
Citation: Dobrilovic, D.; Pekez, J.;

Ognjenovic, V.; Desnica, E. Analysis of

Using Machine Learning Techniques

for Estimating Solar Panel

Performance in Edge Sensor Devices.

Appl. Sci. 2024, 14, 1296. https://

doi.org/10.3390/app14031296

Academic Editor: Maria Vicidomini

Received: 29 December 2023

Revised: 28 January 2024

Accepted: 1 February 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Analysis of Using Machine Learning Techniques for Estimating
Solar Panel Performance in Edge Sensor Devices
Dalibor Dobrilovic, Jasmina Pekez * , Visnja Ognjenovic and Eleonora Desnica

Technical Faculty “Mihajlo Pupin” Zrenjanin, University of Novi Sad, 23000 Zrenjanin, Serbia;
dalibor.dobrilovic@tfzr.rs (D.D.); visnja.ognjenovic@tfzr.rs (V.O.); eleonora.desnica@tfzr.rs (E.D.)
* Correspondence: jasmina.pekez@tfzr.rs

Featured Application: This paper presents a methodology for the implementation of edge intelli-
gence for predicting solar panel performances on wireless sensor nodes.

Abstract: The importance of the usage of renewable energy sources in powering wireless sensor
nodes in IoT and sensor networks grows together with the increasing number of utilized sensor nodes.
Considering the other types of renewable energy sources, solar power differs as the most suitable
one and emerges as the major source for powering sensor nodes. Thus, the consideration of using
sensor nodes and collected sensor data for estimating solar panel performances and therefore solar
power potential can improve the efforts in this direction. This paper presents the methodology for
implementing edge intelligence on wireless sensor nodes for solar panel output voltage estimation and
forecasting. The methodology covers the usage of the Python Scikit-learn package and micromlgen
library for the implementation of edge intelligence on Arduino clone-based sensor nodes, particularly
the development boards based on the ESP8266 chips. Scikit-learn is used for analyzing the efficiency of
various regressors on collected solar data. The micromlgen library is then used for implementing those
regressors on Arduino and clone nodes. The prediction of solar panel voltage generation is based on a
single-sensor reading—UV or BH1750 light sensor. The Random Forest and Decision Tree regressors
are implemented on the ESP8266-based development board—Wemos D1 R2. The estimation accuracy
of the RF model is an MSE of approximately 0.10, MAE of 0.07 for UV and 0.04 for BH1750, and an R2

of approximately 0.93 for both UV and BH1750 light sensors. The Decision Tree model has a lower
accuracy with an MSE between 0.13 and 0.14, MAE of 0.07 for UV and 0.04 for BH1750, and R2 of
0.90 and 0.89 for the UV and BH1750 sensors, respectively. The methodology and its efficiency are
presented and discussed in this paper.

Keywords: solar panel performance; solar power potential estimation; Arduino edge intelligence;
Scikit-learn library; micrgenml library

1. Introduction

In recent years, we have witnessed the expansion of an edge computing approach
in building complex and distributed IT systems. This expansion is accompanied by the
growing tendency to implement machine learning (ML) in edge devices. Thus, edge
computing (EC) with integrated ML facilitates the main goal of the EC paradigm, moving
data processing to edge devices and reducing the latency caused by cloud-based processing.
All these goals are further enhanced with machine learning techniques utilized to increase
the efficiency of the edge nodes.

This paper deals with the importance of the usage of renewable energy sources in a
particular field of interest covering IoT systems and sensor networks. This paper targets
the problem of powering the sensor node, especially in complex systems. The importance
of powering wireless sensor nodes in IoT and sensor networks grows together with the
increasing number of utilized sensor nodes. The complexity of the system, the larger

Appl. Sci. 2024, 14, 1296. https://doi.org/10.3390/app14031296 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031296
https://doi.org/10.3390/app14031296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0454-5326
https://doi.org/10.3390/app14031296
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031296?type=check_update&version=2

Appl. Sci. 2024, 14, 1296 2 of 15

number of nodes, and the dispersity and non-easy reachability of the locations where the
sensor nodes are deployed increase the importance of efficient powering of sensor nodes.
Considering the available types of renewable energy sources, solar power distinguished
itself as the most suitable one and emerged as the major source for powering sensor nodes.
So, the consideration of using sensor nodes and collecting sensor data for estimating solar
panel performances and therefore solar panels and power potential can improve the efforts
in this direction.

The utilization of artificial intelligence (AI) on sensor nodes results in the attainment
of edge intelligence (EI). EI represents the data analysis and solution recommendations at
the point where the data are generated or acquired, thus saving the time and sometimes
bandwidth of the sensor networks. Generally, edge intelligence means the implementation
of AI at the far end of IoT and sensor networks, more precisely on sensor nodes and
microcontroller boards.

EI [1] can improve the process of the collection of solar radiation data and make the
estimation of solar panel performance more efficient and more accurate. In addition, the
utilization of edge intelligence can make solar radiation data collection more massive and
can be enabled on the sensor nodes without solar panels.

In an effort to define and simplify the process of the efficient implementation of AI on
sensor nodes in existing and future sensor networks, this paper presents the methodology
for implementing edge intelligence on wireless sensor nodes for solar panel performance
(voltage output) estimation and forecasting.

The AI on the edge devices is used to predict solar panel behavior depending on
various ambient parameters (visible and UV light intensity, air temperature humidity, and
solar panel temperature). AI-enhanced estimation should enable the estimation of solar
panel performance at sensor stations without solar panels—with the usage of other sensors.

Generally, PV module performance parameters are evaluated based on I–V and P–V
curves and numerous other parameters [2]. In this research, we used the open-circuit
voltage (Voc) parameter. Voc is measured under the standard test (STC) or real-time
operating conditions. It is measured with a voltmeter or voltage sensor when the panel is
not connected to any equipment. The value of the voltage in this case is generally higher
than the maximum voltage of the panel. There are several reasons for such an approach.
First, open-circuit voltage (Voc) is valuable for system planning to avoid overpowering
electronics; in this case, it is interesting for the potential design of solar-powered sensor
nodes. Second, it is interesting to investigate the influence of light intensity and temperature
on solar panel performance and Voc is suitable for this research due to its dependency.
The third reason is that we wanted to estimate solar panel behavior based on one output
parameter, and we chose Voc because of all the enlisted reasons.

The methodology covers the usage of the Python Scikit-learn package and micromlgen
library for the implementation of edge intelligence on Arduino sensor nodes. In the begin-
ning, the process and platform designed for collecting solar radiation data are described in
the paper. The Scikit-learn package is used for analyzing the efficiency of various regressors
applied to collected solar data. The micromlgen library is then used for implementing
those regressors on Arduino clone nodes, in this case on ESP8266-based sensor boards.
The results of this implementation as well as its efficiency are presented and discussed in
this paper.

The contribution of this paper presents the methodology for implementing edge
intelligence for estimating the potential solar panel performance on the sensor nodes
without solar panels, thus leading to the collection of valuable data for the potential
redesign of non-solar-powered sensor nodes, at specific micro-locations, to solar-powered
sensor nodes.

The difference in the methodology presented in this paper compared to other solutions
is that all other solutions use field real-time measurements, with actual sensors for physical
parameters that are monitored. Our solution differs because it uses regression methods
implemented in edge devices (sensor nodes) to predict the values of physical parameters

Appl. Sci. 2024, 14, 1296 3 of 15

without existing sensors for that specific parameter. In our proposal, the edge devices have
implemented various regression methods to predict parameters of non-existing sensors,
based on existing sensors installed for other purposes.

This paper is organized as follows. After the introduction section, the state of the art is
presented. In the next section, the proposed methodology is presented in detail. Then, the
results of the proposed implementation method are presented and discussed. Finally, the
conclusion and further work are discussed.

2. Related Works

According to [3], the growth, development, and popularity of the IoT and big cloud
services caused the need for edge computing. Edge intelligence or edge AI represents the
combination of edge computing (EC) and distributed computing. In such environments,
data processing is relocated from the cloud to the network edge. The goal is to implement
computing and data storage nodes on edge devices, e.g., mobile devices or sensors. This
goal is facilitated by the rapid changes and development in recent years [4]. As stated in [5],
the main significance of EC is as follows:
■ The combination of sensor technology and edge devices impacts efficient real-time

data acquisition, especially in smart buildings and smart home systems;
■ There is evident growth in edge-oriented communication technologies, e.g., device-to-

device (D2D) communication;
■ EC is targeted as an important component of edge intelligence, helping in reducing

the response time, network traffic, and latency and saving energy and bandwidth;
■ Edge devices store temporary real-time information;
■ There is the possibility of extensive use of mobile phones as the edge devices;
■ Edge devices can achieve significant collaboration taking advantage of their mobility,

proximity, and deployment.

There are numerous examples of using edge intelligence for monitoring and managing
solar panels. In [6], EI enables the integration of solar energy into the electrical grid and
solves problems related to solar energy production. A remote monitoring system with an
integrated artificial neural network (ANN) for detecting shading in photovoltaic panels is
presented in [7]. Paper [8] presents a system that uses Siamese-twin neural networks for
anomaly detection. The system is implemented in a solar farm on edge devices based on a
Raspberry PI, Nvidia Nano, and Google Coral. Authors from [9] propose a framework for
the detection of anomalies in decentralized photovoltaic plants. This proposal contributes
to hybridization between edge, fog, and cloud layers.

Because Arduino-based clones are used in this research, it is important to show how
popular Arduino is in academic institutions for research and education. The authors
of [10] justified the popularity of Arduino development boards by analyzing the number
of Arduino-based scientific papers. The research covers the period from 2010 to 2020 and
shows constant growth in the platform’s usage.

Further, the examples of the implementation of AI on Arduino-based development
boards are presented in the following papers. Paper [11] proposes a real-time non-intrusive
load classification (RT-NILC) IoT-based system with an Arduino-based data acquisition sys-
tem. In [12], a small-scale two-wheel system connected to a control unit is developed using
an ARDUINO Uno Rev3 microcontroller and a Support Vector Regression (SVR) model.

The Arduino UNO boards have certain limitations considering their memory and
processing capabilities. In addition, they do not have integrated network connectivity
modules. The low-cost Arduino-clone development boards based on ESP8266 chips, such
as NodeMCU and equivalent ESP32-chip-based boards, have integrated Wi-Fi, and in the
case of ESP32, Wi-Fi and Bluetooth Low Energy (BLE) connectivity. Paper [13] proposes a
low-cost parking management system. The system is based on the Alibaba Cloud platform,
machine learning, and an ESP8266-based Arduino-clone development board as a control
module. In addition, [14] presents a similar ESP866 Wi-Fi module garbage management
system for monitoring flame and several other ambient parameters. In [15], Node MCU

Appl. Sci. 2024, 14, 1296 4 of 15

ESP8266 is used to monitor the quality of soil and predict crop types suitable for the
monitored location [15]. ESP8266 is also used in the system for recognizing the character
gestures [16]. Here, KNN (K-Nearest Neighbours), Decision Tree, and SVM (Support Vector
Machine) classifications are implemented. The same development board is used in the
system for real-time weather prediction systems [17].

Similar but newer and more advanced ESP32-based development boards implemented
with ML are used in the following projects. The authors present the Wi-CaL crowd counting
and localization system [18] with implemented machine learning (ML) and deep learning
(DL). ESP32 also used machine learning in [19] for distance estimation appliances in real
time. Paper [20] analyses the feasibility of deploying deep networks on ESP32 devices with
TensorFlow. Research presented in [21] proposes the use of IoT and ML in hydroponic
systems. The goal of the system is to enhance the growth of Holy Basil. The research [22]
presents the Respiration DT (ResDT) model based on Wi-Fi Carrier State Information (CSI).
The model uses machine learning for the monitoring and classification of patient respiration.

Furthermore, it is interesting to investigate the utilization of ML in evaluating and esti-
mating solar panel performance. The authors of [23] suggest a decision-making model data
processing technique and machine learning. The research findings justify the implementa-
tion of data science and machine learning in a solar PV panel cleaning system. Paper [24]
introduces semi-supervised learning and one-class classification methods based on autoen-
coders. The presented methodology improves the nonlinear data representation of solar
behavior. The authors in [25] evaluated more than 100 research articles to investigate ML
implementation in solar cell fabrication. The findings show that the Random Forest (RF),
linear regression (LR), XGBoost, and artificial neural network (ANN) algorithms are the
most commonly employed techniques. Further, research results show XGBoost’s superior
performance in optoelectronic prediction, while RF, LR, and ANN algorithms are better
suited for predicting electrical parameters. The review of existing machine learning (ML)
approaches used in PV power forecasting, focusing on short-term horizons, is presented
in [26]. The overview contains factors affecting solar PV power forecasting.

It is interesting to examine the tools for implementing ML in edge devices. TinyML
supports running machine learning at embedded edge devices with limited processor and
memory resources. The important issue for edge devices is power consumption, which
should be minimal. So, TinyML enables migration to low-power IoT-based embedded edge
devices and allows the development of novel applications without the need for processing
on the cloud [27–29]. The overview of TinyML benefits is given in [30]. Authors in [30]
conclude that TinyML is considered a promising AI alternative for extremely low-profile
devices. The article [31] presents prediction methods based on artificial neural network
(ANN) models. TinyML allows importing pre-trained ML models on the edge devices,
thus achieving ML-as-a-Service (MLaaS). Paper [32] presents a TinyMLaaS (TMLaaS)
architecture that presents several design variations in terms of energy consumption, security,
privacy, and latency.

The implementation of TinyML is possible with the numerous frameworks. A good
overview of TinyML frameworks is given in [28,29], and benefits are given in [33]. One
of these frameworks is Micromlgen [34], and this framework is used in this research. The
contribution presented in this paper is a methodology developed for the efficient imple-
mentation of ML on sensor nodes to estimate solar panel performance. The estimation
should be made on sensor nodes not having solar panels; thus, it will be applicable for
already designed and deployed sensor nodes, which can be used for estimating the solar
potential of the current sensor location and its feasibility for upgrading solar-powered sen-
sor nodes. This method includes the definition of the toolset: Python, Scikit-learn package,
micromlgen library, and ESP8266-based development boards. This paper evaluates the
methodology by evaluating the model’s accuracy. The proposed methodology is based on
previous authors’ experience with wireless sensor networks and industrial IoT presented
in [35], the implementation of AI on Arduino clone boards [36], and solar radiation data
acquisition [37].

Appl. Sci. 2024, 14, 1296 5 of 15

3. Methodology

This paper presents the methodology for using Python and solar radiation data to
implement edge intelligence on Arduino devices for estimating solar panel outputs. The
methodology is presented in Figure 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 17

sensor nodes. This method includes the definition of the toolset: Python, Scikit-learn pack-
age, micromlgen library, and ESP8266-based development boards. This paper evaluates
the methodology by evaluating the model’s accuracy. The proposed methodology is based
on previous authors’ experience with wireless sensor networks and industrial IoT pre-
sented in [35], the implementation of AI on Arduino clone boards [36], and solar radiation
data acquisition [37].

3. Methodology
This paper presents the methodology for using Python and solar radiation data to

implement edge intelligence on Arduino devices for estimating solar panel outputs. The
methodology is presented in Figure 1.

Figure 1. Methodology for implementing edge intelligence on Arduino and clone boards.

The proposed methodology for implementing AI on Arduino boards consists of the
following steps:
(1) Initial solar radiation data collection with the platform that will be described in the

following text.
(2) Pre-processing of collected results on PC (external) and preparation for further pro-

cessing.
(3) Analyses of solar radiation data using Python and the Scikit-learn package.
(4) Model accuracy comparison, based on collected and processed results.
(5) The selection of the model to be implemented at the edge devices, in this case, Ar-

duino clone platform based on ESP8266 chip, and selection of a tool for implementing
the model.

(6) Building libraries for porting to the Arduino clone ESP8266-based platform using the
selected tool.

(7) Building the code for the selected platform.
(8) Testing platform and comparison of the test results with real measurements.
(9) Evaluation of the results and comparison; if the results are not valid, return to step 1

or step 2 to correct the irregularities or to improve the process.
(10) If the results are valid, proceed to the implementation of the selected method.

Figure 1. Methodology for implementing edge intelligence on Arduino and clone boards.

The proposed methodology for implementing AI on Arduino boards consists of the
following steps:

(1) Initial solar radiation data collection with the platform that will be described in the
following text.

(2) Pre-processing of collected results on PC (external) and preparation for further processing.
(3) Analyses of solar radiation data using Python and the Scikit-learn package.
(4) Model accuracy comparison, based on collected and processed results.
(5) The selection of the model to be implemented at the edge devices, in this case, Arduino

clone platform based on ESP8266 chip, and selection of a tool for implementing
the model.

(6) Building libraries for porting to the Arduino clone ESP8266-based platform using the
selected tool.

(7) Building the code for the selected platform.
(8) Testing platform and comparison of the test results with real measurements.
(9) Evaluation of the results and comparison; if the results are not valid, return to step 1

or step 2 to correct the irregularities or to improve the process.
(10) If the results are valid, proceed to the implementation of the selected method.

To present the whole methodology, it is important to describe the following compo-
nents: the solar data collection platform, Python and related packages used for implement-
ing machine learning and different regressors (Numpy [38], Pandas [39,40], Scikit-learn [41],
Micromlgen), and the process of evaluation using Arduino clone devices (in this case,

Appl. Sci. 2024, 14, 1296 6 of 15

ESP8266-based microcontrollers). In addition, the Matplotlib [42] and Seaborn [43] libraries
are used for data visualization.

3.1. The Platform for Solar Data Collection and Analyses

The platform for solar data collection is presented in another paper and described
there in more detail [35], and it is shown in Figure 2.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 17

To present the whole methodology, it is important to describe the following compo-
nents: the solar data collection platform, Python and related packages used for imple-
menting machine learning and different regressors (Numpy [38], Pandas [39,40], Scikit-
learn [41], Micromlgen), and the process of evaluation using Arduino clone devices (in
this case, ESP8266-based microcontrollers). In addition, the Matplotlib [42] and Seaborn
[43] libraries are used for data visualization.

3.1. The Platform for Solar Data Collection and Analyses
The platform for solar data collection is presented in another paper and described

there in more detail [35], and it is shown in Figure 2.

Figure 2. The solar data collection platform is based on Arduino.

The platform design based on Arduino for solar radiation data acquisition was as
follows:
 Arduino UNO Rev3 (1);
 Voltage sensor (2);
 Light sensor—BH 1750 (3);
 UV sensor (4);
 DHT-22 temperature and humidity sensors (5) and (6);
 TMP36 temperature sensor for panel temperature (7);
 PC for external data processing (8);
 Solar panel: 81 × 137 mm 1.5 W 270 mA 5.5 V (9).

3.2. Collected Solar Data Analyses
The collected solar data were analyzed. The purpose of the analysis in this stage is to

determine which sensor readings have the greatest impact on predicting solar panel out-
put voltage. These analyses are based on using a Multi-Layer Perceptron regressor (MLP
regressor) in Python with the Scikit-learn package. The Scikit-learn package supports
more than 25 regressors, but the MLP regressor is chosen for the initial analyses following
the positive experience and good results in previous analyses and works. Although gen-
erally unsuitable for non-linear regressions, R2 is the standard method in Scikit-learn li-
brary metrics, and it can show which used methods can have non-linear results and can
be particularly indicative when R2 has negative values. Also, a certain number of models
used in further research belong to the linear regression model family. We used the R2 score
in combination with other parameters such as MSE and MAE to detect suitable regressors
for further implementation of AI. The results presented in Table 1 show that the best esti-
mation can be achieved with the Lux sensor (BH1750) in combination with the UV sensor
(RMSE of 0.08, MAE of 0.24, and R2 score of 0.9650) and with the Lux sensor only (0.08,

Figure 2. The solar data collection platform is based on Arduino.

The platform design based on Arduino for solar radiation data acquisition was as follows:
■ Arduino UNO Rev3 (1);
■ Voltage sensor (2);
■ Light sensor—BH 1750 (3);
■ UV sensor (4);
■ DHT-22 temperature and humidity sensors (5) and (6);
■ TMP36 temperature sensor for panel temperature (7);
■ PC for external data processing (8);
■ Solar panel: 81 × 137 mm 1.5 W 270 mA 5.5 V (9).

3.2. Collected Solar Data Analyses

The collected solar data were analyzed. The purpose of the analysis in this stage is
to determine which sensor readings have the greatest impact on predicting solar panel
output voltage. These analyses are based on using a Multi-Layer Perceptron regressor (MLP
regressor) in Python with the Scikit-learn package. The Scikit-learn package supports more
than 25 regressors, but the MLP regressor is chosen for the initial analyses following the
positive experience and good results in previous analyses and works. Although generally
unsuitable for non-linear regressions, R2 is the standard method in Scikit-learn library
metrics, and it can show which used methods can have non-linear results and can be
particularly indicative when R2 has negative values. Also, a certain number of models used
in further research belong to the linear regression model family. We used the R2 score in
combination with other parameters such as MSE and MAE to detect suitable regressors for
further implementation of AI. The results presented in Table 1 show that the best estimation
can be achieved with the Lux sensor (BH1750) in combination with the UV sensor (RMSE
of 0.08, MAE of 0.24, and R2 score of 0.9650) and with the Lux sensor only (0.08, 0.22, and
0.97, respectively). The next single sensor with the highest accuracy is the UV sensor (0.1,
0.29, and 0.94, respectively).

After the recognition of the estimation accuracy of various combinations of sensors
separately, this research continues to explore the efficiency of the two most efficient sensors,
BH1750 and UV. For this task, Python is used in combination with the Scikit-learn package.

Appl. Sci. 2024, 14, 1296 7 of 15

Table 1. Comparison of various sensor combinations with MLP regressor in the estimation of solar
panel output.

Sc. No. Input Data R2 RMSE MAE EVS Max. Err

1 Lux, UV_Raw, Temp_DHT22, Hum_DHT22, Temp_TMP36 0.9521 0.0904 0.2705 0.9529 0.2078
2 Lux, UV_Raw, Temp_DHT22, Temp_TMP36 0.8926 0.1354 0.3156 0.8942 0.4926
3 Lux, UV_Raw, Temp_TMP36 0.9535 0.0891 0.2662 0.9556 0.2113
4 UV_Raw, Temp_TMP36 0.9581 0.0845 0.2583 0.9604 0.2122
5 Lux, UV_ITeadRaw 0.9618 0.0807 0.2401 0.9654 0.2460
6 Lux 0.9650 0.0772 0.2278 0.9661 0.3188
7 Temp_DHT22 0.3548 0.3318 0.3843 0.3749 2.1943
8 Hum_DHT22 −0.3656 0.4827 0.4820 0.3109 2.6242
9 Temp_TMP36 0.4444 0.3079 0.3475 0.4565 2.1791

10 UV_Raw 0.9424 0.0991 0.2895 0.9478 0.1995

4. Results

The results of using Python and 28 regressors supported by the Scikit-learn package
are shown in Table 2. In the case of estimating the solar panel output voltage based on
joint BH1750 and UV sensor readings and considering the R2 score, Random Forest, MLP,
and KNN regressors are identified as the most efficient regressors with a score of 0.95 and
higher. The XGBoost, Gradient Boosting, Decision Tree, SVR, and Extra Trees are similarly
efficient with a score of 0.90 or higher. The impact of the accuracy of the single-sensor-based
estimation is slightly different. For example, for BH1750 only, the R2 scores are 0.97894 for
Random Forest, 0.96298 for K-Neighbors, 0.89068 for XGBoost, 0.61396 for SVR, 0.90218
for Gradient Boosting, 0.88959 for Decision Tree, and 0.95015 for Ex Trees. For UV single-
sensor reading, the R2 results for various regressors are 0.90521 for XGBoost, 0.95892 for
Random Forest, 0.90604 for SVR, 0.90652 for Gradient Boosting, 0.95037 for MLP, 0.94961
for K-Neighbors, 0.89174 for AdaBoost, 0.90451 for Decision Tree, 0.90952 for Extra Trees,
and 0.88147 for Voting. In both cases, the single-sensor impact is less accurate than the
two-sensor estimation but still usable.

The R2 score comparison for two sensors simultaneously is shown in Figure 3. The
comparison of regressors is evaluated further with MSE and MAE metrics, as shown in the
following figures.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 17

Figure 3. Comparison of R2 score for different Scikit-learn regressors.

The comparison of MSE metrics is given in Figure 4.

Figure 4. Comparison of MSE for different Scikit-learn regressors.

The comparison of MAE metrics is given in Figure 5.

Figure 3. Comparison of R2 score for different Scikit-learn regressors.

Appl. Sci. 2024, 14, 1296 8 of 15

The comparison of MSE metrics is given in Figure 4.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 17

Figure 3. Comparison of R2 score for different Scikit-learn regressors.

The comparison of MSE metrics is given in Figure 4.

Figure 4. Comparison of MSE for different Scikit-learn regressors.

The comparison of MAE metrics is given in Figure 5.

Figure 4. Comparison of MSE for different Scikit-learn regressors.

The comparison of MAE metrics is given in Figure 5.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 17

Figure 5. Comparison of MAE for different Scikit-learn regressors.

4.1. The Arduino Implementation
After the model accuracy comparison (phase 4), the next phase in the methodology

is model and tool selection (phase 5). Considering the model accuracy and available tools
for the implementation of tested models on the edge device, the Python library microm-
lgen is considered for this phase. The idea of this phase is to use the aforementioned ma-
chine-learning models as a tool for estimating solar panel output voltage. So, with this
idea, we can use existing wireless sensor nodes equipped with visible light and UV sen-
sors to estimate the solar potential of the location where the sensor node is deployed. The
intelligent sensor platform with the implemented AI and a reduced number of sensors
and without solar panels is given in Figure 6.

Figure 6. The sensor network platform with implemented AI.

Figure 5. Comparison of MAE for different Scikit-learn regressors.

4.1. The Arduino Implementation

After the model accuracy comparison (phase 4), the next phase in the methodology is
model and tool selection (phase 5). Considering the model accuracy and available tools for
the implementation of tested models on the edge device, the Python library micromlgen
is considered for this phase. The idea of this phase is to use the aforementioned machine-
learning models as a tool for estimating solar panel output voltage. So, with this idea,
we can use existing wireless sensor nodes equipped with visible light and UV sensors
to estimate the solar potential of the location where the sensor node is deployed. The

Appl. Sci. 2024, 14, 1296 9 of 15

intelligent sensor platform with the implemented AI and a reduced number of sensors and
without solar panels is given in Figure 6.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 17

Figure 5. Comparison of MAE for different Scikit-learn regressors.

4.1. The Arduino Implementation
After the model accuracy comparison (phase 4), the next phase in the methodology

is model and tool selection (phase 5). Considering the model accuracy and available tools
for the implementation of tested models on the edge device, the Python library microm-
lgen is considered for this phase. The idea of this phase is to use the aforementioned ma-
chine-learning models as a tool for estimating solar panel output voltage. So, with this
idea, we can use existing wireless sensor nodes equipped with visible light and UV sen-
sors to estimate the solar potential of the location where the sensor node is deployed. The
intelligent sensor platform with the implemented AI and a reduced number of sensors
and without solar panels is given in Figure 6.

Figure 6. The sensor network platform with implemented AI. Figure 6. The sensor network platform with implemented AI.

Table 2. Comparison of various Scikit-learn supported regressors in the estimation of solar panel
output based on UV sensor readings.

Regression R Score R2 Score MSE EVS Max. Err MAE MSL MAP MedAE

Bayes R 0.551882 0.371885 0.107154 0.413385 1.419959 0.190234 0.003582 0.038744 0.066796
ARD −0.00198 −0.03552 0.176656 −2.22 × 1016 2.594436 0.245601 0.00595 0.051628 0.205564

Linear 0.551602 0.370364 0.107414 0.411879 1.416933 0.190599 0.003588 0.038805 0.066233
XGB 0.96898 0.905209 0.016171 0.911202 0.705034 0.074994 0.000402 0.013361 0.050822

Cat Boost 0.858901 0.807068 0.032914 0.811086 0.669619 0.119967 0.001098 0.023656 0.100901
Krnl Rdg −7.52032 −13.6857 2.505323 −11.5554 4.595392 0.905294 0.192135 0.176634 0.232028
Rnd Frst 0.96632 0.958924 0.007007 0.961693 0.219079 0.066961 0.00016 0.011924 0.052773

SVR 0.942443 0.906048 0.016028 0.917416 0.277325 0.10573 0.000419 0.019669 0.109814
GB 0.96921 0.90652 0.015947 0.9123 0.699241 0.073867 0.000396 0.013157 0.050819

MLP 0.960045 0.950374 0.008466 0.955407 0.19942 0.07822 0.000195 0.01403 0.081658
El Net 0.552002 0.372548 0.107041 0.414041 1.421286 0.190074 0.00358 0.038717 0.067043
SGD 0.543944 0.339704 0.112644 0.413088 1.391616 0.198231 0.003718 0.040097 0.09443

LGBM 0.431142 0.206002 0.135453 0.250426 1.674311 0.187298 0.004571 0.038722 0.097639
Lasso 0.551684 0.370802 0.107339 0.412313 1.417802 0.190494 0.003586 0.038787 0.066395
LARS −0.00198 −0.03552 0.176656 −2.22 × 1016 2.594436 0.245601 0.00595 0.051628 0.205564

RANSAC 0.50913 0.492829 0.086522 0.49596 1.88031 0.136337 0.003298 0.02977 0.0827
Theil–Sen −5.46248 −10.282 1.924665 −8.75078 4.012532 0.805855 0.11491 0.156262 0.226623

Huber 0.46951 0.478527 0.088961 0.479205 1.997051 0.132971 0.003442 0.02956 0.090452
Quantile 0.183056 0.23943 0.129751 0.316501 2.459665 0.144412 0.004771 0.033602 0.058078
Pass Agr −16.7823 −26.9486 4.767939 −18.8068 3.865447 2.092106 N/A 0.380279 2.171411
Tweedie 0.551603 0.37037 0.107413 0.411885 1.416945 0.190597 0.003588 0.038805 0.066235

GPR 0.49625 0.181773 0.139587 0.260354 1.158412 0.222909 0.004401 0.044228 0.075856
KNeigh 0.96924 0.949614 0.008596 0.94964 0.355 0.063333 0.000202 0.011335 0.035
Dummy −0.00198 −0.03552 0.176656 −2.22 × 1016 2.594436 0.245601 0.00595 0.051628 0.205564
Poisson −0.0017 −0.03552 0.176656 −2.22 × 1016 2.594436 0.245601 0.00595 0.051628 0.205564

AdaBoost 0.960807 0.891735 0.01847 0.909818 0.71 0.093959 0.000453 0.016723 0.085143
Dec Tree 0.968853 0.904517 0.016289 0.910219 0.71 0.074304 0.000405 0.013235 0.050795

R2 or coefficient of determination analyzes how differences in one variable can be explained by a difference in a
second variable. Mean squared error (MSE) or mean squared deviation (MSD) calculates the amount of error in
statistical models with the average squared difference between the observed and predicted values. When the MSE
equals zero, the model has no error. The square root of the MSE calculates the root mean squared error (RMSE),
giving the natural data units. MSE is analogous to the variance, and RMSE is analogous to the standard deviation.
MAE (mean squared error) is the amount of error in your measurements and represents the difference between
the measured value and “true” value, a risk metric corresponding to the expected value of the absolute error loss
or -norm loss. EVS (explained variance score) or explained variation is used to measure the discrepancy between
a model and actual data. Max Err. (maximum error) calculates the maximum residual error, a metric that captures
the worst-case error between the predicted value and the true value. MSL (mean squared log error) calculates a
risk metric corresponding to the expected value of the squared logarithmic (quadratic) error or loss. MAP (mean
absolute percentage error) or mean absolute percentage deviation (MAPD) is an evaluation metric for regression
problems, sensitive to relative errors.

Appl. Sci. 2024, 14, 1296 10 of 15

The micromlgen library is suitable for its utilization for several reasons. It is a well-
documented library, with good examples. It is easy to implement, and it works with the
Scikit-learn library, which is already used. The micromlgen library supports classifiers such
as Decision Tree, Random Forest, XGBoost, Gaussian NB, Support Vector Machines (SVC
and OneClassSVM), Relevant Vector Machines (from skbayes.rvm_ard_models package),
and SEFR. The supported regressors are Decision Tree, Random Forest, Linear Regressor,
and Logistic Regressor. The example Python code for building Arduino libraries for the
first two regressors is shown in Listing 1 (phase 6). Decision Tree and Random Forest
regressors are chosen because of their acceptably high accuracy, as shown in the results
presented in Section 3, and because of their inclusion in the micromlgen library.

Listing 1. Section of Python script for building RF and DT regressor libraries.

if __name__ == '__main__':
regrRF = RandomForestRegressor(n_estimators=10, max_depth=10,

min_samples_leaf=5).fit(X_train, y_train)
regrDT = DecisionTreeRegressor(ccp_alpha=0.0, criterion='squared_error',

max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
random_state=0, splitter='best').fit(X_train, y_train)

with open('EdgeAI/RandomForestRegressor.h', 'w') as file:
file.write(port(regrRF))
with open('EdgeAI/DecisionTreeRegressor.h', 'w') as file:
file.write(port(regrDT))

Code with the usage of the Micromlgen library is generated using Arduino IDE and
compiled and uploaded to the ESP8266-based Wemos D1 R2 (phase 7) Arduino clone
development board. Arduino UNO does not have enough capacity for storing and running
this firmware, but ESP8266-based boards do. The ESP8266 board is useful for consideration
due to its in-built Wi-Fi connectivity and usability for wireless sensor nodes in the network.
In this experiment, a variant of the ESP8266-based sensor board, a Wemos D1 R2, is used.

4.2. ESP866 Results

The Micromlgen implemented library in Arduino accuracy compared to Python es-
timation accuracy is shown in Figures 7 and 8 for UV-based sensor estimation and in
Figures 9 and 10 for BH1750-based sensor estimation. The figures show minor differences
between Arduino and Python estimations.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17

Figure 7. ESP8266 implemented RF regressor accuracy based on a UV sensor.

Figure 8. ESP8266 implemented DT regressor accuracy based on a UV sensor.

Figure 7. ESP8266 implemented RF regressor accuracy based on a UV sensor.

Appl. Sci. 2024, 14, 1296 11 of 15

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17

Figure 7. ESP8266 implemented RF regressor accuracy based on a UV sensor.

Figure 8. ESP8266 implemented DT regressor accuracy based on a UV sensor.

Figure 8. ESP8266 implemented DT regressor accuracy based on a UV sensor.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17

Figure 7. ESP8266 implemented RF regressor accuracy based on a UV sensor.

Figure 8. ESP8266 implemented DT regressor accuracy based on a UV sensor.

Figure 9. ESP8266 implemented RF regressor accuracy based on the light sensor.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 17

Figure 9. ESP8266 implemented RF regressor accuracy based on the light sensor.

Figure 10. ESP8266 implemented DT regressor accuracy based on the light sensor.

Table 3 shows the comparison metrics of UV-based Random Forest and Decision Tree
estimations, and BH1750-based (Lux) Random Forest and Decision Tree estimation, re-
spectively. The current results show minor differences in measured values. The second
and third columns give the ESP8266 estimation comparison to Python Scikit-learn esti-
mated values (MSE and MAE), and the fourth and fifth give the ESP8266 comparison met-
rics compared to real measured values (MSE and MAE). The last column shows R2 scores
of ESP8266 estimation compared to measured values.

Table 3. Comparison of DT and RF accuracy implemented on the ESP8266 platform.

Parameters MSE Py МАЕ Py MSE Real MAE Real R2 Real
UV RF 0.10416 0.05263 0.10683 0.06947 0.93309
UV DT 0.17864 0.09456 0.127568 0.07404 0.90461
Lux RF 0.09789 0.05105 0.10278 0.03912 0.93808
Lux DT 0.00000 0.00000 0.13726 0.04509 0.88956

5. Discussion
After the implementation of Micromlgen regressors for ESP8266 devices, the com-

parison of the ESP8266 estimated and real values is analyzed and discussed. The R2 values
of both regressors (DT and RF) are considerably high; therefore, those results can be used
for implementation in this stage of research. The ESP8266 Random Forest regressor has
higher accuracy, with both sensors (an MSE of approximately 0.10, MAE of 0.07 for UV
and 0.04 for Lux, and an R2 of approximately 0.93). DT has slightly lower accuracy (MSE
between 0.13 and 0.14, MAE of 0.07 for UV and 0.04 for Lux, and R2 of 0.90 and 0.89 for
UV and Lux sensors, respectively) in estimating real values compared to RF, but it is still
accurate enough for justified implementation of both methods.

A limitation of the current research is the relatively balanced dataset, which was col-
lected in a relatively short period, during sunny June days, resulting in a relatively small
range of variances of the measured values. The collection of solar radiation data over
much longer periods will be performed in the future and in further phases of this project.

The results of this research are important because they show that the proposed meth-
odology is efficient enough to be implemented already at the sensor nodes. Thus, they can
be deployed as an intelligent form of nodes, as shown in Figure 6, together with classical
solar radiation data collectors presented in Figure 2.

Figure 10. ESP8266 implemented DT regressor accuracy based on the light sensor.

Appl. Sci. 2024, 14, 1296 12 of 15

Table 3 shows the comparison metrics of UV-based Random Forest and Decision
Tree estimations, and BH1750-based (Lux) Random Forest and Decision Tree estimation,
respectively. The current results show minor differences in measured values. The second
and third columns give the ESP8266 estimation comparison to Python Scikit-learn estimated
values (MSE and MAE), and the fourth and fifth give the ESP8266 comparison metrics
compared to real measured values (MSE and MAE). The last column shows R2 scores of
ESP8266 estimation compared to measured values.

Table 3. Comparison of DT and RF accuracy implemented on the ESP8266 platform.

Parameters MSE Py МAЕ Py MSE Real MAE Real R2 Real

UV RF 0.10416 0.05263 0.10683 0.06947 0.93309
UV DT 0.17864 0.09456 0.127568 0.07404 0.90461
Lux RF 0.09789 0.05105 0.10278 0.03912 0.93808
Lux DT 0.00000 0.00000 0.13726 0.04509 0.88956

5. Discussion

After the implementation of Micromlgen regressors for ESP8266 devices, the compari-
son of the ESP8266 estimated and real values is analyzed and discussed. The R2 values of
both regressors (DT and RF) are considerably high; therefore, those results can be used for
implementation in this stage of research. The ESP8266 Random Forest regressor has higher
accuracy, with both sensors (an MSE of approximately 0.10, MAE of 0.07 for UV and 0.04
for Lux, and an R2 of approximately 0.93). DT has slightly lower accuracy (MSE between
0.13 and 0.14, MAE of 0.07 for UV and 0.04 for Lux, and R2 of 0.90 and 0.89 for UV and
Lux sensors, respectively) in estimating real values compared to RF, but it is still accurate
enough for justified implementation of both methods.

A limitation of the current research is the relatively balanced dataset, which was
collected in a relatively short period, during sunny June days, resulting in a relatively small
range of variances of the measured values. The collection of solar radiation data over much
longer periods will be performed in the future and in further phases of this project.

The results of this research are important because they show that the proposed method-
ology is efficient enough to be implemented already at the sensor nodes. Thus, they can be
deployed as an intelligent form of nodes, as shown in Figure 6, together with classical solar
radiation data collectors presented in Figure 2.

6. Conclusions

The importance of the increase in alternative energy sources, especially solar power,
reflects the field of powering electronic devices. In almost the last two decades, the number
of electronic devices has increased multiple times, raising the problem of their electrical
powering. This problem arises more with the introduction of wireless sensor networks, and
even more with IoT and Smart technologies, such as Smart Cities, Smart Agriculture, Smart
Manufacturing, etc. The problem we are facing can be solved with solar-powered sensor
nodes. Therefore, it is very important to find a way for efficient powering of sensor nodes.
This paper proposes a methodology that includes ML for the assessment of the solar panel
performance and solar potential of the sensor node location, in cases when sensor nodes do
not have solar panels.

In summary, this paper presents the methodology for implementing edge intelligence
on sensor nodes. Edge intelligence helps in forecasting solar panel voltage generation.
The methodology uses acquired solar data in building ML models to be implemented on
microcontrollers. The set of tools includes Python, the Scikit-learn package, the micromlgen
library, and ESP8266-based development boards. The proposed model predicts solar
panel voltage generation based on a single-sensor reading using a UV or BH1750 light
sensor. The Random Forest and Decision Tree regressors are implemented on the ESP8266-
based development board—Wemos D1 R2. The estimation accuracy of the RF model is
an MSE of approximately 0.10, an MAE of 0.07 for UV and 0.04 for BH1750, and an R2 of

Appl. Sci. 2024, 14, 1296 13 of 15

approximately 0.93 for both the UV and BH1750 light sensors. The Decision Tree model
has a lower accuracy with an MSE between 0.13 and 0.14, MAE of 0.07 for UV and 0.04 for
BH1750, and R2 of 0.90 and 0.89 for the UV and BH1750 sensors, respectively. Both metrics
justify the usage of the proposed methodology.

Further work should cover analyses of implementing ESP32 sensor boards, and their
comparison with ESP8266 boards. Including multiple sensor readings for predicting voltage
output values of solar panels. Finally, the comparison of other toolsets will be explored in
further research.

Author Contributions: Conceptualization, D.D. and J.P.; methodology, D.D. and V.O.; validation,
D.D., J.P. and E.D.; formal analysis, V.O. and E.D.; investigation, J.P. and E.D.; resources, D.D. and J.P.;
data curation, D.D. and V.O.; writing—original draft preparation, D.D., J.P. and V.O.; writing—review
and editing, E.D. and V.O.; visualization, D.D.; supervision, J.P. and E.D.; project administration, E.D.;
funding acquisition, E.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was conducted through the project “Creating laboratory conditions for
research, development, and education in the field of the use of solar resources in the Internet of
Things”, at the Technical Faculty “Mihajlo Pupin” Zrenjanin, financed by the Provincial Secretariat
for Higher Education and Scientific Research, Republic of Serbia, Autonomous Province of Vojvodina,
project number 142-451-3118/2023-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this article are not readily available because
the data are part of an ongoing study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

ML Machine Learning
DL Deep Learning
AI Artificial Intelligence
EI Edge Intelligence
EC Edge Computing
BLE Bluetooth Low Energy
DT Decision Tree
RF Random Forest
SVM Support Vector Machine
LR Linear Regression
ANN Artificial Neural Network
R2 Coefficient of Determination
RMSE Root Mean Square Error
MAE Mean Squared Error
EVS Explained Variance Score
Max. Err Maximum Error
MAE Mean Absolute Error
MSL Mean Squared Log Error
MAP Mean Absolute Percentage Error
Notifications
Voc Open-circuit Voltage
UV Analog value in the range 0–1023 of the UV sensor readings
Lux BH1750 light sensor calculated value in lux units (lx)
Bayes R Bayesian Ridge regressor
ARD Automatic Relevance Determination (ARD) regressor
Linear Linear regressor
XGB Extreme Gradient Boosting (XGBoost) regressor
Cat Boost CatBoost regressor

Appl. Sci. 2024, 14, 1296 14 of 15

Krnl Rdg Kernel Ridge regressor
Rnd First Random Forest regressor
SVR Support Vector Regression (SVR) regressor
GB Gradient Boosting regressor
MLP Multi-layer Perceptron (MLP) regressor
El Net Elastic Net regressor
SGD Stochastic Gradient Descent (SGD) regressor
LGBM Light Gradient-Boosting Machine (LightGBM)
Lasso Least Absolute Shrinkage and Selection Operator (Lasso) regressor
LARS Least-angle regression (LARS) regressor
RANSAC RANdom SAmple Consensus (RANSAC) regressor
Theil–Sen Theil–Sen regressor
Huber Huber regressor
Quantile Quantile regressor
Pass Agr Passive Aggressive regressor
Tweedie Tweedie regressor
GPR Gaussian Process (GPR) regressor
KNeigh k-Nearest Neighbors regressor
Dummy Dummy regressor
Poisson Poisson regressor
AdaBoost Ada Boost regressor
Dec Tree Decision Tree

References
1. Peltonen, E.; Ahmad, I.; Aral, A.; Capobianco, M.; Ding, A.Y.; Gil-Castineira, F.; Gilman, E.; Harjula, E.; Jurmu, M.; Karvonen, T.;

et al. The Many Faces of Edge Intelligence. IEEE Access 2022, 10, 104769–104782. [CrossRef]
2. Kumar, N.M.; Chopra, S.S.; de Oliveira, A.K.V.; Ahmed, H.; Vaezi, S.; Madukanya, U.E.; Castanon, J.M. Solar PV module

technologies. In Photovoltaic Solar Energy Conversion—Technologies, Applications and Environmental Impacts, 1st ed.; Gorjian, S.,
Shukla, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 51–78.

3. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
4. Rodriguez, E.V.; Pérez, M.A.; Torre-Bastida, A.I.; Senderos, C.R.; López-de-Armentia, J. Edge intelligence secure frameworks:

Current state and future challenges. Comput. Secur. 2023, 130, 103278. [CrossRef]
5. Zhang, Y.; Jiang, C.; Yue, B.; Wan, J.; Guizani, M. Information fusion for edge intelligence: A survey. Inf. Fusion 2022, 81, 171–186.

[CrossRef]
6. Ashif, M.; Mahjabeen, F. Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. Int. J.

Multidiscip. Sci. Arts 2023, 2, 117–127.
7. Abdallah, F.S.M.; Abdullah, M.; Musirin, I.; Elshamy, A.M. Intelligent solar panel monitoring system and shading detection using

artificial neural networks. Energy Rep. 2023, 9, 324–334. [CrossRef]
8. Sajun, A.R.; Shapsough, S.; Zualkernan, I.; Dhaouadi, R. Edge-based individualized anomaly detection in large-scale distributed

solar farms. ICT Express 2022, 8, 174–178. [CrossRef]
9. Abdelmoula, I.A.; Kaitouni, S.I.; Lamrini, N.; Jbene, M.; Ghennioui, A.; Mehdary, A.; El Aroussi, M. Towards a sustainable edge

computing framework for condition monitoring in decentralized photovoltaic systems. Heliyon 2023, 9, e21475. [CrossRef]
10. Lopez-Belmonte, J.; Marin-Marin, J.-A.; Soler-Costa, R.; Moreno-Guerrero, A.-J. Arduino Advances in Web of Science. A Scientific

Mapping of Literary Production. IEEE Access 2020, 8, 128674–128682. [CrossRef]
11. Ahammed, T.; Hasan, M.; Arefin, S.; Islam, R.; Rahman, A.; Hossain, E.; Hasan, T. Real-Time Non-Intrusive Electrical Load

Classification Over IoT Using Machine Learning. IEEE Access 2021, 9, 115053–115067. [CrossRef]
12. Jung, C.; Lee, Y.; Yum, H.; Kwon, C.; Jang, C.; Quagliato, L.; Lee, T. Counter-Rotating Hoop Stabilizer and SVR Control for

Two-Wheels Vehicle Applications. IEEE Access 2023, 11, 14436–14447. [CrossRef]
13. Liao, W.; Xie, L.; Xi, J.; Bai, Y.; Zhang, T.; Wu, Y. Intelligent parking lot control system based on Alibaba Cloud platform and

machine learning. In Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing
(ICSP), Xi’an, China, 9–11 April 2021; pp. 908–911.

14. Hoque, M.A.; Azad, M.; Zaman, A.U. IoT and Machine Learning Based Smart Garbage Management and Segregation Approach
for Bangladesh. In Proceedings of the 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET),
Dhaka, Bangladesh, 23–24 December 2019; pp. 1–5.

15. Anand, R.; Sethi, D.; Sharma, K.; Gambhir, P. Soil Moisture and Atmosphere Components Detection System Using IoT and
Machine Learning. In Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT),
Tirunelveli, India, 27–29 November 2019; pp. 842–847.

https://doi.org/10.1109/ACCESS.2022.3210584
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1016/j.cose.2023.103278
https://doi.org/10.1016/j.inffus.2021.11.018
https://doi.org/10.1016/j.egyr.2023.05.163
https://doi.org/10.1016/j.icte.2021.12.011
https://doi.org/10.1016/j.heliyon.2023.e21475
https://doi.org/10.1109/ACCESS.2020.3008572
https://doi.org/10.1109/ACCESS.2021.3104263
https://doi.org/10.1109/ACCESS.2023.3243739

Appl. Sci. 2024, 14, 1296 15 of 15

16. Agarwal, I.; Mishra, R.; Srivastava, V.; Vijh, S. Automatic Gesture Recognizer using Motion Tracking Device and Support
Vector Machine. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), Noida, India, 28–29 January 2021; pp. 125–129.

17. Verma, G.; Mittal, P.; Farheen, S. Real Time Weather Prediction System Using IOT and Machine Learning. In Proceedings of the
2020 6th International Conference on Signal Processing and Communication (ICSC), Noida, India, 5–7 March 2020; pp. 322–324.

18. Choi, H.; Fujimoto, M.; Matsui, T.; Misaki, S.; Yasumoto, K. Wi-CaL: WiFi Sensing and Machine Learning Based Device-Free
Crowd Counting and Localization. IEEE Access 2022, 10, 24395–24410. [CrossRef]

19. Vales, V.B.; Fernández, O.C.; Domínguez-Bolaño, T.; Escudero, C.J.; García-Naya, J.A. Fine Time Measurement for the Internet of
Things: A Practical Approach Using ESP32. IEEE Internet Things J. 2022, 9, 18305–18318. [CrossRef]

20. Contoli, C.; Lattanzi, E. A Study on the Application of TensorFlow Compression Techniques to Human Activity Recognition.
IEEE Access 2023, 11, 48046–48058. [CrossRef]

21. Priya, G.L.; Baskar, C.; Deshmane, S.S.; Adithya, C.; Das, S. Revolutionizing Holy-Basil Cultivation With AI-Enabled Hydroponics
System. IEEE Access 2023, 11, 82624–82639. [CrossRef]

22. Khan, S.; Alzaabi, A.; Iqbal, Z.; Ratnarajah, T.; Arslan, T. A Novel Digital Twin (DT) Model Based on WiFi CSI. Signal Processing
and Machine Learning for Patient Respiration Monitoring and Decision-Support. IEEE Access 2023, 11, 103554–103568. [CrossRef]

23. Khadka, N.; Bista, A.; Adhikari, B.; Shrestha, A.; Bista, D.; Adhikary, B. Current Practices of Solar Photovoltaic Panel Cleaning
System and Future Prospects of Machine Learning Implementation. IEEE Access 2020, 8, 135948–135962. [CrossRef]

24. Cook, E.; Luo, S.; Weng, Y. Solar Panel Identification via Deep Semi-Supervised Learning and Deep One-Class Classification.
IEEE Trans. Power Syst. 2022, 37, 2516–2526. [CrossRef]

25. Datta, S.; Baul, A.; Sarker, G.C.; Sadhu, P.K.; Hodges, D.R. A Comprehensive Review of the Application of Machine Learning in
Fabrication and Implementation of Photovoltaic Systems. IEEE Access 2023, 11, 77750–77778. [CrossRef]

26. Gaboitaolelwe, J.; Zungeru, A.M.; Yahya, A.; Lebekwe, C.K.; Vinod, D.N.; Salau, A.O. Machine Learning Based Solar Photovoltaic
Power Forecasting: A Review and Comparison. IEEE Access 2023, 11, 40820–40845. [CrossRef]

27. TinyML. Available online: https://github.com/eloquentarduino/micromlgen (accessed on 25 December 2023).
28. Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1595–1623. [CrossRef]
29. Iborra, R.S.; Skarmeta, A.F. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities. IEEE Circuits Syst. Mag. 2020,

20, 4–18. [CrossRef]
30. Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A.S. A Comprehensive Survey on TinyML. IEEE

Access 2023, 11, 96892–96922. [CrossRef]
31. Gruosso, G.; Gajani, G.S. Comparison of Machine Learning Algorithms for Performance Evaluation of Photovoltaic Energy

Forecasting and Management in the TinyML Framework. IEEE Access 2022, 10, 121010–121020. [CrossRef]
32. Zaidi, S.A.R.; Hayajneh, A.M.; Hafeez, M.; Ahmed, Q.Z. Unlocking Edge Intelligence Through Tiny Machine Learning (TinyML).

IEEE Access 2022, 10, 100867–100877. [CrossRef]
33. Schizas, N.; Karras, A.; Karras, C.; Sioutas, S. TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A Systematic

Review. Future Internet 2022, 14, 363. [CrossRef]
34. MicroML. Available online: https://www.tinyml.org/about/ (accessed on 26 December 2023).
35. Dobrilovic, D.; Brtka, V.; Stojanov, Z.; Jotanovic, G.; Perakovic, D.; Jausevac, G. A Model for Working Environment Monitoring in

Smart Manufacturing. Appl. Sci. 2021, 11, 2850. [CrossRef]
36. Dobrilovic, D. Implementing AI on Microcontrollers in Fog and Edge Architectures. In Proceedings of the 4th Annual International

Conference on Data Science, Machine Learning and Blockchain Technology—AICDMB, Mysuru, India, 16–17 March 2023.
37. Dobrilovic, D.; Pekez, J.; Desnica, E.; Radovanovic, L.; Palinkas, I.; Mazalica, M.; Djordjević, L.; Mihajlovic, S. Data Acquisition for

Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT. Sustainability 2023, 15, 7440.
[CrossRef]

38. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef]

39. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin,
TX, USA, 28 June–3 July 2010; Volume 445.

40. The Pandas Development Team. Pandas; Zenodo: Geneva, Switzerland, 2020. [CrossRef]
41. Pedregosa, F. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
42. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
43. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3155812
https://doi.org/10.1109/JIOT.2022.3158701
https://doi.org/10.1109/ACCESS.2023.3276438
https://doi.org/10.1109/ACCESS.2023.3300912
https://doi.org/10.1109/ACCESS.2023.3316508
https://doi.org/10.1109/ACCESS.2020.3011553
https://doi.org/10.1109/TPWRS.2021.3125613
https://doi.org/10.1109/ACCESS.2023.3298542
https://doi.org/10.1109/ACCESS.2023.3270041
https://github.com/eloquentarduino/micromlgen
https://doi.org/10.1016/j.jksuci.2021.11.019
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1109/ACCESS.2023.3294111
https://doi.org/10.1109/ACCESS.2022.3222986
https://doi.org/10.1109/ACCESS.2022.3207200
https://doi.org/10.3390/fi14120363
https://www.tinyml.org/about/
https://doi.org/10.3390/app11062850
https://doi.org/10.3390/su15097440
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021

	Introduction
	Related Works
	Methodology
	The Platform for Solar Data Collection and Analyses
	Collected Solar Data Analyses

	Results
	The Arduino Implementation
	ESP866 Results

	Discussion
	Conclusions
	References

