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Abstract: The high dimensionality of real-life datasets is one of the biggest challenges in the machine
learning field. Due to the increased need for computational resources, the higher the dimension of
the input data is, the more difficult the learning task will be—a phenomenon commonly referred to
as the curse of dimensionality. Laying the paper’s foundation based on this premise, we propose a
two-stage dimensionality reduction (TSDR) method for data classification. The first stage extracts
high-quality features to a new subset by maximizing the pairwise separation probability, with the
aim of avoiding overlap between individuals from different classes that are close to one another,
also known as the class masking problem. The second stage takes the previous resulting subset and
transforms it into a reduced final space in a way that maximizes the distance between the cluster
centers of different classes while also minimizing the dispersion of instances within the same class.
Hence, the second stage aims to improve the accuracy of the succeeding classifier by lowering its
sensitivity to an imbalanced distribution of instances between different classes. Experiments on
benchmark and social media datasets show how promising the proposed method is over some
well-established algorithms, especially regarding social media engagement classification.

Keywords: dimensionality reduction; classification; optimization

1. Introduction

Since the majority of real-life datasets hold a large number of dimensions, in the field of
machine learning, it is vital to select the most relevant features in order to increase the odds
of applications regarding different types of data. In fact, the exponential dependence on
the dimension is often referred to as the curse of dimensionality: without any restrictions,
an exponential number of observations is needed to obtain optimal generalization [1].
This subject is often related to feature selection, a data preprocessing strategy that has
proved to be efficient in preparing data for classification and prediction problems. The most
important objectives of feature selection include building simpler and more comprehensible
datasets, preparing clean, understandable data, and improving the accuracy of succeeding
methods [2].

The recent explosion of data availability has presented important challenges and
opportunities for feature selection, increasing the interest in dimensionality reduction
methods. Regarding this subject, there are some well-known methods, such as linear
discriminant analysis (LDA), whereby a low-dimensional subspace is found by grouping
individuals from one class as closely as possible (thereby reducing in-class variance), while
separating individuals from different classes as far from one another as possible (thereby
increasing between-class variance) [3].

In other words, LDA consists of finding the projection hyperplane that minimizes the
interclass variance and maximizes the distance between the projected means of the classes.
Similarly to principal component analysis (PCA), these two objectives can be solved by
solving an eigenvalue problem with the corresponding eigenvector defining the hyperplane
of interest [4].
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In fact, PCA provides a complementary perspective on feature transformation. This
method, a widely employed technique, focuses on maximizing the total variance of the
data by projecting it onto a new set of orthogonal axes, known as principal components.
Unlike LDA, which aims to maximize the distance between class means while minimizing
interclass variance, PCA seeks to capture the intrinsic structure of the data by retaining the
most significant variance across all dimensions.

Similar to LDA, PCA involves solving an eigenvalue problem to determine the prin-
cipal components and their corresponding eigenvectors. This eigenvalue decomposition
results in a set of axes that represent the directions of maximum variance in the original data.
While LDA emphasizes the discrimination between classes, PCA provides a comprehensive
overview of the overall variability within the dataset [5].

Beyond LDA and PCA, the landscape of dimensionality reduction encompasses a
diverse array of techniques, each tailored to specific data characteristics and analytical goals.
Singular value decomposition (SVD) is a versatile method that excels in capturing latent
semantic structures in large datasets [6], while t-distributed stochastic neighbor embedding
(t-SNE) focuses on preserving local relationships [7].

To improve its nonoptimality, LDA-based variations have been developed, which still
rely on the homoscedastic Gaussian assumption. Essentially, this refers to the assumption
of equal variances—assuming that different samples have the same variance even if they
came from different populations [8].

Even though enhancements have been made, sometimes algorithms still do not per-
form as expected, obtaining subspaces that merge classes that are close, making samples
from different classes overlap, and thus leading to unwanted results. This issue is referred
to as the class masking problem [9].

Recently, a nonparametric supervised linear dimension reduction algorithm for multiclass
heteroscedastic LDA was proposed [10]. The method maximizes the overall separation
probabilities of all class pairs. By utilizing this class separability measure, the method places
greater emphasis on separating close classes while safeguarding the well-separated classes
in the obtained subspace, thereby finding high-quality features and effectively addressing
class masking.

The method finds an optimal hyperplane that separates classes with a maximal prob-
ability with respect to all possible distributions that exist within the given means and
covariance matrices. Grounded on this premise—that based on a target dimensionality,
high-quality features can be extracted to a new subset—it is possible to combine this method
with LDA roots that aim to maximize the distance between cluster centers of different
classes, while also minimizing the dispersion of instances within the same class [11].

By adopting the aforementioned approach as the initial phase of a two-stage process,
one can conceptualize a second step aimed at converting the subset of high-quality features
into a condensed final space, contingent on the number of cluster centers. This involves
addressing a multiobjective optimization problem, leading to a linear transformation that
can be implemented on the subset obtained in the first stage.

Inspired by this concept, our paper introduces the two-stage dimensionality reduction
(TSDR) approach, a novel method designed for data classification. TSDR not only functions
as an independent classifier with its built-in discriminator, but also serves as a standalone
dimensionality reduction method for subsequent classifiers.

Validation against benchmark datasets is part of the method’s rigor; however, its
primary objective lies in effectively predicting and classifying data from social media
datasets. These datasets are affected by the aforementioned challenges, such as the curse of
dimensionality, class masking, and imbalanced class distribution. In addition, they are also
in the spotlight of a notably ongoing social transformation.

In recent years, there have been remarkable advancements in data technologies, over-
coming hardware and software limitations. The storage and analysis of massive datasets are
now feasible. Simultaneously, in the era of artificial intelligence (AI), companies are heavily
investing in solutions to enhance their understanding of people and their behavior [12].
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Social networks, serving as vast repositories of user data, offer insights into preferences,
affinities, and various aspects discernible to those who genuinely understand users. This
raises concerns about privacy, sparking important debates regarding companies’ efforts to
safeguard user information [13].

Major corporations like Meta (Menlo Park, CA, USA,) responsible for platforms such
as Facebook and Instagram, are implementing measures to protect and enhance customer
privacy. Access to data is consistently restricted, with diminishing allowances for autho-
rized developers. This limitation stems not only from the pressure to uphold user privacy,
but also because user information is a valuable asset for these companies [14].

Despite such efforts, public profiles on social networks remain vulnerable to third-
party scanning without users’ consent. In many cases, access to APIs or network credentials
is unnecessary. Collecting online data from social media and other platforms in the form of
unstructured text is known as site scraping, web harvesting, and web data extraction [15].
By exploiting this vulnerability, one can glean various aspects of a specific user via mecha-
nisms that scrape internet pages for raw data.

By processing datasets created through these mechanisms, machine learning methods
can be applied to predict patterns and metrics such as post engagement. In other words,
it is feasible to predict how many interactions a post from a specific user might gain by
considering their follower data. This paper makes a unique contribution by employing the
TSDR method to classify social media data and explores the social implications, particularly
concerning user privacy.

The remainder of this paper is organized as follows. First, Section 2 outlines important
concepts and background information on referenced methods. Section 3 provides the
details of our proposed algorithm. Next, Section 4 reports and discusses the results of
comparisons between multiple classification methods on standard benchmark classification
problems. Finally, Section 5 concludes the paper and discusses potential future research
directions.

2. Important Concepts and Background

To assess the relevance of a feature within a given space, we employ the Pearson
correlation coefficient (ρ). This coefficient, ranging between −1 and 1, quantifies the
linear relationship between two variables. For variables A and B, each having N scalar
observations, ρ(A, B) is calculated using the formula in Equation (1), where µ and σ
represent the mean and standard deviation of each variable [16].

ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(1)

In simpler terms, when ρ approaches 1, it signifies a positive linear relationship because
both variables increase together. Conversely, when ρ approaches −1, it indicates a negative
or inverse correlation: when one variable increases, the other decreases. A ρ close to zero
suggests no clear relationship between the two variables.

Another important concept to bear in mind about class separability is the silhouette
coefficient (s). This is a metric to calculate the goodness of a clustering technique and its
value ranges from −1 to 1. For a point i, let ai represent the average intra-cluster distance
(the distance between points within a cluster) and bi the average inter-cluster distance (the
distance between all clusters) [17].

According to Equation (2), we can say that the clusters are spaced well apart from
one another when s is close to 1. If the coefficient is around 0, the clusters are indifferent
because the distance between cluster centers is not significant. If s is close to −1, this
ultimately means that the clusters are incorrectly assigned. In short, as the second stage of
the proposed method is applied, we expect to notice an increase in the s value.

si =
bi − ai

max(ai, bi)
(2)
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Classification is required in many real-world problems. Although many classification
methods have been proposed to date, such as neural networks and decision trees, there are
still some limitations associated with these methods. Some lack generalization ability and
are sensitive to an imbalanced number of instances in each class. Also, even when some
classification methods outperform others in training sets, they may perform worse when
applied to new datasets (test sets), an issue known as overfitting.

While not a guarantee of better results, a preprocessed dataset with strongly related
features and well-defined cluster centers increases the odds of further applications ma-
nipulating these data. Taking into account all the points addressed so far, Section 3 dives
deeper into the core of the proposed algorithm, detailing each of the two dimensionality
reduction stages.

3. Proposed Algorithm

This section details the proposed method, breaking it down into two stages of di-
mensionality reduction, hereinafter referred to as TSDR-1 and TSDR-2. Additionally, an
optional discriminator for classification is also described. Figure 1 illustrates how the
proposed algorithm may be used.

Figure 1. Proposed algorithm breakdown.

To conduct a comprehensive benchmark of the proposed method, we compare the
performance indicators of classification methods applied to the original datasets with
those obtained from reduced datasets generated through TSDR. Consider a dataset with
N features and L labels. Initially, the dataset undergoes classification using conventional
methods. Subsequently, the same dataset undergoes TSDR-1, where it is reduced to d
dimensions, which is an adjustable parameter optimized for maximum method accuracy.
This reduced subset of d dimensions then undergoes TSDR-2, employing multiobjective
optimization to transform it into a final subset of L dimensions, equivalent to the number
of classes in the original dataset. The ultimate reduced subset is not only classified using
conventional methods, but also with the proposed TSDR discriminator embedded in
the process.
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3.1. First Stage—Maximizing Separation Probability

The definition of separation probability is mainly based on the minimax probability
machine (MPM) [18], which maximizes the probability of the correct classification of future
data points. Let x and y denote random vectors in a binary classification problem and
suppose that the means and covariance matrices of these two classes are (µx, Σx) e (µx, Σy),
respectively, with x, µx, y, µy,∈ RD(µx 6= µy) and Σx, Σy ∈ RD×D. The MPM maximizes
the probability α that two classes lie on two sides of a hyperplane H(w, b) = {z‖wTz = b},
where w ∈ RD, w 6= 0, and b ∈ R. The hyperplane separates the two classes with a maximal
probability with respect to all possible distributions with the given means and covariance
matrices. This optimal w and the corresponding separation probability α of two classes in
the subspace can be derived by solving the following problem [10].

max κ(w) =

∣∣wT(µx − µy)
∣∣√

wTΣxw +
√

wTΣyw
(3)

κ(w) =

√
α(w)

1− α(w)
(4)

α∗(w∗) =
κ∗(w∗)2

1 + κ∗(w∗)2 (5)

In fact, with the class means and covariance matrices of two classes, it is possible
to calculate the corresponding separation probability α to quantify the class separability
between them in a certain 1-D subspace w. In this way, this probability is used as a class
separability measure to drive the dimensionality reduction problem, where the use of the
separation probability can effectively solve the class masking problem.

Consider a dataset with C classes, whose conditional distribution of class i is given by
p(x | µi, Σi), where µi represents the mean and Σi the covariance. In this way, the probability
αij of separation of classes i and j in the subspace w can be calculated as in Equation (6).

αij(w) =
κij(w)2

1 + κij(w)2 (6)

In this way, substituting Equations (7) and (8) into Equation (6), the probability αij can
be described as per Equation (9).

kij(w) =

∣∣wT(µi − µk)
∣∣√

wTΣiw +
√

wTΣjw
(7)

Σij = (µi − µj)(µi − µj)
T (8)

αij(w) =
wTΣijw

wTΣijw + (
√

wTΣiw +
√

wTΣjw)2
(9)

The problem is then solved by finding the optimal 1-D subspace w ∈ RD, where
the sum of the separation probabilities of all pairs of classes is maximized, which can be
represented in the form of Equation (10).

max JDR-MSP(w) = ∑
1≤i≤j≤C

αij(w) (10)

By observing that αij(w) is homogeneous with respect to w, we can add the normalization
constraint on Equation (10). The optimal subspace w∗ is given below in Equation (11) and



Appl. Sci. 2024, 14, 1269 6 of 19

calculated as described in Algorithm 1 once it consists of applying a gradient descent algorithm.

w∗ ∈ argmax JDR-MSP(w) (11)

Algorithm 1 d—Dimension Reduction via Maximum Separation Probability

Require: Original dataset {X, Y} = {(xi, yu)}n
i=1 and target dimension d.

Ensure: Optimal subspace W∗.
1: Calculate the means µi and the covariance Σi for i = 0, 1, 2, . . . , C.
2: Set A0 = I and W0 as empty.
3: for r = 1 to d do
4: Step 1
5: Update υ following v(t+1) = v(t) + γ(t) ∂

∂v JDR- MSP(v).
6: Step 2
7: wr ← Ar−1v∗

8: wr ← wr
‖wr‖

9: Wr ← (Wr−1, wr)
10: Step 3
11: If r < d then Ar ← (I − wrwT

r )Ar
12: end for

3.2. Second Stage—Multiobjective Optimization

The optimization problem for the second stage is to find a unique transformation
function that maximizes the distance between different cluster centers while minimizing
the spread between instances within the same class [11]. The cluster center is represented
by the arithmetic mean of all the points belonging to the cluster (class). Assume that Xk

mk×n
includes all instances of class k (a subset of Sk), where each line corresponds to an instance.
We transform each row of this matrix via the function F so that we obtain Yk

mk×p. We define
−→a k, a vector of p dimensions, as the cluster center of all mk instances in Yk

mk×p, according
to Equation (12).

−→a k =
1

mk

mk

∑
i=1

−→y i (12)

The vector −→y i is the i-th row of Yk
mk×p. We also define the scalar vk as the norm of the

eigenvalues of the covariance matrix of Yk
mk×p, according to Equation (13).

vk =
∥∥∥Eig(Cov(Yk

mk×p))
∥∥∥ (13)

We determine Cov(.) to be the covariance operator and Eig(.) to be the calculation of
the eigenvalues of the input matrix. The value of vk indicates how many instances of class
k are distributed around its center through its most important directions (eigenvectors).
The objective of the method is to adapt the F transform so that vk is minimized for all k,
while the distances between the cluster centers are maximized. This can be formulated as a
multi-objective optimization problem, as per Equation (14), and calculated as described in
Algorithm 2.

Ω =

{
max

∥∥−→a i −−→a j
∥∥ for all j > i

min vi for all i
i, j ∈ {1, . . . , c} (14)

In this work, Equation (14) is solved by finding the minimum of the unconstrained
multivariable function Ω using a derivative-free interior-point method [19]. In other words,
a nonlinear programming solver is used to search for the minimum of the function and
thus to find the optimal coefficients.
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From the matrix, once the coefficients have been found, a matrix product is produced
between it and the high-quality features subset obtained in the first stage. This results in
the final (and reduced) subset are to be forwarded to subsequent methods. As in linear
discriminant analysis, the proposed algorithm can be used only as dimensionality reduction
method for a subsequent classifier or also as a classifier itself when using the proposed
built-in discriminator described in Section 3.3.

Algorithm 2 Multiobjective Optimization

Require: Subspace W∗ (hereby referred as x) from the first stage.
Ensure: Optimal subspace {X, T}.

1: Step 1

2: Solve Ω following Ω = min γ+∑c
k=1 vk

(∏c
i ∏c

j=i+1‖−→a i−−→a j‖)
1

c(c−1)
.

3: Step 2
4: Find the subspace X by calculating X = Ω× x.
5: Step 3 Optional discriminator
6: Step 3.1
7: Find the distances between the individuals of the new subspace X
8: to their respective cluster centers by calculating Equation (15).
9: Step 3.2

10: Find the classification vector T by considering the smallest index found
11: for each individual.

3.3. Discriminant Function for Classification

Considering the final subset, a discriminant function can be used to determine which
class an individual belongs to, evaluating its distance from the cluster centers of all available
classes. In this way, the smaller the value is, the greater the probability that the instance
belongs to a specific class is, as per Equation (15).

fk(
−→y ) =

Dk

∑c
j=1 Dj

(15)

The discriminant function, defined by fk(
−→y ), where Dk =

∥∥∥−→y −−→a k
∥∥∥, can be inter-

preted as the probability of −→y ∈ Sk, since fk(
−→y ) ∈ [0, 1]. In other words, the smaller the

value of fk(
−→y ), the greater the probability of an individual y belonging to class k. From this

point on, the results are converted from generative to actual classification results.

3.4. Data Visualization Experiments

One way to assess the proposed method’s effectiveness is by visualizing its effects on
a given dataset. Consider the crab gender (CG) dataset, incorporated into sample datasets
from MATLAB R2020a. In CG, there are 200 individuals equally distributed between
2 classes and characterized by 6 different attributes [20].

It is a simple dataset that allows us to graphically evaluate the distribution of individu-
als according to their respective classes. Considering its six initial features (or dimensions),
the first stage of the method will create a new subset of four new features (D1 to D4) that
will be used in the second stage, which will be expected to deliver a final subset with two
remaining dimensions. By examining the scatter plots (Figures 2–7) of the six possible
variable correlations at the end of the first stage, it is possible to visually assess how the
method addresses the class masking problem by separating individuals of different classes.
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Figure 2. D1 and D2 correlation.

Figure 3. D1 and D3 correlation.

Figure 4. D1 and D4 correlation.



Appl. Sci. 2024, 14, 1269 9 of 19

Figure 5. D2 and D3 correlation.

Figure 6. D2 and D4 correlation.

Figure 7. D3 and D4 correlation.
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It is possible to verify that the points on the graphs are much more separable, with few
overlaps between them, as the algorithm steps are applied to the dataset. In this way,
the following classification algorithm will receive a dataset that—theoretically—has a
higher degree of distinction between its individuals when compared to the original set,
increasing its chances of presenting greater accuracy.

Nevertheless, since accuracy is a subject set to be discussed in Section 4, it is possible
to analyze how the silhouette coefficient and the Pearson correlation coefficient change
throughout each stage for the crab gender dataset by examining Figures 8 and 9 as per Sec-
tion 2. Note that Figure 9 shows the average Pearson correlation coefficient by considering
the relation between all variables for the crab gender dataset in the original, stage 1, and
stage 2 representations.

Figure 8. CG silhouette coefficient.

Figure 9. CG Pearson correlation coefficient.

The silhouette coefficient is roughly 45 times higher by the end of the first stage and
90 times higher in the final subset when compared to the original dataset, increasing as the
methods are applied. On the other hand, the average Pearson correlation coefficient [21]
is lower at the end of the first stage, but then increases higher than the original value at
the end of the second stage. In other words, classes are more easily distinguishable when
meaningful features are preserved.

It is also interesting to see the final subset that will be forwarded to a classification
method in Figure 10. Same-class individuals are much closer to one another, and cluster
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centers are much further apart from one another, just as Figures 2–7 suggest. This is clearly
a result of a higher silhouette coefficient.

Figure 10. CG final subset.

The experiments indicate that the proposed method can improve the separability
of data points, which can potentially enhance the accuracy of subsequent classification.
In other words, the results suggests that the TSDR approach has the potential to improve
classification by increasing the distinction between individuals.

The next section discusses how these findings impact accuracy, precision, recall, F1
score, and many other performance aspects. It is no secret that, considering the method
heavily relies on optimization, it takes a longer time to run than another alternatives.
Nevertheless, when dealing with real-life high dimensional spaces, that is a reasonable
trade-off in search for a better result.

4. Experimental Results

The results of the proposed method, known as the TSDR approach, are presented in
two parts in this section. Section 4.1 evaluates its classification performance on benchmark
datasets, and Section 4.2 assesses its performance on a real-world application utilizing
social media data.

The classification accuracy of the TSDR approach is compared to well-established
algorithms. It is important to note that deterministic algorithms produce consistent outputs
given the same inputs and machine state, while non-deterministic algorithms can produce
varying outputs in the same circumstances [22].

The k-NN algorithm is a deterministic method that classifies based on the distances
between a given sample and its k nearest neighbors. Its deterministic nature ensures
consistent results given the same inputs. In contrast, the MLP is a non-deterministic
algorithm, with the weights of its neurons initialized randomly and the calculation of errors
unique to each iteration [23].

Comparing the efficiency of the TSDR approach with both deterministic and non-
deterministic algorithms provides a comprehensive evaluation of the proposed method.
Non-deterministic algorithms, such as the MLP, can be useful for finding approximate
solutions when exact solutions are difficult to attain using deterministic methods.

While the parameterization of k-NN is straightforward, the same is not true for
MLP, as it is a multilayer neural network that becomes more sensitive to the dataset.
The appropriate number of neurons for each layer remains an area of uncertainty in
the literature.

Next, we present some general guidelines for determining the number of neurons in
the hidden layer of an MLP [24]:
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1. The number of neurons in the hidden layer should fall within the range between the
size of the input layer and the size of the output layer.

2. The number of neurons in the hidden layer should be equal to 2/3 of the size of the
input layer, plus the size of the output layer.

3. The number of neurons in the hidden layer should be less than double the size of the
input layer.

In this study, the number of neurons in the single hidden layer of the MLP is arbitrarily
determined by summing 2/3 of the number of features (in the input layer) and the number
of labels (in the output layer). The only parameter yet to be defined is d, the number of
desired dimensions in the output subset by the end of the first stage of the TSDR approach.
As detailed in Section 3.2, the number of dimensions by the end of the second stage of the
TSDR approach is solely determined by the number of classes in the original dataset.

Each of the methods (k-NN, MLP, LDA, and TSDR) were tested 100 times on various
datasets. In each trial, a new training and test split was performed at fixed proportions of
60% and 40%, respectively. For each round, the TSDR was evaluated by varying the value
of d from the total number of features minus one in the original dataset to the total number
of classes plus one. Briefly, the classification performance for the following methods will be
compared as follows:

• k-NN (deterministic method) on original dataset;
• MLP (non-deterministic method) on original dataset;
• LDA (non-deterministic method) on original dataset;
• TSDR discriminant function (as per Section 3.3 and Equation (15);
• k-NN on TSDR final subset;
• MLP on TSDR final subset;
• LDA on TSDR final subset.

4.1. Benchmark Datasets

The selected datasets, as listed in Table 1, are well-suited to this application as they
exhibit a range of attributes including varying numbers of labels and features. The dis-
tribution of instances among classes is also a critical aspect to consider when evaluating
the performance of a method. High-dimensional datasets and simpler ones were both
intentionally included in order to assess the impact of dimensionality reduction in both
scenarios. The results shown in this section are those in which the value of d provided
the highest level of accuracy for the classification methods. The parameter values of the
methods for each dataset are also displayed in Table 1.

Table 1. Selected benchmark datasets.

Dataset Features Labels Individuals k Stage 1 d Stage 2 d

cancer_dataset 9 2 {458, 241} 26 7 2
crab_dataset 6 2 {100, 100} 14 5 2
glass_dataset 9 2 {51, 163} 15 7 2

ovarian_dataset 100 2 {121, 95} 15 21 2
Note: d refers to the number of dimensions at the end of each stage.

It was observed that the best classification results were obtained when the TSDR
approach was used as a preprocessor on the datasets with the highest number of attributes,
as demonstrated in Table 2. The results indicate that dimensionality reduction has a positive
impact on the final results. In certain cases, the accuracy achieved by the proposed built-in
discriminator function for classification was even comparable to that of the MLP, which is
widely recognized for its strong generalization ability.

As a matter of fact, considering that all datasets contain two classes and, therefore,
that reduced subsets contain only two dimensions, the results are particularly positive
because they possess comparable accuracy with much smaller datasets. In contrast, when
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the original datasets had low dimensionality, the classification methods performed better
on the original datasets [25].

Table 2. Average accuracies for selected benchmark datasets.

Dataset
Original Dataset TSDR Subset

k-nn MLP LDA k-nn MLP LDA TSDR f

Cancer 95.63% 95.91% 95.84% 96.13% 96.27% 95.77% 96.27%
Crab 67.50% 96.75% 96.00% 92.25% 92.00% 93.50% 93.50%
Glass 90.12% 91.76% 93.88% 88.71% 91.29% 89.65% 91.76%
Ovarian 89.77% 86.51% 71.40% 91.63% 92.56% 91.63% 92.56%

Overall 85.75% 92.74% 89.28% 92.18% 93.03% 92.64% 93.52%
Note: The highest accuracy result for each dataset is highlighted in bold.

Another important performance indicator is the F1 score, calculated as the harmonic
mean of precision (a measure of the number of correctly identified positive cases from
all predicted positive cases) and recall (a measure of the number of correctly identified
positive cases from all actual positive cases). This is a popular performance measure for
classification when data are unbalanced, and provides a better measure of incorrectly
classified cases than the accuracy metric [26].

As demonstrated in Tables 2 and 3, overall, the use of the TSDR discriminator as a
classifier leads to an improved accuracy and F1 score compared to the original datasets.
Both k-NN and MLP show considerable increases in accuracy when the TSDR subsets are
used for classification. However, a comprehensive evaluation of the proposed method
should also consider the training time required to reach the final results [27].

Table 3. Average F1 scores for selected benchmark datasets.

Dataset
Original Dataset TSDR Subset

k-nn MLP LDA k-nn MLP LDA TSDR f

Cancer 95.29% 95.61% 95.52% 95.85% 96.06% 95.45% 95.98%
Crab 69.94% 96.80% 95.99% 92.33% 91.96% 93.75% 93.74%
Glass 86.24% 88.98% 91.35% 84.39% 88.20% 85.58% 88.93%
Ovarian 90.00% 86.95% 70.95% 91.54% 92.38% 91.81% 92.82%

Overall 87.36% 92.55% 88.45% 91.22% 92.07% 91.65% 92.71%
Note: The highest accuracy result for each dataset is highlighted in bold.

It is important to note that the use of the TSDR approach requires additional computa-
tional time, as it involves solving two major optimization problems. However, the larger
the dataset is, the smaller the overall time for classification becomes. For instance, the MLP
requires an average of 67 s to train on the original ovarian_dataset, whereas it only requires
an average of 0.1 s to train on the TSDR subset. Considering that it takes 31 s on average to
obtain the final subset, the MLP can produce a result in no more than 32 s when using the
reduced subset, which is much faster than the time required for the original dataset.

An analysis of the silhouette coefficient was also conducted in this study. The initial
coefficient values for each dataset were calculated, as well for the subsets generated by the
first (TSDR-1) and second (TSDR-2) stages of the proposed method. The results presented
in Table 4 show a significant improvement in the silhouette coefficient when comparing
the original data to the subset utilized by the TSDR approach for classification, with all
values more closely approaching 1, indicating that the clusters are more clearly separable
and distinguishable from one another.
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Table 4. Silhouette coefficients.

Dataset Original Stage 1 Stage 2

cancer_dataset 0.71 0.73 0.83
crab_dataset 0.01 0.40 0.70
glass_dataset 0.55 0.56 0.73

ovarian_dataset 0.46 0.35 0.65

Overall 0.40 0.49 0.71

4.2. Social Media Dataset

To assess the effectiveness of a new algorithm, it is important to compare its accuracy
against established methods using reference datasets. Once it passes this test, the next step is
to test it in real-life applications with all the inherent randomness, overlap, and imbalances
that only current data can provide. With this in mind, the TSDR was used to classify data
from a social network.

Advances in technology have significantly improved the processing and storage
capabilities of databases in recent years. The limitations of hardware and software have
been overcome, making it easier to manage and expand large datasets. The increased
processing power and the wider availability of cloud computing services have also made
powerful technological resources more accessible. As a result, the combination of large
databases and high-performance computers has made it possible to develop previously
unimaginable applications [28].

Social networks, born from these technological advancements, are a treasure trove of
information that is regularly mined by organizations seeking to better understand their
consumers, competitors, and target audience. They provide insights into users’ interests
and preferences, which can be used to understand and influence behavior. The applications
are diverse, ranging from analyzing product or service receptivity, segmenting audiences
for advertisements, or disseminating content to groups that are resistant to it [29].

Social networks have transformed society in the 21st century. The presidential elections
in the United States and Brazil in 2016 and 2018, respectively, are strong examples of
how digital strategists can guide public opinion, just as a conductor leads an orchestra.
These professionals often use the services of data brokers, companies that aggregate and
commercialize treated and enriched information from various sources, such as social
networks, websites, and apps.

An example of the actions of these data brokers is the controversy surrounding the
relationship between Cambridge Analytica (London, UK), a British political marketing
company, and Facebook, where the data of over 50 million people was illegally collected
via personality tests. The quiz, seemingly harmless, was able to quickly profile users based
on information such as page likes and posts, obtaining not only the data of those who filled
out the forms, but also the entire network of contacts of the participants. In this specific
case, the data were allegedly used to outline the profile of the US population during Donald
Trump’s presidential campaign in 2016, allowing for more efficient political advertising
and targeted ads [30].

This was not the only controversy involving social networks during the same election.
Russian interference, also widely reported, was subject to scrutiny by the authorities.
A document published by the United States Senate Intelligence Committee concluded
that Instagram was just as important as Facebook in influencing the results of the last
presidential campaign.

The Internet Research Agency, a Russian company involved in digital influence opera-
tions on behalf of Russian political and commercial interests, sought to divide the American
population using false information and adulterated content. The agency conducted more
operations on Instagram than on any other social network, including Facebook, according
to reports by the commission. From 2015 to 2018, there were 187 million interactions on
Instagram, 77 million on Facebook, and 73 million on Twitter [31].



Appl. Sci. 2024, 14, 1269 15 of 19

The classification of media engagement, which determines the level of audience
reception based on its attributes, is a topic of significant interest. To this end, the application
of the TSDR algorithm to a social media dataset was carried out. Prior to the classification
process, the structure of the dataset must be defined and a construction process must
be implemented.

In 2019, data from the social network Instagram were collected from 25 different users.
For each of them, 2522 interactions were analyzed via an analysis of information from (up
to) 12 of their last publications, repeating this same process for all users who interacted
with them. A set of 6522 media records was built, belonging to 606 different users, enriched
with information regarding their age, gender, hair color, and other cognitive data [32].

• Media width in pixels.
• Media height in pixels.
• Number of hashtags used.
• Length (in number of characters) of the caption.
• Number of males identified in the media.
• Average age of males identified in the media.
• Number of females identified in the media.
• Average age of females identified in the media.
• Gender of the owner of the media profile.
• Age of the owner of the media profile.
• Hair color of the owner of the media profile.

The dataset employed in the present study consisted of two distinct categories: “good
engagement media” and “poor engagement media”. These categories were represented by
3,835 (58.8%) and 2687 (41.2%) media items, respectively. Engagement was determined as
the ratio between the number of interactions (likes and comments) and the total number of
followers. In the media industry, an engagement rate above 6% is commonly regarded as
good, while values below that are considered poor. This classification serves as a starting
point, although the engagement rate scale can be refined further [33].

The results of the original study, which utilized the same dataset as inputs for a
multilayer perceptron (MLP), showed an accuracy of approximately 73% [34]. As per the
results shown in Tables 5 and 6, the application of the TSDR algorithm in the present
study revealed a clear improvement, yielding an average accuracy of 77% using only two
dimensions against 11 from the original research. This highlights not only the established
premise, but also the efficacy of the proposed algorithm. Moreover, the accuracies for all
methods were higher when using the TSDR subset for classification.

Table 5. Classification performance using Instagram dataset.

Measure
Original Dataset TSDR Subset

k-nn MLP LDA k-nn MLP LDA TSDR f

Accuracy 73.17% 74.78% 76.77% 75.91% 75.00% 77.11% 76.84%
F1 score 66.49% 70.34% 72.28% 71.34% 70.22% 72.55% 73.66%

Note: The best result for each measure is highlighted in bold.

Table 6. Parameters for Instagram dataset.

Measure Original Stage 1 Stage 2

Dimensions 11 8 2
Silhouette coefficient 0.12 0.19 0.40

5. Conclusions

In this study, a two-stage dimensionality reduction (TSDR) method was proposed for
data classification. The method involves two stages: extracting high-quality features by
maximizing the pairwise separation probability and transforming the resulting subset into a



Appl. Sci. 2024, 14, 1269 16 of 19

reduced final space by maximizing the distance between the cluster centers and minimizing
dispersion within the same class. The proposed method was tested on benchmark datasets
and showed improved accuracy and F1 scores compared to the original datasets when used
as a preprocessor or a classifier.

The results indicate that the higher the number of attributes is, the more the proposed
method benefits from dimensionality reduction. The study also shows that the use of the
TSDR approach leads to more distinguishable and separable clusters, as indicated by the
significant improvement in the silhouette coefficient values. The use of the TSDR approach
requires additional computational time, but the larger the dataset is, the smaller the overall
time for classification becomes when compared to a simple neural network.

As the culmination of our research, it is essential to highlight the evolution of our
work and the trajectory it has taken. While the current article delves into the successful
application of TSDR and its comparison with various classifiers, we recognize that dimen-
sionality reduction itself warrants an in-depth exploration of different methods and their
comparative efficacy. As we plan to improve our existing proposal, our intention is to offer
the research community a detailed examination of the nuances and strengths of various
dimensionality reduction techniques, providing valuable insights for future endeavors in
social data analysis.

This research also complements the results of a previous study on a social media
dataset [32], which showed that the application of the TSDR algorithm improved the
accuracy from 73% to 77%, even with a reduced dimension set. The method may also reduce
the overall time required for classification. This result also highlights the effectiveness of
the proposed algorithm in improving the performance of machine learning tasks. Moreover,
it confirms the method’s potential regarding its application to real-life data.

In assessing the performance metrics of our classifier, it is crucial to contextualize the
level of accuracy achieved. Social media datasets, particularly those derived from plat-
forms like Instagram, are inherently dynamic, characterized by randomness and sparsity.
The ability to attain a 77% accuracy in classifying such complex and diverse social data is a
testament to the robustness of our two-state dimensionality reduction (TSDR) algorithm. It
is essential to recognize the inherent challenges posed by the nature of social media content,
where patterns and trends can emerge unpredictably.

Moreover, the noteworthy improvement from our previous work, where accuracy
stood at 73%, underscores the efficacy of the enhancements introduced in this manuscript.
This incremental progress represents a substantial step forward, and the level of accuracy
achieved holds considerable significance within the intricate landscape of social data
analysis. In fact, some even consider accuracies higher than 70% as human-level results [35].
As we navigate the intricacies of social media datasets, the pursuit of nuanced classification
accuracy remains a continuous journey, and the strides made in this research contribute
meaningfully to advancing state-of-the-art methods in the field.

The meaning and relevance of the results from a social standpoint are as important as
the improved accuracies achieved with this novel approach. The world is witnessing mind-
bending examples of how social networks are transforming life in society. The presidential
election in the United States in 2016 is a solid example of how the work of digital strategists
has been fundamental in driving public opinion, just as a conductor leads an orchestra.

Cambridge Analytica, a controversial political marketing company, paved the way for
the development of highly effective political advertising on Facebook using approaches
such as the one suggested by this paper. This resulted in the creation of assertive and
precisely targeted ads for a specific candidate, who not only won the election but was later
subjected to extensive scrutiny from the authorities following the revelations regarding the
tactics used during the campaign [36].

Interestingly, this was not the only controversy involving the use of social media
throughout the election: Russian interference, also widely reported by the media, was the
target of scrutiny by the authorities. A document published by the United States Senate
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Intelligence Committee concluded that the actions taken on Instagram to influence the
results of the last presidential campaign were just as important as those taken on Facebook.

The Internet Research Agency (Saint Petersburg, Russia), a Russian company involved
in digital influence operations on behalf of its country’s political and commercial interests,
which sought to divide the American population with false information and adulterated
content, conducted more operations on Instagram than on any other social network, includ-
ing Facebook, according to reports by the commission. There were 187 million interactions
on Instagram, 77 million on Facebook, and 73 million on Twitter, according to data collected
from 2015 to 2018 [37].

These numbers not only highlight the relevance of the proposed method, but also
confirm the pertinence of the selected dataset. Moreover, these numbers makes one wonder
how big the impact of similar approaches in the 2024 US presidential elections will be after
eight years of technological advances following the infamous episode. Few changes have
been made in terms of regulations, and the stage seems to be conducive for an even more
impressive episode of these decisive approaches.

Conclusively, this work reveals that it is possible to classify whether or not a pub-
lication will receive a good amount of engagement with quite a high level of accuracy.
The method can be used with handful of different data sources. It can also be used as a
classifier or for dimensionality reduction within other machine learning algorithms. In fu-
ture works, we intend to redesign the mathematical approach in order to adopt non-linear
optimization in the algorithm’s second stage.
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