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Abstract: In this paper, we propose an Iterative Greedy-Universal Adversarial Perturbations (IGUAP)
approach based on an iterative greedy algorithm to create universal adversarial perturbations for
acoustic prints. A thorough, objective account of the IG-UAP method is provided, outlining its frame-
work and approach. The method leverages a greedy iteration approach to formulate an optimization
problem for solving acoustic universal adversarial perturbations, with a new objective function
designed to ensure that the attack has higher accuracy in terms of minimizing the perceptibility
of adversarial perturbations and increasing the accuracy of successful attacks. The perturbation
generation process is described in detail, and the resulting acoustic universal adversarial perturbation
is evaluated in both target-attack and no-target-attack scenarios. Experimental analysis and testing
were carried out using comparable techniques and dissimilar target models. The findings reveal
that the acoustic generality adversarial perturbation produced by the IG-UAP method can obtain
effective attack results even when the audio training data sample size is minimal, i.e., one for each
category. Moreover, the human ear finds it difficult to detect the loss of original data information and
the addition of adversarial perturbation (for the case of a target attack, the ASR values range from
82.4% to 90.2% for the small sample data set). The success rates for untargeted and targeted attacks
average 85.8% and 84.9%, respectively.

Keywords: iterative greedy; universal adversarial perturbations; voiceprint; targeted attacks

1. Introduction

In recent years, the field of artificial intelligence has seen rapid development, and
hardware equipment has substantially increased in arithmetic power. Consequently, cur-
rent deep learning technology finds diverse applications in fields like computer vision [1],
network security, medical analysis, computer graphics, and recommender systems. Spe-
cific scenarios such as speech recognition, image recognition, credit assessment, filtering
malicious emails, resisting malicious code attacks, and cyber attacks have fostered the
advancement of diverse fields and industries. Since the publication of the AlexNet con-
volutional neural network model by Alex Krizhevsky et al. in 2012 [2], deep learning
models have made significant progress in classification effectiveness, surpassing traditional
classification methods. Successive neural network models, including the ResNet model [3],
the VGG model [4], and the GoogleNet model [5], have further improved classification
performance, making deep learning models widely used in image classification and voice
print recognition.

With the advancement of artificial intelligence, voiceprint recognition authentica-
tion has become an increasingly important aspect of our daily lives and work. Security
concerns resulting from this are gaining significant attention. Signal processing and
deep learning algorithm models have significantly enhanced the accuracy and reli-
ability of voiceprint recognition in comparison to conventional speech recognition
methods. However, although there are benefits, several security concerns have arisen.
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Szeged et al. originally proposed the concept of adversarial samples in 2014 [6]. They
discovered that neural network models can make classification errors due to adversarial
perturbations. Furthermore, these neural network models, which have excellent clas-
sification performance, can also experience incorrect classification predictions when
under attack from malicious adversarial samples. Moosavi-Dezfooli et al. introduced
the concept of generic adversarial perturbation which can be used to deceive neural
network models [7]. They developed a Greedy-based attack algorithm to target image
classification models in untargeted scenarios. This technique presents various oppor-
tunities and possibilities for deception. This approach to producing usual adversarial
perturbations involves normalizing them by combining all of the adversarial perturba-
tions of each sample in the original dataset. Every targeted adversarial perturbation
will shift the initial data to the decision boundary of the target classifier, lowering the
target model’s genuine category classification confidence. Furthermore, a significant
association between the decision boundary’s structure and generalized adversarial
perturbations was presented by Moosavi-Dezfooli et al. [8]. In 2019, Paarth et al. were
the first to demonstrate the presence of generalized adversarial perturbations in the
audio domain [9], which do not relate to any specific audio sample in the dataset but
can be added to any of the audio samples.

In this paper, an acoustic genericity adversarial perturbation generation method is
designed based on the iterative greedy method. The acoustic features of audio samples are
computed in the iterative process to generate an acoustic genericity adversarial perturbation,
which improves the production efficiency of the adversarial perturbation and the efficiency
of the adversarial attack.

2. Design Consideration

Iterative greedy is an efficient and widely-used approach for solving generic adver-
sarial perturbations. This method progressively optimizes the objective function through
iterative computation. At each iteration, the optimizer calculates and adjusts the objective
function based on the current parameter settings to locate the optimal point of the objective
function. This enables the optimization of the adversarial perturbation and attainment
of the optimal adversarial perturbation solution. The acoustic features of audio samples
are calculated during the iterative process of the IG-UAP generation method, enabling the
creation of acoustic generality adversarial perturbation. This enhances both the production
efficiency of the adversarial perturbation and the efficiency of the attack. Please see Figure 1
for the specific algorithm flow.

Figure 1. IG-UAP adversarial perturbations generation process.

In the context of noise perception within the acoustic pattern classification system,
this paper proposes a novel objective function that employs authentic metrics, particu-
larly the sound pressure level, to quantify the noise perception level as an optimization
problem. At each iteration, a subset of audio data samples is chosen from the dataset
and normalized. Then, the updated gradient is estimated by computing the degree
of perturbation transformation for each training audio sample to effectively solve the
objective function for that subset of samples. Through multiple rounds of iteration, the
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objective function of the dataset is continually updated to yield the optimal solution.
The attack success rate determines the stopping point for the iteration, and once the set
threshold is reached, the final acoustic generality adversarial perturbation is produced.
This perturbation is then added to the audio samples to create the adversarial samples.

3. Symbolic Description

Table 1 describes the symbols related to this paper.

Table 1. Notation of attack description.

Symbolic Meaning

X Original audio samples
t The predicted label of the target that the attacker wants the target model to output
yl A category in untargeted attacks

L(·) Objective function
G(·) Updated gradient

δ Expectation of deception rate
v′ The generalization of this dataset against perturbations
c Penalty constant factor
K Confidence level for controlling sample misclassification

4. IG-UAP Methodology

In the iterative greedy approach, the primary aim is to minimize the objective
function of a batch of samples from the dataset to calculate the generalizability against
perturbations. An iterative greedy-based algorithmic process is designed to gen-
erate an adversarial perturbation algorithm for acoustic generalization. The sym-
bols used in the algorithm are described in detail, followed by an explanation and
analysis of the specific role of each step. The following section elaborates on the
iterative optimization process, including the solution steps and schemes of the opti-
mization problem. Additionally, a new objective function is designed to implement
an iterative greedy-based adversarial perturbation generation method for acoustic
generality. Relevant experimental analyses are carried out under target-attack and
targetless-attack scenarios.

This is because the objective function fundamentally characterizes the performance
against such perturbations. In the context of perceiving noise in a sound pattern classi-
fier, the degree of noise perception may be measured using a reliable metric, such as the
sound pressure level (SPL), as demonstrated in Equation (1). Consequently, the SPL is
implemented instead of the Lp paradigm for constraints. This metric is utilized as one
of the objective functions in the optimization problem of this paper. The goal is to lessen
the SPL of the perturbation, which is measured in decibels (dB). The problem of creat-
ing perturbations in a target attack can be reformulated as the following constrained
optimization problem.

SPL(v) = 20logP(v) (1)

P(v) =

√√√√ 1
N

N

∑
n=1

v2
n (2)

The optimization problem presented in the equations can be solved with a gradient-
based algorithm. As a result, a new parameter w must be introduced, which is defined
in the equation. Audio example xi must be transformed into the tan space, and then, the
perturbation data can be converted into the effective range of [0, 1] using Equation (3).
This ensures that the constraint of [0, 1] is met.
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wi =
1
2
(
tan

(
x′i + v′

)
+ 1

)
(3)

x′i = tan−1((2xi − 1)× (1− ε)) (4)

v′ = tan−1((2v− 1)× (1− ε)) (5)

where ε is a small constant determined by the polarity of the transformed signal to prevent
x′0 and v′0 from taking infinite values.

The formula mentioned above is simplified to an optimization problem to obtain the
best possible solution. Additionally, in the event of a target attack, the formula is presented
in (6).

wimin =

L(wi, t) = SPL
(

1
2

ln
(

wi
1− wi

)
− xi

′
)
+ cG(wi, t)

G(wi, t) = max{max{ f (wi)j} − f (wi)t,−κ}
(6)

where the target category is represented by t, the output of the presoftmax layer (logit)
of the neural network for category j is represented by f (wi)j, a positive constant known
as the “penalty coefficient” is represented by c, and the confidence level that controls
the misclassification of samples is represented by κ. This formula enables the attacker to
manage the confidence level of the attack. For untargeted attacks, we modify Equation (6)
according to Equation (7).

wimin =

L(wi, yl) = SPL
(

1
2

ln
(

wi
1− wi

)
− xi

′
)
+ cG(wi, yl)

G(wi, yl) = max{ f (wi)yl −max{ f (wi)j},−κ}
(7)

This is ultimately calculated using a gradient-based optimization algorithm, including
the Adam algorithm, to minimize the losses defined in Equations (6) and (7). Various
optimization algorithms, for example, AdaGrad, Standard Gradient Descent, Nesterov
Momentum Gradient Descent and RMSProp, have been assessed, but Adam achieves
convergence in fewer iterations and produces comparable outcomes.

5. Generic Adversarial Perturbation Generation Process

During the iterative optimization process, a subset of audio training samples will
be selected for traversal in each round of iteration. Before proceeding, each input sample
from the original audio data set will be normalized within the interval [0, 1] to adhere to
constraints. Here, 0 indicates the minimum amplitude, and 1 represents the maximum
amplitude. Subsequently, the perturbation signal transform of each audio sample will be
computed to determine the objective function gradient based on the perturbation signal.
After traversing all of the relevant samples, the optimization process will be complete.
Combining the gradients obtained from solving the objective function optimally using
Adam’s rule, we calculate the generic adversarial perturbation. We then iteratively
update the optimized perturbation to the original audio samples, ultimately generating
the generic adversarial perturbation. We stop iterating and save the adversarial samples
once the attack success rate reaches the preset threshold value. Details of the training
process can be found in Algorithm 1.
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Algorithm 1 IG-Based Method for Voiceprint Universal Adversarial Perturbation Generation

Input: Raw audio training Sets xtrain, Training set labels ylabel , Expectation of deception
rate δ, Targeted attack category t

Output: Generalized counteracting perturbation v′

1: Initialize the generic adversarial perturbation v′ to 0
2: Selecting small samples S in the dataset, xi ∈ (xtrain, ylabel)
3: Initialize the update gradient g to 0
4: Normalize the audio samples xi to the interval range [0, 1], x′i =

tan−1((2xi − 1)× (1− ε))
5: Calculate the acoustic perturbation signal transform for sample xi:wi =

1
2
(
tan

(
x′i + v′

)
+ 1

)
6: Calculate the gradient of the objective function. g← g + ∂L(ωi,t)

∂ωi
if it is a targeted attack

and g← g + ∂L(ωi ,yi)
∂ωi

if it is an untargeted attack
7: Repeat steps 4 to 6 until each sample xi in the small batch sample set S has been

traversed
8: Based on the obtained update gradient g, which is updated according to Adam’s rule,

yields ∆ν′

9: Updating generalized counter perturbation v′←v′ + ∆ν′

10: Repeat steps 2 through 9 until ASR(X, VG) > 1− δ
11: Output generalized anti-perturbation v′

6. Experimental Analysis

Five pretrained voiceprint classification models, namely 1DCNN Rand, 1DCNN
Gamma, ENVnet-V2, Sincnet, and SincNet+VGG19, are employed on the UrbanSound8k
dataset [10], applying the IG-UAP method to evaluate their performance in untargeted
and targeted attacks. Implementation and experimental comparisons were performed on
four existing voiceprint universal adversarial perturbation generation methods, which
include FGSM-UAP [11], PGD-UAP [12], C&W-UAP [13], and MSCW-UAP [14]. Table 2
displays the experimental environment. The sample sizes were small, so caution in drawing
conclusions is advised.

Table 2. Test environment.

Components Category Item

Hardware
CPU Xeon(R) W-2123 CPU 3.60 GHz

Random Access Memory 16 GB 2133 MHz LPDDR3
Video Card NVIDIA GeForce RTX 2080 Ti12GB

Software
Operating System Windows 10 64-bit System

Programming Languages Python
Third Party Libraries Pytorch, torchaudio, flask, bootstrap

FGSM-UAP combines the adversarial perturbation generated by FGSM with UAP,
generating a universal perturbation applicable to multiple voiceprint recognition models;
PGD-UAP generates smaller perturbations, reducing auditory changes but at a slower
generation speed and with possible limitations imposed by the input space; C&W-UAP
is suitable for attacking specific models and has the capability to generate adversarial
samples for multiple classes; MSCW-UAP has a faster generation speed and lower compu-
tational complexity than C&W-UAP, but it is more susceptible to limitations imposed by
the input space.

The UrbanSound8k dataset employs down sampling at 16 kHz to train and evaluate
the model while generating generalizations against perturbations. The dataset comprises
7.3 h of recordings subdivided into 8732 three-second long audio segments, representing
each audio sample as a 50,999 dimensional array. The audio recordings were divided into
ten distinct classifications, specifically, air_conditioner (sound of air conditioning), car_horn
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(sound of a vehicle horn), children_playing (sound of children at play), dog_bark (sound of
a dog barking), drilling (sound of drilling), engine_idling (sound of a car’s engine running),
gun_shot, jackhammer, siren, and street_music. The training set encompasses 80% of the
dataset, while the remaining 20% is employed as a test set. To create opposing disturbances,
the 6984 samples in the training set were randomized with a small batch size of 100 samples
for the greedy iteration-based method. The perturbations were assessed for the entire test
set, consisting of 1748 samples.

6.1. Evaluation Indicators

(1) Attack Success Rate

The attack success rate (ASR) is the likelihood of an adversarial perturbation added
to an original sample causing the target classification model to make a classification error.
ASR is calculated differently for the two distinct attacks, untargeted attack and target attack.
If an adversarial sample with added perturbation is input into a target classification model
during an untargeted attack and the model classifies the sample as any label other than the
true label with high confidence, the attack is considered successful. The attack success rate
under an untargeted attack is defined in Equation (8), where y_i represents the true label,
and f (·) is the voiceprint classification model.

ASR =
∑i f (xi) ̸= yi

∑i xi
(8)

In a targeted attack, given the attack target label t_i, select any sample and its true
label yi ̸= ti. The target attack succeeds if, after input to the target model, it is classified
with high confidence as the target label ti. The definition of the attack success rate under a
targeted attack is presented in Equation (9).

ASR =
∑i f (xi) = yi

∑i xi
(9)

(2) Mean Generation Time for Adversarial Samples

The average generation time of the adversarial samples is calculated by dividing the
overall generation time T of the antagonistic samples by the total number of antagonistic
samples N, as expressed in Equation (10).

t =
T
N

(10)

(3) Signal-to-Noise Ratio of the Counter Sample

In the audio domain, the paradigm constraint and signal-to-noise ratio are used
to measure the anti-perturbation performance in a comprehensive way, and the SNR is
calculated as shown in Equation (11), where P(v) denotes the root mean square (RMS) of the
anti-perturbation signal v. The SNR of the anti-perturbation signal v is calculated as shown
in Equation (11). All experiments in this paper take the average SNR of all adversarial
samples as the evaluation index.

SNR = 10 log10 P(v) (11)

(4) Loudness of the Adversarial Sample

A high signal-to-noise ratio implies a low level of added noise through the generic
counterattack. Moreover, the Celsius decibel (dB) of the adversarial perturbation, which
measures the loudness of the samples, serves as one of the performance metrics. It is calcu-
lated as depicted in Equation (12). This metric bears some similarity to the l∞ paradigm
in the image domain, where a lower value conveys that the adversarial samples are only
slightly distorted compared to the genuine audio samples. Lately, researchers have em-
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ployed this technique to gauge the effectiveness of adversarial attacks on voiceprint classifi-
cation models.

ldBx (v) = ldB(v)− ldB(x) (12)

where ldB(x) is calculated as shown in Equation (13).

ldB(x) = maxn(20 log10(xn)) (13)

6.2. Untargeted Attack

In the absence of a specific target, the objective of a malicious attacker is to deliberately
cause misclassification of input samples by the classification model, resulting in a confidence
level that deviates significantly from the actual label. Hence, in this section, we calculate the
optimization problem of the objective function via Equation (7), derive the attack success
rate via Equation (8), determine the average signal-to-noise ratio via Equation (11), and
evaluate the loudness utilizing Equation (12) during experimental analysis of data.

This section compares the effectiveness of generating adversarial samples for the five
voiceprint classification models (1DCNN Rand, 1DCNN Gamma, ENVnet-V2, Sincnet, and
SincNet+VGG19) in an untargeted attack scenario using the UrbanSound8K dataset. The
experimental hyperparameters can be found in Table 3.

Table 3. Hyperparameters of experiments.

Parameter Type Parameter Value

Confidence κ 40
Expected Deception Rate δ 0.1

Number of Iterations Epoch 100
Penalty Factor c 0.2

Due to the potential impact of different confidence levels (κ) on experimental results,
the ENVnet-V2 and 1DCNN Gamma models were chosen as experimental objects to
explore their impact on ASR, SNR, and ldB. The confidence interval used was [0, 80], with
confidence levels incremented by 10 at a time. The experimental results for the ENVnet-V2
model are displayed in Figure 2a–c. The experimental results for the 1DCNN Gamma
model are shown in Figure 3a–c.

From Figures 2 and 3, it is evident that the ASR displays a general upward trend as
the confidence level improves, while the SNR exhibits an overall downward trend with
improvement in confidence levels. Additionally, the ldB shows a considerable decrease in
the range of [0, 40], followed by a leveling off in the range of [40, 80] with an increase in the
confidence level. Despite being two distinct models for acoustic pattern classification, these
observations hold true. Therefore, when selecting the hyperparameter for the untargeted
attack experiment, if a confidence level of 40 is chosen, the impact on the results of SNR,
ASR, and ldB can be considered in the comparison of different models. This allows for more
stable and representative experimental result values. The corresponding experimental
results are shown in Table 4.

Table 4 shows that the success rate of the untargeted attacks on the five popular
acoustic pattern classification models, with the help of acoustic pattern confrontation
samples produced under the UrbanSound8K dataset, is the highest on the SincNet model
from an ASR index perspective, reaching 90.4%, and the lowest is on the ENVnet-V2 model,
but it also exhibits a superior attack level of 82.9%. The disparity between the training
and test set ASR outcomes is minimal, with a maximum variance of only 6.2%. These
findings suggest that the IG-UAP algorithm effectively curbs overfitting in untargeted
attack situations. Based on SNR metrics, the SincNet model shows the highest SNR level
of 29.886 dB, suggesting that adding the perturbation has minimal impact on the original
acoustic pattern signal. The other four methods display comparable SNR levels with a
lower effect on the initial signal. The ENVnet-V2, on the other hand, has the lowest SNR
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level of 18.425 dB. From an ldB metrics perspective, the SincNet model shows the smallest
value, −26.214, while the ENVnet-V2 presents the highest value, −11.320. Both models
maintain a low loudness that is not easily detected by the human ear.

(a) (b) (c)

Figure 2. Experimental results of ENVnet-V2 model at different confidence levels. (a) Effect of
confidence value on ASR; (b) effect of confidence value on SNR; (c) effect of confidence value on ldB.

(a) (b) (c)

Figure 3. Experimental results of 1DCNN Gamma model at different confidence levels. (a) Effect of
confidence value on ASR; (b) effect of confidence value on SNR; (c) effect of confidence value on ldB.

Table 4. The success rate of IG-UAP on multiple target models.

Target Model

Datesets

Training Sets Testing Sets

ASR/% ASR/% SNR/dB ldB

1DCNN Rand 89.2 86.5 20.168 −12.984
1DCNN Gamma 89.4 84.2 20.431 −18.451

ENVnet-V2 89.1 82.9 18.425 −11.320
SincNet 90.1 90.4 29.886 −26.214

SincNet+VGG19 88.3 85.2 23.346 −17.952

The results of the experiment are displayed in Figure 4. In this figure, we selected
audio samples from the gun_shot category, to which we added the acoustic pattern gener-
ality adversarial perturbation. Figure 4a illustrates the original audio sample spectrogram,
and Figure 4b portrays the spectrogram of the audio sample after adding the generality
adversarial perturbation. This section bases its comparison experiments on the chosen
1DCNN Gamma target model and UrbanSound8K dataset, analyzing five approach meth-
ods in the no target attack context. These five methods include IG-UAP, FGSM-UAP,
PGD-UAP, C&W-UAP, and MSCW-UAP, which are proposed in this chapter. The batch
processing method utilizes the mean value, while some hyperparameters are prioritized
during high performance. Table 5 presents the specific experimental hyperparameters, and
the experimental results can be seen in Table 6.
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Figure 4. Effectiveness of five voiceprint classification models in the context of untargeted attacks.
(a) Original spectrogram of the audio sample; (b) adversarial spectrogram of the audio sample.

Table 5. Hyperparameters of experiments.

Attack Methods Parameter Type

- α ε Learning Rate Epoch Batch Size Confidence κ
Expected Spoofing Penalty

Rate δ Factor c

IG-UAP - - - 100 32 40 0.1 0.2

FGSM-UAP - 0.1 - 100 32 - - -

PGD-UAP 0.1 0.0005 0.00001 100 32 - - -

C&W-UAP 0.1 - 0.0001 100 32 - - -

MSCW-UAP 1.5 - 0.001 100 32 - - -

Table 6. Comparative experimental results of untargeted attack.

Attack Methods
Evaluation Indicators

ASR/% Average SNR/dB Average Spawn Time/s

IG-UAP 85.6 20.551 20.168
FGSM-UAP 64.78 22.42 0.55
PGD-UAP 47.6 39.05 4.22
C&W-UAP 21.39 90.4 4.7

MSCW-UAP 30.12 24.89 14.66

After comparing the experiments, it has been observed that the method exhibiting
the highest attack success rate is IG-UAP, achieving an ASR of 85.6%. Despite having the
second-fastest average generation time, it exhibits the lowest average signal-to-noise ratio
value, measuring at 20.551 dB. The fastest generation method is FGSM-UAP, clocking in
with an average generation time of 0.55 s, which is notably higher than the other generation
methods. The PGD-UAP method has the highest average SNR value of 39.05 dB, which
is significantly higher than other generation methods. The IG-UAP method proposed in
this chapter has the highest ASR and the best attack effect, while also having a longer
average generation time compared to the PGD-UAP and C&W-UAP methods. However,
the IG-UAP method has a higher production efficiency for the antagonistic samples. By
combining all of the indicators, it can be concluded that the IG-UAP method is the most
effective. Combined with the above findings, IG-UAP exhibits the most exceptional overall
performance in creating acoustic generalizations against perturbations, compared to the
other four methods, within the context of untargeted attacks.

In addressing the issue of varying sample sizes in different datasets, it may occur
that some datasets have few samples available. To mitigate this, the IG-UAP algorithm
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was employed for an experimental analysis of untargeted attacks on the 1DCNN Gamma
model, whereby a single sample from each category in the UrbanSound8k dataset was taken.
Table 3 shows the experimental hyperparameters, with the horizontal coordinates ranging
from 0 to 9 in representation of the categories in the UrbanSound8k dataset. Figure 5
illustrates the experimental outcomes.

Figure 5. Attack effect diagram for a single sample.

The results of the experiment demonstrate that even when a single sample is taken
from each category in the UrbanSound8k dataset, the IG-UAP method remains capable
of computing effective acoustic generality against perturbations. For the small-sample
size dataset, the average ASR of the acoustic generality anti-perturbation generated by the
IG-UAP method is 68.8%, the average SNR is 19.125 dB, and the ldB is −15.026 dB.

6.3. Targeted Attack

In targeted attacks, the objective is to cause the classification model to misclassify
input samples with high confidence, resulting in the label specified by the attacker. In this
section, we compute the optimization problem of the objective function using Equation (6),
evaluate the attack success rate using Equation (8), calculate the average signal-to-noise
ratio using Equation (11), and measure the loudness using Equation (12) for the purpose of
data analysis and experiments.

In this paper, we evaluate the efficacy of generating adversarial samples in the Urban-
Sound8K dataset for five voiceprint classification models, 1DCNN Rand, 1DCNN Gamma,
ENVnet-V2, Sincnet, and SincNet+VGG19, in the presence of target-attack scenarios. The
experimental hyperparameters are illustrated in Table 7.

Table 7. Hyperparameters of experiments.

Parameter Type Parameter Value

Confidence κ 20
Expected Deception Rate δ 0.1

Number of Iterations Epoch 100
Penalty Factor c 0.15

Type of Targeted Attack jackhammer

As different confidence levels can impact experimental outcomes, we chose the
ENVnet-V2 and 1DCNN Gamma models as the objects of experimentation to evaluate their
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effect on ASR, SNR, and ldB. The experiments were conducted with a confidence interval of
[0, 80], incrementing the confidence level by 10 for each test. The results for the ENVnet-V2
model are presented in Figure 6a–c, while the results for the 1DCNN Gamma model are
presented in Figure 7a–c.

(a) (b) (c)

Figure 6. Experimental results of the ENVnet-V2 model at different confidence levels. (a) Effect of
confidence value on ASR; (b) effect of confidence value on SNR; (c) effect of confidence value on ldB.

(a) (b) (c)

Figure 7. Experimental results of the 1DCNN Gamma model at different confidence levels. (a) Effect of
confidence value on ASR; (b) effect of confidence value on SNR; (c) effect of confidence value on ldB.

Based on the data presented in Figures 6 and 7, two distinct acoustic pattern classifica-
tion models were observed. The ASR exhibited an increase in the [0, 20] range and then
plateaued between [20, 80] as the confidence level improved. The SNR showed a general
trend of smoothness as the confidence level improved, whereas the ldB also displayed
an overall smooth trend with an increased confidence level. It is worth noting that the
aforementioned results were observed despite the use of different classification models.
Therefore, when selecting 20 as the confidence level hyperparameter in the target attack
experiment carried out to compare various models, the effect of confidence level on the out-
comes of SNR and ASR, as well as ldB, can be factored in. Consequently, the experimental
results are more stable and uniformly distributed.

The experimental results are shown in Table 8.

Table 8. The success rate of IG-UAP on multiple target models.

Target Model

Datesets

Training Sets Testing Sets

ASR/% ASR/% SNR/dB ldB

1DCNN Rand 91.2 81.2 24.218 −17.043

1DCNN Gamma 90.9 83.7 22.654 −17.211

ENVnet-V2 91.9 83.1 21.146 −13.997

SincNet 96.5 90.9 30.241 −30.126

SincNet+VGG19 91.1 85.8 26.667 −20.912

According to Table 8, following an untargeted attack on five popular acoustic clas-
sification models, namely 1DCNN Rand, 1DCNN Gamma, ENVnet-V2, SincNet, and
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SincNet+VGG19, using generated acoustic confrontation samples from the UrbanSound8K
dataset, and assessed using ASR metrics, the SincNet model achieved the highest attack
success rate of 90%. The attack success rate on the 1DCNN Rand model is the lowest, at 9%.
However, it also demonstrates superior attack levels of 81.2%. The difference between the
ASR outcomes on the training and test sets remains low, with a maximum differential of
only 10.0%. This suggests that the IG-UAP algorithm is somewhat effective in reducing
overfitting occurrences during targeted attacks. Analyzing the SNR metrics reveals that
the SincNet model exhibits the highest SNR level, measuring at 30.241 dB. This indicates
that the perturbation had a lesser impact on the acoustic pattern signal’s original quality.
Additionally, the other four methods exhibited similar SNR levels, which also maintained a
lower impact on the original signal. ENVnet-V2, on the other hand, recorded the lowest
SNR level at 21.146 dB. From the ldB metrics’ perspective, it was found that the SincNet
model had the lowest value at −30.126, while the 1DCNN Rand model had the highest
value at −17.043. The interval of loudness levels falls within a range that is difficult to
detect with the human ear.

The paper findings are presented in Figure 8, where the engine_idling sound category
samples were selected and subjected to generic adversarial perturbation. Figure 8a displays
the spectrogram of the original audio sample, while Figure 8b exhibits the spectrogram of
the audio sample following the generic adversarial perturbation.

(a) (b)

Figure 8. Comparison of original and added adversarial perturbation audio sample spectrograms.
(a) Original spectrogram of the audio sample; (b) adversarial spectrogram of the audio sample.

After carrying out attacks on various models and analyzing the experimental results,
we proceed with a comparison experiment using similar methods. It should be noted that
the FGSM-UAP method and the PGD-UAP method typically generate untargeted adversary
samples, which means that there is no guarantee that the resulting adversary samples will
be classified into the specified target category, even if the attacker specifies the category.
Therefore, this comparison of three methods, VCGAN-UAP, C&W-UAP, and MSCW-UAP,
in the context of a target attack is presented. SincNet was chosen as the target model
and UrbanSound8K as the dataset, with the target attack category being dog_dark. The
experimental hyperparameters are listed in Table 9. It is important to note that this analysis
aims to achieve objectivity, coherence, and clarity, maintaining an appropriate academic
structure and language register whilst avoiding biased language, complex terminology,
and subjective evaluations. The experimental results are shown in Table 10.

After conducting comparative experiments, it was found that when targeting the
“dog_dark” category, the IG-UAP method demonstrates a superior attack success rate, an
average signal-to-noise ratio (ASR), and an average generation time. The ASR reached
86.7%, which is 2.2% higher than the MSCW-UAP approach. Additionally, the average
generation time of the IG-UAP method was 8.28 s faster than that of the MSCW-UAP
approach, resulting in a significantly improved generation speed without compromising
the attack success rate. The mean SNR is 28.145 dB, surpassing the C&W-UAP approach by
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0.31 dB, yet the assault’s success rate is 46.5% better, which guarantees a high SNR with a
high accuracy level. Additionally, the typical generation time is 2.96 s. From a comprehen-
sive analysis of each index, the IG-UAP method proposed in this chapter demonstrates a
superior attack effectiveness and is the most efficient technique for generating voiceprints
compared to the other two iterative methods in the context of a targeted attack. The
method also exhibits excellent generalizability against perturbations and delivers the best
overall performance.

Table 9. Hyperparameters of experiments.

Attack Methods Parameter Type

- α ε Learning Rate Epoch Batch Size Confidence κ Expected Spoofing Rate δ Penalty Factor c

IG-UAP - - 0.0002 100 32 20 0.1 0.15

C&W-UAP 0.1 - 0.0001 100 32 - - -

MSCW-UAP 1.5 - 0.001 100 32 - - -

Table 10. The success rate of IG-UAP on multiple target models.

Attack Methods
Evaluation Indicators

ASR/% Average SNR/dB Average Spawn Time/s

IG-UAP 86.7 28.145 2.96

PGD-UAP 40.2 27.835 4.22

MSCW-UAP 84.5 21.271 11.24

For the problem of large differences in the number of samples in different datasets,
there may be cases where the number of samples in the dataset is small, therefore, under
the condition of taking a single sample for each category in the UrbanSound8k dataset, the
IG-UAP algorithm was used to test and experimentally analyze the target attack on the
1DCNN Gamma model, and the experimental hyperparameters were as shown in Table 6,
in which horizontal coordinates 0 to 9 represent the categories in the UranSound8k dataset,
respectively, as follows: air_conditioner, car_horn, children_playing, dog_bark, drilling,
engine_idling, gun_shot, jackhammer, siren, and street_music. The ASR mixing matrix of
the experimental results is shown in Figure 9.

When selecting jackhammer as the target category, the effectiveness of the targeting
model is closely tied to the level of brightness in the mixing matrix. The darker the color,
the greater the likelihood of successful classification into the target category, resulting in a
better target attack. Conversely, the lighter the color, the lesser the chance of classification,
indicating a less effective target attack. It is important to note that technical term abbre-
viations should be explained when first used. Regular author and institution formatting
should also be maintained. According to the mixing matrix in Figure 9, the column ded-
icated to the jackhammer category appears darker in color when compared to the other
categories, and it shows the highest probability for being classified as jackhammer during
prediction, with a minimum likelihood of 82.4% and a maximum of 90.2%. Therefore, it
can be demonstrated that the IG-UAP targeting performance is reliable and effective, even
in a small dataset sample size.

6.4. Summary of the Experiment

In this chapter, evaluation metrics comprise the attack success rate, average signal-
to-noise ratio, and loudness of the adversarial samples. Comparative experiments are
conducted using the IG-UAP method to analyze five different acoustic pattern classification
models under untargeted-attack and targeted-attack scenarios. In the untargeted attack,
the five voiceprint classification models achieve an average attack success rate of 85.8%,
with the lowest and highest values being 82.9% and 90.4%, respectively. The average
signal-to-noise ratio is 22.451 dB, ranging from 18.425 dB to 29.886 dB, while the average
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loudness is −17.384, with the lowest and highest values being −26.214 and −11.320. For
jackhammer as the targeted attack category, the average success rate of the five acoustic
classification models was 84.9%, with a minimum rate of 81.2% and a maximum of 90.9%.
The average signal-to-noise ratio was 24.985 dB, with a range of 21.146 dB to 30.241 dB, and
the average loudness was 19.858, with a minimum of −30.126 and a maximum of −13.997.
Among the evaluation indices, the Generic Sound Generated Against Perturbation can be
attacked effectively, and it exhibits consistent performance with minimal data variation.

Figure 9. ASR confusion matrix.

In this paper, the evaluation indexes include the attack success rate, average signal-
to-noise ratio, and average generation time of the adversarial samples. Using the IG-UAP
method, we compare and analyze experimentally five similar acoustic UAP generation
methods in both untargeted-attack and targeted-attack scenarios. Additionally, technical
abbreviations are explained upon first use. In an untargeted attack, the IG-UAP achieves
an 85.6% success rate, significantly surpassing the results of the four other generation
methods. Its average generation time is 2.47 s, with only a 2 s difference from the fastest
FGSM-UAP method. Additionally, the IG-UAP produces an average SNR of 20.551 dB,
making it a highly effective tool for auditory masking. In the given targeted attack aimed
at the dog_dark category, the IG-UAP method exhibits optimal evaluation indices. The
attack success rate reaches 86.7%, and the average SNR is 28.145 dB. Additionally, the
average generation time stands at 2.96 s. Conclusively, the IG-UAP method provides better
acoustic generalization when dealing with perturbations as compared to other similar
generation methods.

7. Conclusions

In this paper, the IG-UAP based method is elaborated in detail, including the symbolic
description and detailed algorithmic flow of the IG-UAP method. The IG-UAP method
guides the generation process of generic acoustic antiperturbation by using an influence
function to attack the acoustic target classification model. To verify the method’s effective-
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ness, we conducted a series of experimental tests and analyses. Firstly, we compared it with
similar methods in two cases: target attack and no target attack. The experimental results
showed that the acoustic genericity antiperturbation generated using the IG-UAP method
has a significant advantage in terms of attack effectiveness. Additionally, the experiments
involved selecting and testing five distinct acoustic target classification models. The results
of the experiments demonstrate that the acoustic generality adversarial perturbation gener-
ated by the IG-UAP method can effectively attack these diverse models, thus confirming
the method’s effectiveness and robustness. Based on these experimental results, it can
be concluded that the IG-UAP method is an effective acoustic pattern adversarial attack
method. It can generate acoustic pattern adversarial perturbations that deceive acoustic
pattern target classification models with generality.
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