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Abstract: The efficient detection of crew overboard behavior has become an important element in
enhancing the ability to respond to marine disasters. It remains challenging due to (1) the lack
of effective features making feature extraction difficult and recognition accuracy low and (2) the
insufficient computing power resulting in the poor real-time performance of existing algorithms. In
this paper, we propose a Channel-Time Dense Residual Network (CTDR-Net) for detecting crew
overboard behavior, including a Dense Residual Network (DR-Net) and a Channel-Time Attention
Mechanism (CTAM). The DR-Net is proposed to extract features, which employs the convolutional
splitting method to improve the extraction ability of sparse features and reduce the number of network
parameters. The CTAM is used to enhance the expression ability of channel feature information, and
can increase the accuracy of behavior detection more effectively. We use the LeakyReLU activation
function to improve the nonlinear modeling ability of the network, which can further enhance the
network’s generalization ability. The experiments show that our method has an accuracy of 96.9%,
striking a good balance between accuracy and real-time performance.
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1. Introduction

Marine disasters, such as wind surges, tsunamis, waves, ocean earthquakes, and
underwater volcanoes, are occurring more frequently with global climate change in recent
years, which has seriously affected maritime navigation safety and brought significant
risks to maritime economic activities [1]. Crew overboard accidents occur frequently due
to the impact of marine disasters and limitations in the working environment at sea, which
cause substantial loss of life and property. A rapid and accurate method for detecting crew
overboard can reduce warning time, improve rescue response efficiency, and reduce loss of
life and property. The method has become an important aspect in improving the emergency
response capabilities of marine disasters and the rescue efficiency of maritime accidents.

Traditional overboard detection systems utilize various sensing devices such as pres-
sure sensors, infrared sensors, and sound sensors to detect overboard incidents. Sevin
et al. designed W-MEDS, a Wireless Sensor Network (WSN)-based system for swiftly
detecting and locating individuals in man-overboard emergencies on ships [2]. W-MEDS
uses real-time sensing by WSN nodes (temperature, humidity, acceleration) to trigger
alarms and initiate rescue procedures through a control and discovery system. In order to
enhance the notification speed and the accuracy of locating individuals who have fallen
overboard, the feasibility of using wireless transmitters was investigated [3]. After conduct-
ing a literature review, the choice of technology fell on LoRa. Field tests were conducted
in a maritime environment, revealing challenges in employing wireless technology for
detecting and tracking overboard individuals on large cruise ships. These challenges are
primarily attributed to the physical limitations of radio wave propagation in water. Sheu
et al. proposed a real-time MOB alert, GPS tracking, and monitoring system [4]. The
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system includes wearable sensors, remote LoRa access points, physical electronic fences,
and three MOB detection methods: real-time notification via wearables, virtual electronic
fence monitoring based on ship size, and instant notification triggered by a surrounding
electronic fence. Laboratory and sea tests demonstrated the system’s ability for quick MOB
detection and notification, showcasing the ship’s real-time MOB detection and prompt
rescue capabilities. Yan et al. proposes a joint time-frequency domain processing method
for the detection of man-overboard signals [5]. It utilizes empirical modal decomposition
to separate and detect multi-component signals for the purpose of effectively detecting
men overboard. The traditional overboard detection systems focus on deploying sensing
devices to activate the overboard alarm. The forms of data collection and transmission are
easily affected by and interfered with by external environments. These factors result in
high system maintenance costs [6].

Crew overboard detection technology is progressively evolving towards automation
and intelligence, driven by the advancement of mobile communication technology and
artificial intelligence [7]. The intelligent detection of men overboard with computer vi-
sion and image processing techniques is a current research focus. The PSPNet (Pyramid
Scene Parsing Network) deep learning model is proposed to achieve pedestrian overboard
detection [8]. It uses the principle of motion detection to calculate the distance between
the pedestrian center of mass and the contour of the lake, detecting overboard incidents
by judging the distance. The YOLO-WA (you only look once-water area) algorithm is
proposed for target detection in waterside environments [9]. It selects activation functions,
introduces attention mechanisms, and replaces loss functions to improve the accuracy of
human recognition in aquatic settings. Yang introduces a man overboard detection algo-
rithm applicable to the surrounding waters of pump ships [10]. It employs an enhanced
YOLOv4 for human detection, utilizes DeeplabV3+ for water surface segmentation, and
determines whether the target is in contact with the water surface. Zhang introduces
a YOLO-based target detection algorithm using infrared images [11]. It streamlines the
backbone network and incorporates an attention mechanism to enhance the success rate
and efficiency of detecting small targets. The image-based overboard detection methods
overlook the influence of overboard behavior coherence on detection accuracy. Meanwhile,
factors such as light scattering and water surface ripples can also reduce the accuracy of
overboard detection, leading to false and missed detections.

Researchers utilize surveillance video frame sequences to design crew overboard
behavior detection algorithms. Traditional models for behavior detection rely on manually
designed features with poor generalization. Deep learning-based behavior detection models
can effectively capture abstract features by learning massive amounts of data [12], which
improves the generalization performance of the models in diverse scenarios [13]. A two-
stream convolutional neural network that acquires features from RGB image and optical
flow is proposed for behavior detection [14]. A Temporal Segment Network (TSN) is
introduced to address the deficiency in long-term temporal modeling in dual-stream
networks [15]. The dual-stream-based detection method can effectively extract the temporal
and spatial features of the behavior. However, this method has difficulties in extracting
the optical flow information of the video and requires a large amount of resources, which
cannot meet the real-time requirements of crew overboard detection. Tran et al. utilized
three-dimensional convolutional (C3D) neural network to directly extract the temporal
and spatial features of the behavior [16]. Carreira and Zisserman proposed an Inflated 3D
Convolutional Neural Network (I3D) [17], which was pre-trained on large-scale datasets
and they fine-tuned the model to adapt to a specific behavioral detection task. Hara et al.
combined 3D convolution with ResNet to increase the network depth and improve the
accuracy of behavior detection [18]. Qiu et al. proposed a Pseudo-3D Residual Network
(P3D Resnet) to reduce the computational load of 3D convolutional networks [19]. These
methods can effectively solve the temporal–spatial modeling problem and improve the
accuracy of men overboard behavior detection, but fail to effectively distinguish behavioral
features and background information. Hu et al. introduced a channel attention model
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known as Squeeze-and-Excitation Networks (SENet) to augment the network’s attention to
different channel features [20]. Woo et al. combined channel attention with spatial attention
to enhance the model’s focus on crucial channels and regions [21].

In the video-based monitoring system for crew behavior, the surveillance camera is
positioned at the edge of the upper deck of the ship. It oversees the peripheral railing
area of the ship from a high monitoring perspective. Inclement weather such as storms,
heavy surf, and fog can reduce the clarity of video images. Meanwhile, the video image
information acquired by the camera mostly contains the back and side of the crew, which
has fewer usable features as the crew pose is obscured by the ship and the equipment on
board. The pose information is completely lost due to the obstruction of the ship’s hull
when the crew falls over the side of the ship. The limited intelligent computing resources of
ships exacerbate the difficulty of designing high-performance algorithms. From the above
analysis, we can conclude that the crew overboard behavior has fewer available features
and shorter durations. These characteristics increase the difficulty of abnormal behavior
feature extraction and reduce the accuracy of detection. The proposed behavior detection
algorithms have an imbalance in accuracy in real-time, which makes it difficult to meet the
demand for crew overboard behavioral detection algorithms.

In this paper, we propose a crew overboard behavior detection network based on a
dense residual block, tailored to the characteristics of crew overboard behavior. We use
a sparse sampling method to extract video frame sequences, which form the input of the
model and can improve the computational efficiency of the model. DR-Net is constructed
as a backbone feature network to extract the behavioral features and convolutional splitting
is used to reduce the number of network parameters. In DR-Net, dense blocks are utilized
to fully extract the behavioral features in the shallow network and residual blocks are
employed to extract the deep features to reduce overfitting. In addition, we introduce
CTAM to efficiently extract key behavioral features and adopt the LeakyReLU activation
function to enhance the robustness and generalization of the model, which can improve
the detection performance of the network.

2. Overview of CTDR-Net

Our Channel-Time Dense Residual Network (CTDR-Net) can be seen in Figure 1. The
process of overboard behavior usually lasts for 2~4 s, and a camera with a frame rate
of 25 fps can collect approximately 50~100 frames of images. We use a sparse sampling
method with a two-frame interval to extract video frame sequences, which are input
into the model for recognition. This method can reduce the number of input images
and the computational complexity of the model. We set the size of the model input to
3× 32× 224× 224, where 32 represents the input frame sequence. According to the analysis
of the duration and characteristics of the overboard behavior, it can be concluded that
32 frames of images can contain more than half of the overboard behavior information.
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When crew members are overboard, they are often obscured, which increases the
difficulty of feature extraction. DR-Net is designed to extract features from the input
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image. It uses 7 × 7 × 3 convolution and 3 × 3 × 3 maximum pooling to extract the base
features and reduce the dimensionality of the input data. DR-Net employs two dense
blocks and transition convolutional layers to improve the feature extraction capability
and compress the features to reduce the number of parameters. Two residual blocks are
adopted to enhance the deep feature extraction capability, which can reduce the risk of
network overfitting.

We introduce the CTAM in the middle of the two residual blocks to filter out the
background noise and increase the key feature extraction capability. The fully connected
layer combined with softmax activation function is used to realize crew overboard behavior
detection. We adopt the LeakyReLU activation function to enhance the robustness and gen-
eralization ability of the network and the cross-entropy loss function and back propagation
algorithm to optimize the model parameters, which can improve the detection accuracy of
crew overboard behavior.

3. DR-Net and CTAM
3.1. DR-Net

The video images obtained by the onboard video monitoring system contain less
frontal information of crew members, which is limited by the deployment location of
the cameras. Crew members work in complex environments and their limbs are often
obscured by equipment and cargo, which leads to difficulties for the camera in capturing
complete body features. Severe weather reduces the clarity of monitoring images and
further increases the difficulty of feature recognition. These factors result in fewer crew
features obtained through surveillance videos, making feature extraction difficult and
detection accuracy low. The lack of information can be compensated for by increasing the
number of layers of the feature extraction network, but it can easily lead to the problem of
overfitting and poor generalization ability.

In this paper, a new feature extraction network, Dense Residual Network (DR-Net),
is constructed by combining the dense block and residual block to improve the feature
extraction capability of crew transgression behavior.

3.1.1. Dense Blocks Design

The output of the previous layer is only used as the input of the next layer in traditional
convolutional neural networks, which constitutes less feature reuse and is not applicable
to the detection applications with sparse features in this paper. The dense block structure
consists of multiple dense layers, and the input of each dense layer is composed of the
outputs of all preceding layers. In this structure, shallow features can participate in
deep feature extraction, which avoids information sparsity and increases the efficiency of
feature utilization.

Considering the characteristics and computational complexity of crew overboard
behavior feature extraction, two dense blocks are added to the DR-Net to extract shallow
image features in the video frame sequence. Figure 2 shows a sketch of the dense blocks,
where each dense block contains six dense layers, with a transition layer introduced
between the two dense blocks.

The new feature map is formed by concatenating the original input of the dense block
with the output of all the previous dense layers, and serves as the input for the current
dense layer. Each dense layer produces k output feature maps; the size of the input and
output feature maps remains consistent. As we can see from Figure 2, the lth dense layer
has k0 + k × (l − 1), l = 1, . . ., 6 input feature maps, where k0 is the number of original
input channels in the dense block. In each dense layer, the number of the input feature
maps is compressed to 4 × k through 1 × 1 × 1 convolution operation, where k = 32.
This compression operation reduces the number of input features in dense layers and
reduces the computational complexity of the network. K pseudo-convolutions of size
1 × 3 × 3 and 3 × 1 × 1 are utilized to replace the traditional convolution of size 3 × 3 × 3,
which can improve the real-time detection performance. The (l + 1)th dense layer has
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k0 + k × l, l = 1, . . . , 6 input feature maps, which are composed of the outputs of all
previous layers. After feature extraction in six dense layers, 6 × k feature maps are added
to each dense block.
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The transition layer connecting two adjacent dense blocks is composed of a 1 × 1 × 1
convolutional layer and a 2× 2× 2 average pooling layer. The 1× 1× 1 convolutional layer
reduces the number of channels of the dense block output feature maps from 256 to 128,
which reduces the computational complexity and maintains feature extraction accuracy.
The 2 × 2 × 2 pooling layer reduces the size of the output feature map from 56 × 56 to
28 × 28, which preserves important information and reduces redundancy.

3.1.2. Residual Blocks Design

We use dense blocks to enhance information transmission and feature reuse, but
the increase in the number of layers in the feature extraction network can easily lead to
overfitting. DR-Net introduces two residual blocks after two dense blocks to enhance the
deep feature extraction capability and reduce the risk of overfitting.

Figure 3 shows a sketch of the residual block in DR-Net. The downsampling residual
module reduces the size of the input feature map to half of the original size and doubles the
channel number, while the residual module does not change the size of the input feature
map or the channel number. The first residual block consists of 1 downsampling residual
module and 10 residual modules. The second residual block consists of one downsampling
residual module and two residual modules. The downsampling residual module uses
1 × 1 × 1 convolution to fuse the input feature maps, which keeps the number of feature
maps unchanged and preserves the input feature information to the maximum extent. The
3 × 3 × 3 convolution is replaced by 1 × 3 × 3 and 3 × 1 × 1 pseudo-convolution with a
step size of two, which reduces the size of the feature maps to half of the original size and
improves the real-time performance. The 1 × 1 × 1 convolutions (n = 640, 1280) separately
extract features from the original input feature maps (with stride = 2) and the half-sized
feature maps (with stride = 1). The output feature maps of these two operations are added
together as the output of the downsampling residual module.

The residual module is similar in structure to the downsampling residual module,
except that it does not have a downsampling operation, because its input feature map and
output feature map have the same size.
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3.2. Channel-Time Attention Mechanism (CTAM)

An attention mechanism is introduced between two residual blocks to capture the key
feature information of the crew behavior, in order to reduce the influence of background
noise and enhance the performance of the model. We analyzed the image features and found
that the crew overboard behavior has different feature representations at different time steps.
We expand the Channel Attention Mechanism (CAM) from 2D to 3D and introduce the
time dimension, which constitutes the Channel Temporal Attention Mechanism (CTAM).
The CTAM can effectively learn the key features at each time step, flexibly adjust the
channel weights, and pay more attention to the crew behavioral characteristics at different
time steps.

Figure 4 shows a sketch of the Channel-Time Attention Mechanism (CTAM). CTAM
compresses the spatial dimensions of features by maximum pooling and average pooling,
aggregating channel and time dimension features. The compressed features are learned
by a multilayer perceptron to obtain two channel feature descriptions containing the time
dimension. These two feature descriptions are then added and a weight vector is obtained
by a sigmoid activation function. The application of the weight vector to each channel at
every time step of the input feature map enables a weighted summation of channel features.
This adjustment enables the model to fine-tune the importance of different channels at
different time steps, which facilitates a more effective focus on features crucial to the current
task. The introduction of CTAM reduces the interference of background information and
improves the feature extraction capability of the model, which helps the model to focus
more on the behavior of the crew.
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3.3. Activation Function

The Dropout layer in DR-Net randomly sets the output of some neurons to zero to
reduce the risk of overfitting. Considering the influence of the activation function on these
neurons, the model adopts the LeakyReLU activation function. This function does not out-
put zero in the negative interval and retains the modified nonlinear characteristics, which
can effectively solve the problem of neuron “death” in the ReLU activation function. In
addition, the additional nonlinear characteristics introduced by the LeakyReLU activation
function can effectively enhance the nonlinear modeling ability and network expression
ability, and improve the robustness and generalization ability of the network.

4. Experiments
4.1. Self-Made Dataset

The performance of the algorithm is affected by the quality of the dataset in the task of
detecting overboard behavior. To the best of the authors’ knowledge, publicly available
datasets of crew overboard behavior are very scarce. We collected surveillance videos
related to drowning accidents through various methods, and obtained 10 video clips,
including people falling into the water from boats and lakeside and riverside railings.
We organized experimenters to simulate crew overboard behavior, and generated our
own overboard behavior dataset based on accident surveillance videos and simulation
experiment data.

In the simulation experiment, the height of the railings varies within the interval of
[0.5, 1.5] meters. The positioning of cameras in the experiment is set at approximately 2
to 2.5 m from the ground, while the distance from the railing is varied within the range
of [5, 10] meters. The falling behavior in the experiment includes both frontal and lateral
falling in order to simulate the real crew overboard behavior. The simulation experiment
obtains 1445 video clips, including 714 drowning behavior clips and 731 normal behavior
clips, each lasting 2 to 7 s.

Figure 5 shows our dataset, which includes combinations of different railings (types
and heights) and shooting positions (distance, height, angle). The dataset has a total of
1455 video clips, with 724 clips documenting overboard behavior and 731 clips document-
ing normal behavior. We analyze the behavioral characteristics in the dataset and conclude
that (1) the information captured by the camera mainly consists of the back and side views
of crew members, (2) personnel information is affected by various occlusions and there are
few extractable features, and (3) there are some differences in the behavioral characteristics
of members in different scenes.
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4.2. Implementation Details

The experiments are conducted on a Windows 10 operating system, which utilizes
an experimental platform equipped with an AMD Ryzen 9 5900HS CPU and an NVIDIA
GeForce RTX 3060 GPU Laptop featuring 6 GB of video memory. The equipment described
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is manufactured by ASUS in Shanghai, China. The modeling process is executed in a
Python 3.8 environment with pytorch1.11.0. During the data preprocessing stage, each
video frame is standardized to a resolution of 480 × 320. In the training phase, the input
clips are randomly cropped into 32 × 224 × 224. The network parameters are optimized by
standard SGD and the dropout layer is added with a 0.8 dropout rate. The initial learning
rate is set as 0.01 and decreased by a factor of 10 every 50 epochs. The maximum number
of epochs is set to 150.

4.3. Ablation Study

The DR-Net comprises two dense blocks and two residual blocks. In this section, we
employ DenseNet-65 as the baseline, which consists of four dense blocks and incorpo-
rates pseudo-convolution internally. Five experimental groups are designed for ablation
experiments to evaluate the feasibility and effectiveness of DR-Net structure, LeakyReLU
activation function, and CTAM. The experiments are detailed in Table 1.

The experimental results show that, (1) compared with the baseline model, the accuracy
of the DR-Net was improved by 6.3%. This is because the DR-Net employs dense blocks
for extracting shallow features and residual blocks for extracting deep features, which
reduces overfitting and enhances the model’s feature extraction capabilities. (2) The DR-Net
(LeakyReLU) model exhibits a 1% accuracy improvement over the DR-Net model using
the ReLU activation function, which indicates that the LeakyReLU activation function
enhances the model’s nonlinear capabilities and expressive power. (3) The accuracy of
the model improved by 0.3% and 0.4% with the addition of CTAM compared to the DR-
Net and DR-Net (LeakyReLU) models without the attention mechanisms. The improved
accuracy affirms that the CTAM enhances attention to critical channel information at each
time step, strengthens the model’s feature extraction capabilities, and improve its accuracy.
(4) The DR-Net network with the LeakyReLU activation function and the introduction of
the CTAM achieves the highest accuracy at 96.9%.

Figure 6 displays screenshots from two different normal videos. In Video 1, camera
shake occurred during the recording, resulting in blurred image quality and partial loss of
behavioral features. Additionally, some features of individuals are obscured by background
equipment. In Video 2, the coverage area of background devices is larger, leading to the
more extensive obscuration of individual features. For the detection of the two normal
behaviors shown in Figure 6, DR-Net (LeakyReLU) + CTAM identifies them as normal
activities (left), while DR-Net (LeakyReLU) detects them as falling behavior (right). This
further underscores that the addition of CTAM is more effective in focusing on the behavior
itself, reducing errors caused by background jitter and device obstruction.

The experiment results show that the model has a moderate increase in time–space
cost, with a significant improvement in accuracy of 6.3%, and that the overall performance
has been substantially enhanced. The addition of the LeakyReLU activation function and
the CTAM results in very modest changes in the model’s FLOPs and parameters, which
has a negligible impact on hardware performance.

Table 1. Ablation experiment.

Methods Dense
Block

Residual
Block LeakyReLU CTAM Accuracy (%) FLOPs (Mi) Parameters

(Mi)

Baseline
√

× × × 89.2 34,448.19 23.97
DR-Net

√ √
× × 95.5 51,809.40 39.04

DR-Net (LeakyReLU)
√ √ √

× 96.5 51,809.40 39.07
DR-Net + CTAM

√ √
×

√
95.8 51,811.17 39.89

DR-Net (LeakyReLU) +
CTAM

√ √ √ √
96.9 51,811.17 39.89
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4.4. Main Results

The method proposed in this paper differs from the concepts of the other man-
overboard detection algorithms described in the introduction, and there are no relevant
datasets available for comparative experiments. While the conventional algorithms de-
scribed in our manuscript swiftly detect crew overboard situations and issue alarms, they
often do so after the crew member has already fallen into the water. In contrast, CTDR-Net
monitors crew behavior near the ship’s outer railing, enabling the detection of tendencies
or actions indicating a potential overboard situation before the crew members fall, which
can enhance the timeliness of early warning. A comparison experiment was conducted
between the method proposed in this paper and several mainstream action recognition
models, which include P3D-63, ResNet-50, DenseNet-65, and R (2 + 1) d-50, to assess the
performance of the proposed method. The detailed results, presented in Table 2, indicate
the following:

1. Among the five action recognition network models, DenseNet-65 exhibits the lowest
accuracy at 91.7%. Compared with this, the proposed method in this paper achieves
a 5.2% improvement in accuracy, with the highest detection accuracy. The DR-Net
network combines the advantages of dense blocks, residual blocks, and the CTAM
in the feature extraction stage, resulting in a stronger feature extraction performance.
The LeakyReLU activation function is used to enhance the generalization ability of
the network to achieve preferable detection accuracy.

Table 2. Comparative experiment.

Methods Accuracy (%) FLOPs (Gi) Parameters
(Mi)

FPR
(%) FNR (%)

YOLO_WA [9] 86.9 - - - -
Improve YOLOv4 [11] 98.68 - - - -

P3D-63 94.1 17.37 20.53 7.75 4.11
ResNet-50 93.8 57.17 39.39 6.34 6.16

DenseNet-65 91.7 58.75 4.51 9.15 7.53
R (2 + 1) d-50 94.1 61.05 39.41 8.45 3.42

Ours 96.9 51.81 39.89 2.82 2.74
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2. The parameters in the method proposed in this paper (39.89 Mi) are comparable to
ResNet-50 (39.39 Mi) and R (2 + 1) d-50 (39.41 Mi), and higher than that of DenseNet-
65 (4.51 Mi). The increase in the parameters is reasonable, considering the substantial
improvement in accuracy. The FLOPs of the method in this paper (51.81 Gi) surpasses
P3D-63 (17.37 Gi) but is lower than the other three models, which can achieve high ac-
curacy in detecting crew overboard behavior with relatively low computational effort.

3. The method proposed in this paper demonstrates significantly a lower false positive
rate (2.82%) and false negative rate (2.74%) compared to other algorithms. The detec-
tion results shown in Figure 7 further underscore the effectiveness of our algorithm
in identifying overboard behavior. Figure 8 presents two instances illustrating false
negatives and false positives in our algorithm. In the (a) video screenshot, individuals
are heavily obscured and the algorithm fails to extract sufficient valid features, result-
ing in a false negative. Meanwhile, in the (b) video screenshot, the low image quality
and extremely low pixel resolution cause the algorithm to extract incorrect features,
leading to a false positive. These two examples show that, when the person is heavily
occluded or the picture quality pixels are very low, this can result in extremely limited
effective features that can be extracted. In such situations, the algorithms in this paper
may not be able to perform effective detection.
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In order to evaluate the real-time performance of the proposed method, we conducted
inference experiments on two distinct computers, and the specifications for each computer
are provided in Table 3. The results of these experiments are summarized in Table 4.
Notably, the average inference time on Computer 1 exceeded that of Computer 2, primarily
due to the lower GPU performance on Computer 1. On the other hand, the average data
loading time was observed to be lower on Computer 1. While the higher CPU performance
on Computer 1 contributes to faster data loading, it is essential to consider that data loading
time is a multifaceted metric influenced by various factors, including CPU, memory, and
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storage card read/write speeds. The interaction of these factors affects the overall real-time
performance of the algorithm. The average data loading time of the proposed method is
only slightly higher than that of DenseNet-65, and the average inference time is slightly
higher than other methods but lower than DenseNet-65. On Computer 1, the average
total time for the proposed method is 162 ms, merely 2 ms more than P3D-63 and lower
than other methods. On Computer 2, the average total time is 420 ms, comparable to
P3D-63 (420 ms) and ResNet-50 (420 ms), and lower than alternative algorithms. These
findings signify that the proposed method strikes a balance between accuracy and real-
time performance.
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Table 3. Computer configuration comparison.

Configuration CPU GPU Operating
System VRAM Python

Version
PyTorch
Version

Computer 1 AMD Ryzen 9
5900HS

NVIDIA GeForce
RTX 3060 Laptop Windows 10 6 GB 3.8 1.11.0

Computer 2 Intel Xeon(R)
Bronze 3206R

NVIDIA GeForce
RTX 3080 LHR

Ubuntu 22.04.2
LTS 12 GB 3.8 1.13.1

Table 4. Real-time performance comparison experiment.

Computer 1 Computer 2

Methods Average Total
Time (ms)

Average Data
Loading Time

(ms)

Average
Inference Time

(ms)

Average Total
Time (ms)

Average Data
Loading Time

(ms)

Average
Inference Time

(ms)

P3D-63 160 110 50 420 387 33
ResNet-50 165 107 58 420 388 32

DenseNet-65 167 97 70 422 380 42
R (2 + 1) d-50 167 105 62 422 385 37

Ours 162 98 64 420 382 38

5. Conclusions

In this paper, we propose a Channel-Time Dense Residual Network (CTDR-Net) for
detecting crew overboard behavior, including a Dense Residual Network (DR-Net) and a
Channel-Time Attention Mechanism (CTAM). The Dense Residual Network (DR-Net) is
proposed as the backbone network for feature extraction, which employs a convolutional
splitting method to reduce the number of network parameters. The CTAM is used to
enhance the expression ability of channel feature information, and can increase the accuracy
of behavior detection more effectively. We used the LeakyReLU activation function to
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improve the nonlinear modeling ability of the network, which can further enhance the
network’s generalization ability. The experimental results show that our method has an
accuracy of 96.9%, striking a good balance between accuracy and real-time performance.

This work is a beneficial exploration in the field of crew overboard behavior detection.
It is of great significance for improving emergency response capabilities for maritime
disasters and ensuring the safety of crew life and property.
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