for the aging periods ranging from 16 h–56 days. For the C_R sample (Figure 7a), all the derivative plots displayed unimodal distributions.



According to [100,101], MIP curves do not depict the actual distribution of pore sizes in hydrated cement paste systems. In fact, large internal pores (LIPs), communicating with the outside often only through smaller pores (SPs), cannot be filled until higher pressures, which are necessary for the mercury intrusion into the SPs, are reached. Consequently, nearly all the volumes of LIPs are erroneously assigned to the sizes of the SPs. In addition, measured porosity does not coincide with actual total porosity to the extent that (a) isolated pores, entirely sealed against intrusion, may exist as well, and (b) the finest pores to be intruded require pressure values higher than the maximum available pressure of commercial porosimeters. Nevertheless, to compare the four investigated systems, the derivative volume coupled with the CPV could be taken as a useful indicator of the process of space-filling and of pore refinement [102].



Over the aging period, the CPV as well as the threshold pore radius slightly decreased (from 142 to 123 mm3/g and from nearly 25 to 16 nm, respectively). Compared to the C_R sample, the TTRSBT-based cements showed similar behaviours; in fact, unimodal pore size distributions could be observed at any examined aging period. Moreover, for the C_15 sample, the CPV decreased nearly 30%, passing from 201 (at 16 h) to 140 mm3/g (after 2 days); at longer aging times, it was further reduced (to approximately 100 mm3/g after 56 days of hydration). Similarly, the pore widths ranged from 274 (at 16 h) to 120 nm (at 56 days). For the C_25 and C_35 samples, the CPVs decreased approximately 39% and 16%, respectively (going from 207 to 118 mm3/g and from 190 to 160 mm3/g, respectively), in the same time interval. In comparison with the C_15 sample, the C_25, and C_35 samples exhibited pore size distributions oriented towards higher radii at all the investigated curing times, being in the 315–160 nm and 400–240 nm intervals, respectively.



As a consequence of the fast hydration product generation for the C_R (revealed by both the XRD and DT-TG analyses), a region of lower porosity was quickly established; therefore, the hydration products lowered and separated the inner space. At longer aging periods, the porosity developed gradually to the extent that the hydration had approximately stopped. Due to the lack of phases (e.g., calcium hydroxide) able to react with the thermally treated reservoir sediments the investigated blended cements, in comparison with the C_R sample, they always displayed higher pore size distributions.



The total porosity percentage (TP) results vs. the aging period related to the four investigated cements are displayed in Figure 8, where the histograms show an evidently comparable trend for all the cement pastes such that their TP values decreased as the curing time increased.



In particular, at all the hydrations periods, the plain CSA showed the lowest TP values; moreover, it was found that the higher the CSA cement substitution, the higher the TP value. At 2 and 56 days of curing, the TP values for the C_R sample were 21.1% and 16.8%, respectively; at the same hydration periods, the TP values for the C_15, C_25, and C_35 samples were, respectively, 14.2%, 26.4%, and 29.2%, and these were 6.5%, 22.0%, and 38.0% higher, respectively, than those for the plain CSA. These results highlight that as the curing time increased, the differences in the TP values between the C_R, C_15, and C_25 samples decreased whilst that of the C_35 sample increased.




3.6. Mechanical Tests Results


Figure 9 shows the flexural strength results for the calcium sulfoaluminate-based mortars. The results for the three blended binders were always lower/slightly lower than those for the C_R sample.



In Figure 10 the compressive strength results for the calcium sulfoaluminate-based mortars are reported. The strength results for the three blended binders were always lower than those for the C_R mortars.



As the amount of thermally treated sediments increased in the blends, the compressive strength values decreased, thus revealing the almost inert behaviour of the reservoir sediments, especially for curing periods shorter than 56 days. This phenomenon is most likely due to the lack of a lime source able to react with the amorphous silica and alumina of the TTRSBT.



At 2 and 56 days of curing the compressive strength values for the C_R mortars were 52 MPa and 62 MPa, respectively; at the same hydration periods, the strength values for the C_15, C_25, and C_35 samples were, respectively, 15.4%, 19.2%, and 40.4%, which were 12.2%, 18.7%, and 35.0% higher, respectively, than those for the plain CSA. These results highlight that as the curing time increased, the differences in the mechanical compressive strength were reduced/slightly reduced for the investigated systems.



Figure 11(left) displays the compressive strength values vs. the bound water for the four investigated systems.



As the bound water content increased, the compressive strength increased, and a linear correlation was evidenced for all the data points. In Figure 11(right), the compressive mechanical strength values are reported as a function of the determined total porosity results; it was found that as the porosity values decreased, the compressive strength increased. Also in this case, a correlation between the total porosity and the compressive strength could be observed.





4. Conclusions


The work assessed the feasibility of utilizing clayish reservoir sediments (RS) as an SCM (supplementary cementitious material) in CSA (calcium-sulfoaluminate) cements. The RS were heated (TT) to 830 °C to obtain the amorphous constituents that were due to the dehydroxylation of the silico-aluminate crystalline components. TTRS were added at dosages of 15, 25, and 35% by weight, and the related binders were aged up to 56 days.



The key findings derived from the investigations are reported below:




	(1)

	
when compared to plain CSA cement pastes, those based on blended CSA binders showed increased pore size distributions (as evidenced by the mercury intrusion investigations);




	(2)

	
the mechanical strength decreased with increases in the TTRS replacement levels (the dilution effect), although the gaps for the plain CSA-based mortars were reduced as the curing time increased;




	(3)

	
the X-ray diffraction and differential thermal-thermogravimetric results showed that the presence of thermally treated clayish reservoir sediments affected neither the creation of CSA hydration products nor the dimensional stability of cement pastes (when cured in both water and air).









The utilization of TTRS as SCM can allow both a reduction in the use of natural materials and the prevent the waste disposal in a landfill; in addition, it can permit the dilution of the CSA cement, which has implications for both the reduction of CO2 emissions and evident energy cuts per unit mass of binder.



Future research will deal with the study of the blended CSA cements cured for periods longer than 56 days; moreover, further studies will involve the utilization of TTRS in high-belite CSA and belite cements.
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Figure 1. XRD patterns for the RS and the corresponding samples burnt at 750 °C to 900 °C. Aa, alumoakermanite ((Ca,Na)2(Al,Mg,Fe++)(Si2O7)); A, anorthite (CaAl2Si2O8); C, calcite (CaCO3); K, kaolinite (Al2Si2O5(OH)4); M, muscovite (KAl2(Si3Al)O10(OH,F)2); Q, quartz (SiO2). 
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Figure 2. DT curves for the cement pastes: (a) C_R, (b) C_15, (c) C_25, and (d) C_35 at 4 h and 1, 28, and 56 d of hydration. E, ettringite; AH, aluminium hydroxide. 
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Figure 3. Chemically bound water calculated by TG until 56 days of aging (g/100 g of anhydrous cement) for the C_R, C_15, C_25, and C_35 cement pastes vs. aging time. 
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Figure 4. XRD patterns of the C_R (A), C_15 (B), C_25 (C), and C_35 (D) hydrated for 4 (down) hours and for 2 (middle) and 28 (up) days. A, anhydrite; E, ettringite; G, aluminium hydroxide; Q, quartz; Y, ye’elimite. 
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Figure 5. Ettringite concentrations (evaluated by means of the Rietveld analysis) for the C_R, C_15, C_25, and C_35 samples evaluated for the interval of 4 h–28 days. 






Figure 5. Ettringite concentrations (evaluated by means of the Rietveld analysis) for the C_R, C_15, C_25, and C_35 samples evaluated for the interval of 4 h–28 days.



[image: Applsci 14 01359 g005]







[image: Applsci 14 01359 g006] 





Figure 6. Expansion/shrinkage plots for the four CSA systems (cured in water and in air). 
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Figure 7. Derivative (right) and cumulative (left) mercury intruded volume vs. pore radius for the C_R (a), C_15 (b), C_25 (c), and C_35 (d) samples hydrated for 16 h and 2, 28, and 56 days. 
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Figure 8. TP for the C_R, C_15, C_25, and C_35 pastes hydrated for 16 h and 2, 28, and 56 days. 
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Figure 9. Results of the flexural mechanical tests of the C_R, C_15, C_25, and C_35 mortars at different curing times. 
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Figure 10. Results of the compressive mechanical tests of the C_R, C_15, C_25, and C_35 mortars at different curing times. 
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Figure 11. Compressive strength related to bound water, as determined by the TG weight loss at 500 °C (normalised to CSA anhydrous cement) (left). Compressive strength compared to evaluated total porosity (right). 
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Table 1. Chemical and phase compositions (solely for the C_R) of the employed cement components (mass %).
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Chemical Composition

	
Mineralogical Phase Composition




	

	
CSA Cement

	
RS

	
TTCRSBT

	
CSA Cement

	
ICDD Ref. Number

	






	
CaO

	
44.58

	
9.05

	
10.10

	
Ye’elimite

	
30-0256

	
43.0




	
SiO2

	
8.95

	
51.86

	
58.11

	
β-belite

	
33-0302

	
21.7




	
Al2O3

	
22.42

	
13.48

	
15.26

	
Celite

	
38-1429

	
3.8




	
Fe2O3

	
1.86

	
5.16

	
5.10

	
Anhydrite

	
37-1496

	
19.1




	
TiO2

	
1.10

	
0.65

	
0.76

	
Calcite

	
05-0586

	
1.1




	
K2O

	
0.30

	
1.74

	
1.94

	
Brownmillerite

	
30-0256

	
4.5




	
MnO

	
0.08

	
0.15

	
0.17

	
Gehlenite

	
73-2041

	
1.6




	
Na2O

	
0.08

	
0.81

	
0.90

	
Others

	

	
5.2




	
MgO

	
0.94

	
2.04

	
2.26

	

	

	




	
SO3

	
16.85

	
0.22

	
0.46

	

	

	




	
P2O5

	
0.05

	
0.15

	
0.18

	

	

	




	
L.o.i *

	
2.16

	
14.50

	
2.70

	

	

	




	
Total

	
99.37

	
99.81

	
97.94

	
Total

	

	
100.0








* L.o.i, loss on ignition evaluated at 950 °C ± 10 °C.
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