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Abstract: Mechanically stabilized earth (MSE) walls have been widely applied in construction to
maintain the stability of high embankments. In Vietnam, imported reinforcement materials are
expensive; thus, finding locally available materials for MSE walls is beneficial. This study examines
the behavior of an MSE wall using local reinforcement materials in Danang, Vietnam. The MSE
was reinforced by self-fabricated galvanized steel grids using CB300V steel with 3 cm ribs. The
backfill soil was sandy clay soil from the local area with a low cohesion. A full-scale model with full
instrumentation was installed to investigate the distribution of tensile forces along the reinforcement
layers. The highest load that caused the wall to collapse due to internal instability (reinforcement
rupture) was 302 kN/m2, which is 15 times greater than the design load of 20 kN/m2. The failure
surface within the reinforced soil had a parabolic sliding shape that was similar to the theoretical
studies. At the failure load level, the maximum lateral displacement at the top of the wall facing was
small (3.9 mm), significantly lower than the allowable displacement for a retaining wall. Furthermore,
a numerical model using FLAC software 7.0 was applied to simulate the performance of the MSE
wall. The modeling results were in good agreement with the physical model. Thus, self-fabricated
galvanized steel grids could confidently be used in combination with the local backfill soil for
MSE walls.

Keywords: MSE wall; self-fabricated steel reinforcement grids; tensile forces; lateral displacement of
the wall facing; failure surface; full-scale model; numerical model

1. Introduction

Mechanically stabilized earth (MSE) walls are one of the types of retaining walls
constructed to maintain the stability of soil in bridge abutments or high embankments.
This technique was used in France in the 1960s and has since been widely applied in
construction in many countries all over the world [1,2]. The structure of MSE walls includes
the backfill material (e.g., natural soil, fly ash, sand, and geofoam), the reinforcement (e.g.,
geogrids, geotextiles, steel strips, and steel grids), and the wall-facing elements (e.g., rigid
concrete panels, metal sheets, and wood panels). MSE retaining walls can resist earth
pressure, service loads, and seismic loads with high stability and with a construction cost
approximately 25–50% lower than conventional concrete or steel walls [1,3].

The MSE walls’ behavior is complicated. The MSE walls’ performance is established
by the interactions between the soil and the reinforcement as well as the soil and the facing
elements [4]. The stability of MSE walls depends on several factors, including the type and
the size of reinforcement, the properties of the backfill material, the construction techniques,
and the type of facing elements [3,5,6].

The mechanical behavior of MSE walls has been investigated using physical models
by several researchers such as Murray and Farrar [7], Chang et al. [2], Lee et al. [8], Richards
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et al. [9], and Ahmadi et al. [10]. These studies found that the failure surface of the wall
had a parabolic shape, passing through locations with the highest tensile forces within the
reinforcement layers [2,7,8,10,11]. The failure surface of the wall aligned with the horizontal
direction at an angle of (45◦ + φ/2) at the toe of the wall [10]. Currently, according to the
design rules and standards [12–14], the failure surface of an MSE wall closely resembles
the failure surfaces observed in the studies [2,7,8,10,11].

Khan et al. [4], Ahmadi and Bezuijen [5], Kibria et al. [15], Roscoe and Twine [16],
Jensen [17], and Weldu [18] conducted full-scale and physical models to examine the
behavior of MSE walls, including the maximum tensile forces in the reinforcement, the
connection between the reinforcement and the wall, horizontal pressure, and vertical
pressure on the backfill. The results showed that the length of reinforcement and the
reinforcement strength are the two most influential factors on the lateral displacement of
the wall [15,17,18]. In addition, the tensile forces and deformation of the reinforcement
depend on the uniformity coefficient (Cu) of the backfill soil [18].

On the other hand, Khan et al. [4], Ho and Rowe [19], Yu et al. [20], Weerasekara [21],
Sadat et al. [22], Powrie et al. [23], and Zhang et al. [24] investigated the stability of MSE
walls through numerical models using FLAC software. The research results showed that
the L/H ratio (where H is the wall’s height and L is the length of the reinforcement)
significantly influences the internal stability of the wall and the optimal length of the
reinforcement was suggested to be L = 0.7 H [19].

Furthermore, the elastic modulus of the foundation layer and backfill material, the
shear resistance of the backfill material, and the tensile strength of the reinforcement all
affect the tensile forces within the reinforcement layers [20,21]. The failure surface of the
wall is similar to a Rankine failure surface [24].

The mentioned studies analyzed the stress–strain relationship within MSE wall struc-
tures, including determining the failure surface of the wall, the ultimate tensile rupture
limit, the maximum wall displacement, the optimal length of reinforcement, reasonable
spacing for reinforcement placement within the wall for different wall heights, the backfill
materials, and the specific reinforcement materials. The primary factors influencing the
internal stability and overall stability of MSE walls are the backfill material (whether it
is cohesive or granular and its properties), the type of reinforcement (rigid or flexible,
strength, size, shape, and arrangement within the reinforced soil mass), and the foundation
layer below the wall system.

In Vietnam, reinforcement elements such as steel strips or polymeric strips are usually
imported from foreign suppliers, with some critical issues. According to a design report by
the Transportation and Transport Infrastructure Design Consultancy Company [25], the use
of imported reinforcement materials can be up to 20–30% more expensive compared with
using a self-fabricated steel grid as a reinforcement for MSE walls [3]. Thus, it is beneficial
to investigate the applicability of self-fabricated steel reinforcement grids (e.g., CB300V
steel with a diameter of 10 mm) as the reinforcement for MSE walls.

In addition, the backfill materials should meet the criteria of grain-size distribution,
low plasticity, and low fine content [26]. It is a fact that most natural backfill materials from
the Central Coast of Vietnam are cohesive soils [3,27]. Hence, it is necessary to investigate
the performance of MSE walls (the stability of the MSE wall structure and the durability of
the reinforcement) utilizing locally available backfill materials.

Moreover, in Vietnam, there has been very limited research on the stability of MSE
wall structures using local reinforcements. Therefore, this study was conducted to investi-
gate the performance of an instrumented MSE retaining using self-fabricated ribbed steel.
This research aimed to observe the mechanical behavior of the MSE wall, including the
maximum tensile force and the load distribution in the reinforcement bars, the wall-facing
displacement, and the stability of the wall. To evaluate the global and compound features
(the internal and external stability of the MSE wall), a full-scale model and a numerical
model were applied in this study. The research results provide an effective reference for
engineers using local reinforcements for MSE structures applied to low-cohesive soil in
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Vietnam. A self-fabricated galvanized steel grid could confidently be used in practice to
reduce the cost of construction.

2. Full-Scale Experimental Model
2.1. Model Design

The properties of the backfill material, the steel reinforcement, and the structural di-
mensions were chosen following the design rules and standards from Berg et al. [1], BSI [13],
AFNOR [12], and TCVN [14]. According to the AFNOR NF P94-270:2020 standard [12],
the design load was 20 kN/m2 and the experimental load was applied until the MSE wall
collapsed, which included reinforcement rupture.

The full-scale MSE wall was designed using self-fabricated ribbed steel grids as the
reinforcement. The dimensions of the MSE wall are shown in Figure 1. Within the scope
of this study, the MSE wall was built on a rigid foundation with the assumption that the
settlement was zero. Additionally, three lateral faces of the wall were fixed to restrict the
expansion of the soil mass.
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2.1.1. Wall-Facing Panels

The wall facing was a rigid wall type consisting of four precast reinforced concrete
with steel (RCWS) panels with a concrete strength of B22.5. Concrete facing panels with
dimensions of 1.5 × 0.75 × 0.14 m were used. The total height of the wall was 3 m.

2.1.2. Backfill Material

Currently, most types of locally available backfill material in Danang City, Vietnam,
are cohesive soil and they do not meet the requirements of the mechanical, physical, and
chemical properties of reinforced backfill materials according to the standards [26,28].

In Danang City, the hillside soil from the Hoa Ninh area is the most suitable source of
backfill material, based on current standards [3]. Table 1 shows the mechanical, physical,
and chemical properties of the local backfill material. The soil chosen was sandy clay
soil according to the standards from AASHTO [26], AFNOR [12], and TCVN [14]. The
particle size distribution and results of the standard Proctor compaction test are shown
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in Figure 2. The grain sizes of D60, D30, and D10 were 0.09, 0.65, and 4.1 mm, respectively.
The uniformity coefficient Cu was determined to be 45.6. The friction angle and the
unit cohesion were 34.3◦ and 5.1 kN/m2, respectively. The maximum dry density was
18.16 kN/m3 when the optimum moisture content was 12.5%. The properties of the selected
backfill material met the requirements of reinforced soil according to the standards from
AFNOR [12], AASHTO [26], and TCVN [14] for MSE wall constructions.

Table 1. Properties of the local backfill soil.

Parameter Unit Value

Saturated density, γ kN/m3 2.070
Dry density, γk kM/m3 1.816
Friction angle, φsoil Degrees 34.3
Cohesion, csoil Pa 5100
Plasticity index, IP - 8.55
Uniformity coefficient, Cu - 45.6
pH - 5.9
Ion, Cl− mg/g 0.094
Ion, SO4

2− mg/g 0.497
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However, the cohesion of 5.1 kN/m2 in the backfill soil could affect the interaction
between the steel reinforcement and the reinforced soil. In addition, this soil contained
a remarkable amount of sulfate ion (SO4

2− = 0.497 mg/g); thus, it could affect the long-
term durability of the reinforcement due to corrosion. Therefore, to efficiently utilize the
available local backfill material, the reinforcement used in the wall was galvanized to
prevent corrosion and the soil–reinforcement interaction was enhanced by arranging steel
ribs on the reinforcement mesh.

The backfill soil was compacted using a light tamping rammer (Niki NK55 from China)
to ensure the soil had the same density. Each soil layer of 0.12 m in height was compacted
until a relative density of 95% of the maximum dry density was achieved.

2.1.3. Reinforcement

In this study, a self-fabricated galvanized steel grid (GSG) of CB300V steel with a
diameter of 10 mm was used, provided by the Viet Nhat Steel Joint Stock Company. The
CB300V steel type has been widely used in Vietnam, and the Φ 10 mm steel reinforcement
met the requirements for the mechanical, physical, and chemical properties as well as the
design strength when used as the reinforcement in the MSE walls. The steel grid had ribs
that were 3 cm high at the interaction between the longitudinal and transverse directions to
increase the backfill-soil–reinforcement interactions.

The tensile strength of the steel reinforcement (yield strength), F0, was 49,000 N.
However, we also considered the effect of the backfill soil, the service life of the wall,
corrosion due to sulfate ions, and metal loss during the 100-year design life of the MSE wall.
Regarding the service life of the wall, Haiun et al. [29] recommended that an MSE structure
needs to be monitored and repaired when the values of the remaining tensile strength
within the reinforcement are equal to 65% F0, with F0 being the initial tensile strength of the
reinforcement. Thus, in this study, the tensile strength of the reinforcement was 31,850 N at
the initial stage, as illustrated in Table 2.

Table 2. Reducing the cross-sectional area of the reinforcement bars.

Parameter Unit Value

Initial tensile strength of the steel reinforcement N 49,000
Loss of tensile strength N 17,150
Remaining tensile strength within the reinforcement N 31,850
Drilling the reinforcement bars to reduce their cross-sectional area % 26.6
Drilling depth (Φ 5) mm 8.1

To consider the reduction in the tensile strength of the reinforcement, Haiun et al. [29]
drilled the reinforcement bars to reduce their cross-sectional area. This method is also
recommended in the design rules and calculation process for MSE walls in AFNOR NF
P94-270:2020 [12]. Therefore, this study also carried out drilling to reduce the cross-sectional
area of the reinforcement (as shown in Figure 3) with a proportional loss of tensile strength
(∆F) equal to 35% F0, as indicated in Table 2.

Furthermore, to the enhance corrosion resistance of the reinforcement, the steel bars
were galvanized with a zinc layer of 70 µm thickness. The length of the reinforcement bars
was L = 2.1 m. The vertical spacing between the reinforcement layers was Sv = 0.75 m
(4 reinforcement layers along the height of the wall, H = 3 m). In each layer, 4 longitudinal
steel reinforcement bars were installed with a space of 0.375 m. In addition, the horizontal
spacing between the reinforcement bars (the transverse direction) was 0.45 m. Ribs that
were 3 cm high were bonded to the reinforcement mesh to enhance the soil–reinforcement
interaction, as shown in Figure 4. The steel reinforcement grids were rigidly connected to
the facing panels.
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Figure 4. Design of the steel reinforcement grid.

Longitudinal steel reinforcement bars were installed at symmetrical locations. The
initial test indicated that the deformation of all longitudinal steel reinforcement bars in
the same layer was similar. In the following section, the behavior of one longitudinal steel
reinforcement bar is presented.

2.1.4. Ground Foundation

The MSE wall model was prepared and tested at the University of Danang, University
of Science and Technology, Vietnam. The subgrade layer was compacted to achieve 95%
of its relative density. On the top of this layer, a layer of reinforced concrete that was
20 cm thick with dimensions of 1.5 × 2.4 m was installed. This foundation was designed to
ensure that the foundation remained stable without settlement during the construction and
loading of the MSE wall.

2.1.5. Loading System

On the top of the retaining wall, concrete plates that were 14 cm thick were installed to
transfer the load test from the loading system to the reinforced soil mass and the retaining
wall. Three load plates with dimensions of 1.5 × 0.75 × 0.14 m were used.

The load increment system included two anchor cables with a design load-bearing
capacity of 1000 kN. In addition, the test loads were controlled using 200-ton hydraulic
jacks (TLP HHYG, 200150).

The boundary of the MSE wall model was fixed using steel sheet piles (Larsen IV)
with dimensions of 400 × 170 × 15.5 mm. The steel sheet piles were driven to a depth of
2.8 m. The top of the wall was fixed using bracing beams on three sides. This steel wall
system was considered to be a rigid boundary and prevented displacement to the sides
and the rear of the MSE wall.
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2.2. Construction and Instrumentation of the MSE Wall

The MSE walls were constructed from the bottom up. The foundation soil was com-
pacted and a concrete slab 20 cm thick was installed. The steel sheet piles were driven to
create a steel wall on three sides of the model. The concrete facing panels, backfill soil that
was 15 cm thick, and the steel reinforcement layers were installed in the correct order with
full instrumentation. Finally, the loading system was constructed using a concrete slab,
steel frame, and anchor cables.

Figure 5 illustrates the layout of the model construction on the site before applying the
test loads. The MSE wall was fully instrumented to observe the stress and strain distribution
along the longitudinal reinforcement bars, the failure surface within the reinforced soil
mass, the lateral displacement of the concrete wall facing, and the deformation of the
boundary steel sheet wall.
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The strain gauges (NIE-SG-CFA; 120–5 cm long with 6 coils) were manufactured
in India and were equipped to measure deformations in the reinforcement and backfill
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material. The maximum deformation on the sensor was 2% (6 mm). These strain gauges
were bonded to the steel reinforcement bars at distances of 15, 50, 60, 95, 105, 140, 150, and
185 cm from the facing panel.

The lateral displacement of the steel sheet wall system, the anchor cables, and the
wall panels were monitored using Linear Variable Differential Transformers (LVDTs) and
WYDC, with signal reading provided by a TDS 303 data logger from Japan. LVDTs were
installed at the top of concrete panels 2, 3, and 4, as shown in Figure 5a.

Vibrating-wire earth pressure cells (model 1910), manufactured by ACE Instrument in
South Korea, were installed to measure the vertical and horizontal earth pressure at the top
and the toe of the MSE wall. A Geokon 403 signal reader from the United States was used
to read the signals from the VW earth pressure cell device during the testing process.

Temperature measurements within the wall were obtained using a metal thermometer
with a range of up to 100 ◦C (used to calibrate readings from the resistive sensors and
foundation surface pressure cell).

All instruments were calibrated before installation to ensure accurate measurements.
In addition, the instruments were connected to a TDS 303 data logger and a Geokon
403 signal reader for the data collection.

3. Numerical Modelling

The finite difference program FLAC [30] was used to simulate the performance of an
MSE wall with the same dimensions as the full-scale model described in Section 2. The
wall’s height was 3 m and the length of the reinforcement bars was 2.1 m. The geometric
details of the MSE wall in FLAC are shown in Figure 6.
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Figure 6. The MSE wall model in FLAC.

Foundation soil was considered to be a rigid material with a high cohesion value
(c = 55.1 MPa; φ = 51◦) and was 5 m deep below the wall system. A linear–elastic model
using the Mohr–Coulomb failure criterion was used to simulate the backfill soil and the
foundation soil. The backfill soil properties were modeled based on the experimental results,
as shown in Table 1. The concrete facing panels were simulated using beam elements and
were modeled as elastic materials with the modulus E = 200 Gpa. The strip elements in
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FLAC were used to model a steel reinforcement grid with a tensile strength of 31,850 N/m
and tensile stiffness of 20,000 kN/m. Table 3 illustrates the properties of the concrete facing
panel, backfill soil, and foundation materials.

Table 3. The MSE model parameters in FLAC.

Parameter Unit Value

Concrete panel
Width m 0.75
Height m 0.15
Length m 1.5
Young’s modulus Pa 2 × 1011

Compressive strength of
concrete Pa 35,000

Foundation soil
Unit weight, γFound kg/m3 2700
Friction angle, φFound Degrees 51
Cohesion, cFound Pa 5.51 × 107

Bulk modulus Pa 4.39 × 1010

Shear modulus Pa 3.02 × 1010

Backfill soil
Unit weight, γsoil kg/m3 2070
Friction angle, φsoil Degrees 34.3
Cohesion, csoil Pa 5100
Bulk modulus Pa 1.5 × 107

Shear modulus Pa 6 × 106

Steel reinforcement
Length m 2.1
Steel bar thickness m 0.010
Calculation width m 1.5
Number of longitudinal bars
per calculation width Strip 4

Young’s modulus Pa 2 × 1011

Tensile strength N/m 31,850
Tensile failure strain % 0.19
Shear stiffness N/m2 2 × 107

The interface between the backfill soil and concrete facing panel was modeled using
the values suggested by Huang et al. [31] and Huang et al. [32]. In detail, the friction angle
between the soil and concrete panel was 26◦, the interface normal stiffness was 2.4 Mpa/m,
and the shear stiffness was 2.4 Mpa/m.

The apparent friction coefficients for the steel reinforcement and backfill interfaces
were calculated based on the suggestions of the current standards [8,12,13,33]:

• If z > z0 = 6 m;

f* = tan φ (1)

• If z ≤ z0 = 6 m;

f* = f0*(1 − z/z0) + (z/z0)tan φ (2)

f0* = 1.2 + log10(Cu); (3)

where f* and f0* are the apparent friction coefficients for the steel reinforcement and backfill
interfaces; Cu is the coefficient of uniformity of the backfill soil; z is the depth of the
reinforcement layers from the top of the wall, where z0 = 6 m; and φ is the friction angle of
the backfill soil. Table 4 illustrates the properties of the backfill–reinforcement interactions
and facing-panel–backfill interactions.
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Table 4. Interface properties.

Parameter Unit Value

Backfill soil: concrete panel
Normal stiffness Pa/m 2.4 × 106

Shear stiffness Pa/m 2.4 × 106

Friction angle Degrees 26
Backfill soil: steel reinforcement
Shear stiffness N/m2 2 × 107

Cohesion N/m 1 × 105

Initial apparent friction
coefficient
Layer 4 1.917
Layer 3 1.751
Layer 2 1.586
Layer 1 1.420

4. Results and Discussion
4.1. Full-Scale Model Results
4.1.1. MSE Wall Loading

The fully instrumented model was completed and incrementally loaded until fail-
ure occurred in the MSE wall structure (either fast displacement occurred or a steel bar
ruptured). For each interval, the load increment was maintained for 30 min. The total
dead loads for the steel beams and concrete slab were both 12 kN/m2. The design load
of the model was 20 kN/m2 [12]. The maximum load (when the steel reinforcement bars
were ruptured) was 302 kN/m2, approximately 15 times greater than the normal traffic
loading of 20 kN/m2. The stress, strain, and displacement of the wall, the longitudinal
reinforcement bars, and the reinforced soil mass were recorded at load levels of 12, 20, 50,
75, 100, 150, 200, 250, 275, 300, and 302 kN/m2.

4.1.2. Tensile Forces in the Reinforcement Bars

The tensile force F was calculated using Equation (4):

F =
∆l·E·A

L
(4)

where ∆l is the measured deformation on the reinforcement bars; E is the elastic modulus
of the reinforcement material, where E = 210,000 Mpa for the CB300V steel; A is the cross-
sectional area of the reinforcement bars, with A = 78.5 mm2; and L is the length of the
longitudinal reinforcement bars, with L = 2.1 m.

The distribution of tensile forces in each reinforcement layer is shown in Figure 7. It can
be seen that when the test load increased from 12 kN/m2 to 302 kN/m2, the tensile forces
in the reinforcement bars increased and created a sliding surface within the reinforced soil.

The maximum tensile force values were found 95 cm further away from the facing
panel in reinforcement layers 3 and 4, and 60 cm (near the facing panel) in reinforcement
layers 2 and 1 (the reinforcement layers in deeper positions).

Figure 8 indicates that when the test load was lower than the design load (<20 kN/m2),
the tensile forces in the deeper reinforcement layers were greater than the upper ones. How-
ever, when the test load was higher than 75 kN/m2, the tensile forces in reinforcement layers
3 and 4 were higher than layers 1 and 2. It is a fact that at a low load level, the total load
(including the earth pressure, dead loads, and surcharge load) increases with the depth of the
wall. Thus, the deeper reinforcement layers absorbed a greater load than the upper layers.
Conversely, when the load test was high, reinforcement layer 4 achieved the highest tensile
forces and this value decreased along the wall depth. In addition, the increasing tensile force
distribution when the surcharge load increased indicated that the failure surface expanded in
the passive area.
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The distribution of the tensile force in the reinforcement layers from this study was
similar to the reports of Schlosser [33], Wichter et al. [34], Murray and Farrar [7], Chau
et al. [35], and Chau and Nguyen [28] as well as design procedures [12–14]. However, the
steel ribs included in the reinforcement grids caused a step in the tensile force distribution
curve in front of and behind the ribs. This result was reasonable and similar to previous
research results [36,37]. It indicated that the experimental results from this full-scale model
were reliable and could be used in practice.

4.1.3. Failure Load

As presented in Figure 9, the maximum tensile force in the reinforcement bars was
31,823 N at a test load of 300 kN/m2. When the load level was 302 kN/m2, the maximum
tensile force in the reinforcement layers was 31,881 N, which was higher than the ultimate
tensile force of 31,850 N. Thus, at that moment, failure occurred in the MSE wall. The
longitudinal steel bars suddenly ruptured at the drilled cross-sectional area where the
tensile force reached its maximum value in the reinforcement bars.
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The failure load was determined to be 302 kN/m2, which was 15 times greater than
the design load. In terms of the load-bearing capacity, the MSE wall structure in the
experimental model could resist very high surcharge loads. However, in terms of long-term
serviceability, the selected steel bars would be appropriate for the structure durability
during a service life of 100 years under a design load of 20 kN/m2 [3].

At a failure load level of 302 kN/m2, the failure surface in the reinforced soil could be
determined by connecting the maximum tensile force points in each reinforcement layer.
Figure 10 demonstrates that the failure surface in this study was similar to the Rankine
theory [2]. In detail, in the first half of the wall, the failure surface started from the top of
the wall and further away from the wall face at approximately 0.3 H. In deeper positions,
the failure surface stopped at the toe of the wall (wall base). This failure pattern was
similar to the reports of Chang et al. [2], Lee et al. [8], Murray and Farrar [7], Schlosser
and Guilloux [36], and Murray [11]. However, the failure surface at the toe of the wall was
far from the wall facing (0.2 H). Murray and Farrar [7] explained that friction between the
rigid foundation of an MSE wall and the soil reinforcement affects the failure surface of the
reinforced soil mass.

Table 5 illustrates the length of the reinforcement bars in the failure zone La in this
study and the values calculated from the standards from AFNOR [12]. The La values in
reinforcement layers 4, 3, and 2 were close to the theoretically estimated values. The failure
surface of the lowest layer was slightly different due to the strain gauge locations.
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Table 5. The length of reinforcement bars in the failure zone and backfill zone.

Depth (m) Reinforcement Layer
Full-Scale Model Results Current Standards

TCVN [14]; AFNOR [12]

La (cm) Le (cm) La (cm) Le (cm)

0.375 4 95 115 90 120
1.125 3 95 115 90 120
1.875 2 60 150 67.5 142.5
2.625 1 60 150 22.5 187.5

In summary, the failure surface in this full-scale MSE model using a cohesive backfill
soil and self-fabricated steel reinforcement was in good agreement with other studies as
well as most of the current standards [12–14,37]. Hence, a self-fabricated steel reinforcement
and locally available backfill soil could be used as the reinforcement material for MSE walls
applied in the conditions of Vietnam.

The correlation equation between the maximum tensile force in the reinforcement bars
(F) and the depth (z) measured from the top of the wall is illustrated in Figure 11 and is
shown in Equation (5). The parabolic shape of the failure surface in the reinforced soil in
this study was similar to the reports of Murray and Farrar [7] and Chau et al. [35].
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z = 0.001F2 − 0.3992F + 12.19 (5)
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4.1.4. Lateral Displacement of the Wall Facing

The experimental results indicated that the lateral displacement of the wall at the top
of panel 2 (z = 1.5 m) was smaller than that at the top of panel 3 (z = 0.75 m), and the largest
lateral displacement was observed at the top of panel 4 (top of the wall; z = 0 m) (as shown
in Figure 12). At the failure load level (302 kN/m2), the maximum lateral displacement
at the top of the wall was 3899 µm, which was much smaller than the allowable lateral
displacement for the wall (∆ = H/100 = 3 cm) [8,10]. The lateral displacement of the wall in
this study had a similar pattern to the displacement profiles in previous studies [36].
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4.2. Numerical Model Results

Figure 13 illustrates the lateral displacement of the wall facing and the tensile load
distribution within the reinforcement layers during the construction of the wall (load level
of 12 kN/m2). The numerical model results were similar to the report of Stuedlein et al. [38].
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wall facing; (b) distribution of tensile force in the reinforcement layers.

At a maximum load level of 300 kN/m2, the model results showed that the highest
lateral displacement of the wall facing was 4270 mm, as shown in Figure 14. In addition,
the maximum tensile load in the fourth reinforcement layer (near the top of the wall) was
similar to the full-scale model and was located approximately 0.95 m further away from
the facing panel. This value decreased close to the wall facing of the lower reinforcement
layers, as shown in Figure 10.
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Figure 14. The numerical model results at a load level of 300 kN/m2: (a) stress distribution in the
retaining wall; (b) displacement of the wall facing; (c) the distribution of the tensile force in the
reinforcement layers.
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Figures 15 and 16 demonstrate that the simulation results were in good agreement
with the measurements from the full-scale model. Thus, the findings from the study were
reliable and could be used in practice. They also indicated that the local backfill material and
self-fabricated steel reinforcements could widely be used in the Central Region of Vietnam.
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5. Conclusions

This paper presents research results using a full-scale model and numerical model for
a mechanically stabilized earth (MSE) retaining wall with a self-fabricated galvanized steel
reinforcement grid applied to low-cohesion soil in the Danang area. The research results
demonstrate that the self-fabricated galvanized steel reinforcement worked in conjunction
with the MSE wall to resist high loads with small displacement, indicating that local
reinforcement materials can confidently be used in MSE constructions.

There were some findings from the study:
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• The retaining wall suddenly collapsed due to internal instability (reinforcement rup-
ture) at a load level of 302 kN/m2, which was 15 times greater than the design load.
At that failure mode, the maximum lateral displacement at the top of the wall facing
was 3899 µm, which was much less than the allowable displacement of the wall (3 cm).
The failure surface within the reinforced soil block was similar to theoretical studies.

• It was noted that when the test load was lower than the design load (<20 kN/m2) the
tensile forces in the deepest reinforcement layer showed the highest value. However,
the upper reinforcement layers achieved the highest tensile forces when the test load
increased. Thus, it is essential to enhance the bearing capacity of the reinforcement
layers near the ground surface in special constructions with a very high surcharge load.

• The measured data from the full-scale model were validated by the numerical model
using FLAC software. The tensile load distribution pattern in the reinforcement layer
and the lateral displacement of the wall were similar to the research results from other
studies and were in good agreement with the current standards.

• The experimental results also demonstrated that when using a self-fabricated galva-
nized steel reinforcement (CB300V; Φ 10) for the MSE wall, the wall maintained its
stability under the applied load considering a metal loss of 65% of the initial tensile
strength. Deformations to the reinforcement were minimal, and the wall was capable
of withstanding high surcharge loads. Therefore, self-fabricated galvanized steel rein-
forcement grids and the specific soil material in the Danang area could be used as the
reinforcement material for MSE walls with high stability.
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Nomenclature
The following symbols are used in this paper:

MSE walls Mechanically stabilized earth walls
GSG Galvanized steel grid
F0 Initial tensile strength of the reinforcement
∆F Proportional loss of tensile strength of the reinforcement
La Length of the reinforcement bars in the failure zone
Le Length of the reinforcement bars in the backfill zone
f* Apparent friction coefficient for the steel reinforcement and backfill interfaces
Cu Coefficient of uniformity of the backfill soil
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