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Abstract: Technological advancements have shifted human living and working environments from
outdoor to indoor. Although indoor spaces offer protection from unfavorable weather conditions,
they also present new health challenges. Stale, humid, and warm indoor air creates an ideal breeding
ground for bacteria and fungi, leading to health issues such as asthma and bacterial infections.
Although proper ventilation is crucial, a comprehensive inspection of local indoor air quality is
necessary to prevent widespread diseases. In vitro experiments involving bacteria and fungi collected
from indoor air yield accurate results but are time- and cost-intensive. In silico methods offer faster
results and provide valuable insights for guiding further in vitro experiments. In this study, we
conduct an in vitro cytotoxicity assay on 32 fungi species and compare its results with a memory-
efficient in silico modeling method using parameter-efficient fine-tuning (PEFT) and ProtBERT. This
study suggests a potential methodology for predicting the toxicity of indoor airborne fungi when
their identities are known.

Keywords: protein sequence; fungi; BERT; in vitro cytotoxicity assay

1. Introduction

Over centuries, the living and working environments of human beings have gradually
shifted from outdoor to indoor. At present, the majority of people spend approximately
20 h indoors. Although it is advantageous to stay indoors for protection from rain, heat, or
other environmental factors, staying indoors for prolonged periods may result in certain
health hazards. Indoor air pollution is the cause of various cardiovascular and respiratory
diseases, which accounted for 3.2 million deaths in 2020 [1–4]. Indoor air pollution is
caused by burning combustion devices, new furniture, and tobacco, which release chemical
pollutants such as carbon monoxide and sulfur dioxide. There are also biological pollutants,
which include allergens, such as animal fur and house dust mites, and microbes, such as
viruses, bacteria, and fungi.

Type A influenza is considered seasonal in a majority of the Korean population. The
growing number of patients each year has increased the awareness regarding the prevention
of bacterial diseases. For viral diseases, the 2015 MERS [5–7] outbreak followed by the
2019 COVID-19 pandemic [8–10] has prompted research on viral outbreak prevention. In
contrast, fungal infections are often neglected, owing to few reported cases. However, this
does lower the threat posed by fungal infections to human health. Aspergillosis, caused
by the common household mold Aspergillus, may not be an imminent threat to healthy
individuals. However, for individuals with a weakened immune system, allergic reactions
or lung damage may occur [11,12]. More fatal diseases include Pneumocystis pneumonia,
which is caused by Pneumocystis jirovecii [13,14]. Reports from the Center for Disease
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Control and Prevention (CDC) highlight an increase in reported fungal infections in the US,
cautioning of a possible fungal disease outbreak [15].

Protein sequencing plays a crucial role in understanding the structure and biological
function of proteins. In particular, identifying the functions of new microbes is crucial
as the slightest mutation may cause microbes to act in a hazardous manner. However,
traditional protein sequence analysis methods, such as Edman degradation and X-ray
crystallography, require a significant amount of time and resources. This results in the
challenge of deciding which microbes are worth analyzing, because it is inefficient to invest
in research on microbes that are not well known or perceived to be harmless to other
organisms. In silico modeling can be used to address this issue, as state-of-the-art computer
simulations can provide a rough estimate of the function of a given protein sequence input.
These results may not provide an accurate insight into the protein’s function but can guide
the in vitro and in vivo researchers to devote their resources to other, more likely proteins.

In recent years, deep learning technology has resulted in many innovations in com-
puter vision and natural language processing. The transformer model established in
2017 [16] provides an attention mechanism for machine text translation. Many deep
learning models that adapt their architecture have been proposed. BERT, RoBERTa, and
DistilBERT focus on creating contextualized word embeddings through multiple encoder at-
tention blocks from the original transformer model [17–19]. On the contrary, the generative
pre-trained transformer (GPT) relies significantly on the decider region of the transformer
and is typically used for various generation tasks such as question and answering [20,21].

Because of the versatility of many large language models, any data in the form of text
contain contextual data that can be used for pre-training. These models include Chem-
BERTa [22], MolBERT [23], and SolvBERT [24] from the field of molecular representation
learning, which uses simplified molecular-input line-entry system (SMILES) data. Protein
sequences can also be trained because they share many similarities with human text, such
as repetitive regions and contextual data [25]. Using publicly available protein sequence
data, several models have been proposed, such as ProtBERT, ProtT5, and Ankh [26,27].

Such large language models are pre-trained on massive amounts of data and, often,
for many deep learning applications, fine-tuning the pre-trained weights with a specific
dataset is sufficient for yielding satisfactory results. A major problem in fine-tuning is
that, in the absence of layer freezing, all the parameters must be trained. This task is
not only time-consuming but also increases the hardware barrier for anyone willing to
fine-tune the model for their application. Thus, for a cost-effective fine-tuning method,
parameter-efficient fine-tuning (PEFT) was introduced. The concept of PEFT is based on
the idea that all the parameters of a pre-trained model are frozen. By adding and training a
few trainable parameters, results similar to those of a fine-tuned model can be obtained;
however, this results in a drastic reduction in the trainable parameters. This was proven
in [28], where adaptors included additional trainable layers in the transformer block. Low-
rank adaptation (LoRA) further reduces the parameters by breaking down the adaptation
mechanism and optimizing the rank-decomposition matrices [29].

In this study, we attempted to verify the reliability of deep learning models as an
appropriate in silico method for predicting the toxicity of fungal species by comparing
the prediction results to those of the in vitro experiments. To train the in silico model,
we focused on two major tasks. Initially, we trained the in silico model on fungal protein
data and then improved its time efficiency using PEFT. For the in vitro experiments,
we evaluated the cytotoxicity of fungal species with a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay.

2. Materials and Methods
2.1. In Vitro Data Collection and Experiment Setup
2.1.1. Collecting Indoor Airborne Fungi

The indoor air samples were collected between January 2020 and May 2021 on selected
days to ensure similar average humidity and temperature. A microbial air sampler (KAS-
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110, Kemik Co., Seoul, Republic of Korea) was used to collect 100 L of air from the surfaces
of various sites within a 1 m radius, where no obstacles were present. For the selective
incubation of fungi, potato dextrose agar (PDA), malt extract agar with streptomycin,
potato dextrose agar with streptomycin, sabouraud dextrose, and tryptic soy agar media
were used at each site. Each medium was incubated at 28 ◦C for 5 days before analysis.

2.1.2. Indoor Airborne Fungal Gene Sequencing

Distilled water (100 mL) containing a fungal strain was heated at 100 ◦C for 10 min
and centrifuged at 13,000 rpm for 5 min to precipitate the impurities for strain analysis.
The nucleotide sequences of ITS1 and ITS2 were determined in both directions using ABI
3730XL DNA Analyzer (Applied Biosystems, Waltham, MA, USA). The sequencing service
was provided by Solgent Co., Ltd., Daejeon, Republic of Korea.

2.1.3. Preparation of Fungal Samples for Measuring Their Effect on Cellular Activity

The 32 most frequently identified fungal species were selected. These species were
inoculated onto PDA plates and allowed to grow until mycelial formation was observed.
Subsequently, 5 mL of phosphate-buffered saline was added to each plate. Using a spreader,
the suspended fungal spores were collected in the liquid state. The spores were then filtered
using Miracloth to obtain a spore suspension for use in cell experiments. The suspended
fungal spores were inactivated by heating at 100 ◦C for 10 min before the cytotoxicity assay
to prevent unwanted fungal contamination in animal cell culture systems and to simulate
fungal static metabolism in the air, where fungi encounter harsh conditions, leading to
minimal cellular activity.

2.1.4. In Vitro Cytotoxicity Assay

To assess the impact of indoor airborne fungi on cellular activity, we employed the
MTT assay, a widely used method to measure cytotoxicity by toxic agents. Human cell lines
MRC5 and HeLa were cultured in minimum essential medium Eagle (MEM, WELGENE)
media supplemented with 10% FBS and 1% penicillin–streptomycin solution (WELGENE).
Cells were seeded into a 96-well plate and cultured with 5% CO2 at 37 °C for 24 h [30].
Heat-inactivated fungal samples were added after serial dilution. After 24 h of incubation,
the optical density of the wells was quantified at 580 nm.

2.2. In Silico Data Preparation

Creating a new dataset for protein sequence analysis is painstaking as a significant
amount of time and resources are required to cultivate and sequence the target organ-
ism. It has attracted considerable attention worldwide as a unified public database for
researchers to share their sequencing results. The Universal Protein Resource Knowledge-
base (UniProtKB) [31] is a centralized database of protein sequences, each labeled with
their unique functional description. The database comprises data gathered from the Eu-
ropean Bioinformatics Institute (EMBL-EBI), Swiss Institute of Bioinformatics (SIB), and
Protein Information Resource (PIR); the database provides both reviewed (Swiss-Prot) and
computer-annotated unreviewed protein sequences (TrEMBL).

In our previous work, we collected bacterial proteins from UniProt by searching all
relevant organisms under the bacteria domain. From the data gathered, we labeled the
sequences according to their Gene Ontology (GO) matchings [32]. For the fungi data that
we use in this paper, we followed the same technique that we have used in our previous
paper and collected all relevant organisms under the kingdom fungi. However, unlike our
previous work, we did not label fungal protein sequences with their GO. While GO provides
great insights into the properties of a certain protein, our goal was to tag a protein sequence
with a comprehensive description such as virulence or toxin. We defined certain keywords
and opted to identify every protein sequence with such keywords in their description.

The main focus of an in silico model is to determine whether a protein can create
toxins or cause virulent activity. Thus, we chose to label protein sequences with “virulent”
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for virulent activity or virulence factors, “toxic” for toxic activity or toxins, and “normal”
for non-virulent activity. The keywords used to find such protein sequences are “virul”
for virulent activity and “toxi” for toxic activity. When labeling the protein sequences,
we labeled any sequences with the keyword “anti-toxi” as “normal” because they are not
related to any toxic activity. Algorithm 1 shows the pseudocode for our protein sequence
labeling strategy.

Algorithm 1 Pseudo Code of In Silico Data Collection

for protein sequences do
if length of protein sequences ≤ 1024 then

if description contains virul then
label sequence as “virulent”

else if description contains toxi then
if description contains anti-toxin then

label sequence as “normal”
else

label sequences as “toxin”
end if

else
label sequences as “normal”

end if
end if

end for

In total, 15,660,390 sequences were collected using this process. Before utilizing the
collected data to train the in silico model, we excluded the sequences of 32 species of
fungi from the initial training data. The purpose of this study was to use the data of the
same 32 species collected during the indoor airborne fungi collection mentioned above
in Section 2.1.1 as inference data for a fair comparison of the reliability of the in silico
model with the in vitro experiments. As a portion of the collected fungi species are native
to the Korean peninsula, half of the species protein data were unknown or unavailable
in the UniProtKB database. Therefore, we made predictions for the sequences of the
15 species in which data were available in UniProtKB. Using the trained in silico model, we
compared the results of the 15 fungi species data with the in vitro experiments. Table 1
shows the sequences collected for each class of the 15 species. After excluding the above-
mentioned data, we collected 15,643,956 of normal sequences, 11,828 of toxin sequences,
and 4606 of virulent sequences for each class. However, in this case, the dataset is highly
imbalanced. It is well known that imbalanced data can result in the failure of a model to
classify protein sequences accurately in the minority class. Hence, to balance the dataset,
we randomly selected 4606 sequences from the normal and toxin classes because there were
only 4606 sequences in the virulence class. We split the balanced dataset using a common
data splitting ratio of 7:2:1 for the training, validation, and test sets. The training set was
used to train the model, whereas the validation set was used to evaluate the performance
of the trained model at each epoch. Finally, the test set was used to evaluate the general
performance of the model. The data used to train the model is made available online. The
link to the data is available below in the Supplementary Materials below.
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Table 1. Number of protein sequences collected for the 15 fungal species excluded from the training
dataset for comparison with in vitro experiment results.

Fungi Species Normal Toxin Virulence

Alternaria alternata 23,204 22 13
Aspergillus niger 59,030 25 6
Bjerkandera adusta 18 None None
Chaetomium globosum 10,242 9 1
Cladosporium cladosporioides 321 None None
Coprinellus radians 9 None None
Fusarium equiseti 11,820 6 3
Fusarium proliferatum 15,139 26 5
Neurospora tetrasperma 20,004 6 15
Penicillium brasilianum 19,957 14 4
Penicillium chrysogenum 10,772 62 4
Penicillium oxalicum 9536 4 5
Phanerochaete sordida 16,324 2 None
Schizophyllum commune 12,549 6 3
Trichoderma harzianum 47,665 74 9

2.3. In Silico Model Development

In a previous study [30], we used the hugging face [33] implementation of Prot-
BERT [26]. We again used the hugging face implementation of ProtBERT. ProtBERT, unlike
the original BERT model, used 30 encoder layers, whereas the BERT-based model only
used 12 encoder layers. With more encoder layers, more in-depth contextual data can be
drawn from the inputs. Unlike the BERT model pre-trained on natural language, ProtBERT
is pre-trained using protein sequences. In this paper, we chose ProtBERT-BFD, which is
pre-trained on the Big Fantastic Database (BFD) data for fine-tuning experiments conducted
in [26]. The study reveals that the BFD pre-trained ProtBERT model yields a better un-
derstanding of the protein sequence contextual data. To further improve the efficiency
of the model, we applied LoRA to the ProtBERT model. Adaptors allow one to train on
significantly fewer parameters with minor to no degradation in model performance [28,29].
Much like the original LoRA paper, we applied low-rank decomposition to the query and
value attention heads. The model structure of both ProtBERT and ProtBERT with LoRA is
shown below in Figure 1.

Figure 1. (A) depicts the original ProtBERT model with an additional classification layer. (B) depicts
the modified ProtBERT model with LoRA. Both models take protein sequences with a maximum
length of 1024. We apply zero padding to sequences shorter than 1024. For (B), we apply LoRA to the
query and value attention heads in the feed-forward layer.
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2.4. In Silico Model Training and Evaluation

We trained ProtBERT with and without LoRA to observe any significant increases
in the efficiency. Both models were trained for 20 epochs at a learning rate of 1 × 10−5

using the Adam optimizer. We used the NVIDIA RTX 3090 (Santa Clara, CA, USA) for the
hardware, which offers 24 GB of VRAM suitable for training many deep learning models.
We used accuracy, F1-score, Matthews correlation coefficient (MCC), and auROC metrics to
evaluate both models. In addition, we investigated the number of trainable parameters in
both models because they indicate the time required to train the model. For a further visual
representation of the outputs, we used the t-distributed stochastic neighbor embeddings
(t-SNEs) and reduced the dimension of the last hidden state embeddings of the model to a
2-dimensional space.

3. Results
3.1. In Silico Results

Regarding the model efficiency, training the ProtBERT model with normal fine-tuning
required an average of 34 min per epoch, with 420,983,811 trainable parameters used. For
ProtBERT with LoRA, an average of 27 min was required, with 983,040 trainable parameters.
We present the results for both models with the lowest validation set loss within 20 epochs.
Figure 2 shows the t-distributed stochastic neighbor embedding (t-SNE) visualization
of the prediction results for both models with the test dataset. Both figures show clear
decision boundaries for the classification of classes. For a more objective examination
of the performance of the model, we ran the particular trained weights on the test set.
Performance measures of both models are presented below in Table 2.

Table 2. In silico model performance of ProtBERT with normal fine-tuning and ProtBERT with LoRA.

Method ACC F1 MCC auROC

ProtBERT Valid 0.8330 0.8345 0.7547 0.9325
Test 0.8377 0.8389 0.7599 0.9297

ProtBERT
with LoRA

Valid 0.9096 0.9098 0.8645 0.9554
Test 0.8942 0.8944 0.8418 0.9463

It is noticeable that the ProtBERT model with LoRA outperformed the normal fine-
tuned ProtBERT model by a margin in every performance measure. The test set results
showed a 0.0568 increase in accuracy, 0.0555 increase in F1-score, 0.0819 in MCC, and 0.0166
in auROC. Originally, we presumed a significant decrease in training time and a slight
decrease in performance for the ProtBERT model with LoRA. However, the experimental
results contradicted this, and a significant increase was observed for all performance
measures and a slight reduction was observed in the training time. The discussion section
below presents more presumptions regarding the in silico model training results.

3.2. In Silico Results on Inference Data

To assess the in silico model’s reliability in predicting hazardous fungal proteins, we
used ProtBERT with LoRA because it exhibited better performance in every evaluation
metric. We ran the inference data of all 15 fungal species. A sample of the prediction
results with the highest probabilities of being in each class is presented in Tables 3–5.
The three right columns of each table represent the different probabilites of each of the
classes. The prediction values are derived from the softmax layer outputs of the model. All
prediction results for all the protein sequences of 15 fungal species are available online. The
link to access results is noted below in the supplementary materials section.
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(A)

(B)

Figure 2. t-SNE visualization of test set data prediction. (A) shows predictions made from normal fine-
tuned ProtBERT, and (B) shows predictions made from ProtBERT with LoRA. For both visualizations,
class 0 stands for normal protein sequences (purple), class 1 stands for toxic protein sequences (green),
and class 2 stands for virulent protein sequences (yellow).

Table 3. Inference results for possible toxic proteins.

Fungi Species and Strand Description Normal Toxic Virulent

Penicillium brasilianum Uncharacterized protein 0.0611 0.8876 0.0513
Penicillium brasilianum Uncharacterized protein 0.0611 0.8876 0.0513
Alternaria alternata Domain-containing protein 0.0612 0.8876 0.0512
Penicillium brasilianum Uncharacterized protein 0.0610 0.8875 0.0515
Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0613 0.8875 0.0512
Alternaria alternata Uncharacterized protein 0.0611 0.8875 0.0514
Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0610 0.8875 0.0515
Fusarium proliferatum (strain ET1) Tryptophan dimethylallyltransferase 0.0610 0.8875 0.0515
Alternaria alternata WW domain-containing protein 0.0611 0.8875 0.0514
Fusarium proliferatum (strain ET1) SWIM-type domain-containing protein 0.0610 0.8875 0.0515
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Table 4. Inference results for possible virulent proteins.

Fungi Species and Strand Description Normal Toxic Virulent

Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0434 0.0369 0.9197
Alternaria alternata Uncharacterized protein 0.0433 0.0370 0.9197
Alternaria alternata Uncharacterized protein 0.0433 0.0370 0.9197
Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0433 0.0370 0.9197
Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0433 0.0370 0.9197
Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0433 0.0370 0.9197
Fusarium proliferatum (strain ET1) Uncharacterized protein 0.0434 0.0369 0.9197
Alternaria alternata Uncharacterized protein 0.0433 0.0370 0.9197
Alternaria alternata Uncharacterized protein 0.0434 0.0369 0.9197
Alternaria alternata Uncharacterized protein 0.0434 0.0369 0.9197

Table 5. Inference results for possible normal proteins.

Fungi Species and Strand Description Normal Toxic Virulent

Fusarium proliferatum (strain ET1) Sister chromatid cohesion protein 0.9094 0.0465 0.0441
Penicillium brasilianum RNA polymerase I-specific transcription initiation factor RRN6-like protein 0.9093 0.0464 0.0443
Alternaria alternata Scaffold protein Scd2 0.9081 0.0474 0.0445
Alternaria alternata Cysteine-rich transmembrane CYSTM domain-containing protein 0.9081 0.0476 0.0443
Alternaria alternata Protein kinase domain-containing protein 0.9081 0.0471 0.0448
Penicillium brasilianum Ribosome biogenesis protein 0.9081 0.0474 0.0445
Alternaria alternata DNA polymerase subunit delta-2 0.9081 0.0472 0.0447
Penicillium brasilianum Quinate dehydrogenase 0.9075 0.0468 0.0457
Fusarium proliferatum (strain ET1) Related to peptide transport protein 0.9075 0.0470 0.0455
Alternaria alternata HET-domain-containing protein 0.9023 0.0530 0.0447

3.3. The Effect of Algorithm-Predicted Fungi on Cellular Activity of Human Cell Lines

To validate the predictive capacity of our algorithm for putative toxicity-related pro-
teins in fungi, we selected 14 fungal species that exhibited significant protein numbers
for normal, toxic, and virulent proteins according to our algorithm. For assessing the
impact of these fungal species on cell viability in human cell lines MRC5 and Hela, we
initially established a threshold for cytotoxic concentrations of fungal samples using serial
concentrations of the C. cladosporioides sample. C. cladosporioides is known to cause seasonal
allergic reactions but does not cause invasive infections in animals (Figure 3A). We found a
discernible decrease in cell viability for both MRC5 and Hela cells at the concentration of
1 × 105 CFU of C. cladosporioides. Utilizing this concentration as the standard experimen-
tal condition for observing cell viability, we observed consistent patterns of cell viability
changes across both human cell lines in response to respective fungal samples (Figure 3B).
This suggests the possibility of common signaling or damaging pathways of both cell types
affected by fungal components. A. niger, B. Adusta, C. cladosporioides, and F. equiseti exhibited
minimal effects on the viability of both cell lines. In contrast, the remaining 10 species
caused a notable reduction, hovering around 50% in cell viability across both cell lines.
This result underscores the variability in the cytotoxicity of fungal content, highlighting
fungal-species-dependent responses in this in vitro evaluation test for fungi.
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Figure 3. Assessing fungal toxicity in human cell lines through in vitro analysis. Effects of selected
fungal species on the viability of MRC5 and Hela cells. For all assays, heat-inactivated fungal
samples were added to cell lines pre-seeded in 96-well plates after 24 h of incubation. (A) The
cytotoxicity threshold was determined by conducting with various concentrations of C. cladosporioides
for establishing a standard concentration of fungal samples. (B) Cell viability rates of 14 fungi
are shown as bars and heat maps. Results are represented as cell viability as a percentage of cells
incubated without fungi. Experiments were reiterated twice, evaluating each condition in triplicate.
Data are shown as the mean ± SD. **** p < 0.0001, as determined by two-way analysis of variance.
CFU; colony forming unit.

4. Discussion

We hypothesized that applying LoRA to ProtBERT would improve the model efficiency
at the cost of decreasing the model performance. However, the in silico training results
presented in Section 3.1 proved otherwise, as all the performance measures increased
as compared with those of normal fine-tuning. We presume that this is because of the
difference in the number of trainable parameters and how the LoRA works. Normal fine-
tuned ProtBERT has too many parameters to train as compared to that for ProtBERT with
LoRA, which has approximately 400 times fewer parameters. With fewer parameters to
train, the likelihood of catastrophic forgetting reduces. Additionally, LoRA trains only
newly added layers and does not include the original pre-trained ProtBERT weights.
Therefore, the pre-trained weights of the ProtBERT model are already capable of extracting
useful contextual data.
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The indoor airborne fungal species predicted by our algorithm to harbor potential
toxic and/or virulent proteins includes Alternaria alternata, Aspergillus niger, Chaetomium
globosum, Fusarium equiseti, Fusarium proliferatum, Neurospora tetrasperma, Penicillium brasil-
ianum, Penicillium chrysogenum, Penicillium oxalicum, Phanerochaete sordida, Schizophyllum
commune, Trichoderma harzianum, and they exhibited toxic activity in the two human cell
lines used in this study. Known as plant pathogens, they are subjects of ongoing research in
various areas, including basic research or biotechnology related to enzymes and genomics.
While the fungal spores that they produce, like those of most fungi, can induce allergic
reactions in humans, their pathogenic potential in humans remains to be further explored.
Our in vitro cellular viability results closely align with in silico predictions, suggesting a
potential methodology for evaluating the in vitro cytotoxicity of fungi present in indoor air,
combining in silico prediction with experimental assays. Despite limited data on fungal
protein sequences for training transformer models, this pilot study successfully developed
an in silico prediction module, running in parallel with in vitro cytotoxicity evaluation.
These efforts contribute to the advancement of technology development for a swift under-
standing of unidentified fungi floating indoors, which might pose threats or exacerbate
human health.

5. Conclusions

In this study, we improved the in silco model performance and assessed the reliability
of using ProtBERT for fungi toxicity prediction. In improving model performance, we
applied LoRA to the ProtBERT model.The in silico experimental results showed that
ProtBERT with LoRA outperformed the normal fine-tuning method. Using the trained
in silico model, we compared the toxicity prediction of fungal species with our in vitro
experimental results. The results of the toxicity prediction of the fungal species using
the in silico model showed that there may be possible protein sequences whose functions
are unknown that may present fungal toxicity. In vitro experiments reveal A. alternata,
F. proliferatum, and P. brasilianum as possible toxic fungal species.

By comparing the possibly toxic proteins of these fungal species with those in our in
silico results, we presume that certain unknown proteins predicted to be either toxic or
virulent may be the cause. In the future, we plan to confirm this hypothesis by performing
additional in vitro and in vivo experiments.

Supplementary Materials: The training data for the in silico model and prediction results of the
15 species of fungi are made available online at https://github.com/sungyoonahn/Comparing-in-
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