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Abstract: Air compressors in hydrogen fuel cell vehicles play a crucial role in ensuring the stability
of the cathode air system. However, they currently face challenges related to low efficiency and
poor stability. To address these issues, the experimental setup for the pneumatic performance of air
compressors is established. The effects of operational parameters on energy consumption, efficiency,
and mass flow rate of the air compressor are revealed based on a Morris global sensitivity analysis.
Considering a higher flow rate, larger efficiency, and lower energy consumption simultaneously,
the optimal operating combination of the air compressor is determined based on grey relational
multi-objective optimization. The optimal combination of operational parameters consisted of a
speed of 80,000 rpm, a pressure ratio of 1.8, and an inlet temperature of 18.3 ◦C. Compared to the
average values, the isentropic efficiency achieved a 48.23% increase, and the mass flow rate rose by
78.88% under the optimal operational combination. These findings hold significant value in guiding
the efficient and stable operation of air compressors. The comprehensive methodology employed in
this study is applicable further to investigate air compressors for hydrogen fuel cell vehicles.

Keywords: hydrogen fuel cell vehicles; centrifugal air compressor; Morris sensitivity analysis;
multi-objectives optimization

1. Introduction

In the contemporary world, there is a widespread exploration and integration of
diverse forms of novel energy sources [1]. These alternatives are emerging as pivotal
solutions to tackle climate change and meet the growing energy needs [2], offering ex-
panded avenues for sustainable development [3]. Hydrogen fuel cell vehicles (HFCVs)
are considered the greenest [4] and most sustainable technology [5], which employ proton
exchange membrane fuel cells (PEMFCs) as the power generation device [6]. PEMFCs
utilize hydrogen [7] and oxygen as reactants [8], resulting in only electrical energy and
water as byproducts [9], so they are considered the most promising power generation
technology in HFCVs [10]. The high-speed, oil-free centrifugal air compressor plays a
crucial role as part of the cathode air system in HFCVs [11]. Nevertheless, the existing
air compressors employed in hydrogen-powered vehicles encounter challenges related to
increased energy consumption [12] and reduced mass flow rates [13].

Numerous researchers have conducted studies on achieving a high-efficiency opera-
tion of air compressors in hydrogen energy vehicles. Li et al. [14] proposed a tandem-bladed
impeller method for passive flow control to enhance the stable operating range of the com-
pressor, eliminating control costs or performance drawbacks. The results demonstrate
that this method using tandem impellers can achieve a remarkable maximum operating
range increase of 16.7%. Sun et al. [15] investigated the impact of humidity on compressor
performance and its underlying mechanism theoretically and experimentally. An enhanced
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humidity correction model was developed utilizing a similarity criterion. The results indi-
cated that elevated humidity levels lead to a decrease in the total pressure ratio and peak
isentropic efficiency, causing a shift in the performance curve towards lower mass flow
rates. Zhao et al. [16] used a semi-physical modeling approach to assess the operational
characteristics of a centrifugal compressor, which is favored for automotive fuel cells due
to its compact design. This model comprises numerous physical and empirical parameters
that are notably challenging to ascertain. An interior-point optimization technique employ-
ing Newton iteration is employed to determine these parameters. Wan et al. [17] devised a
design approach that enhances the empirical parameter method to meet the distinct de-
mands of a fuel cell powertrain system. The authors delve into the interplay between the air
compressor and the fuel cell system. The results indicated that the centrifugal compressor
tends to function within an elongated and confined region characterized by a low flow
coefficient and a high head coefficient. This operational tendency results in diminished
efficiency and considerable losses in hydraulic and disc friction. Mirzaee et al. [18] explored
surge or stall events within a centrifugal compressor and examined the contribution of
tip clearance flow to the instability observed in this compressor. Based on a computa-
tional method, the study analyzes the flow dynamics within the centrifugal compressor.
Liu et al. [19] constructed a hybrid semi-mechanical and semi-empirical air supply system
model. This model was integrated into the fuel cell control system to dynamically regulate
the centrifugal air compressor in line with the duty cycle of the engine. Furthermore,
a compound feed-forward PID control approach was introduced for the air compressor.
Fang et al. [20] conducted a detailed analysis of empirical models pertaining to the ef-
ficiency and mass flow rates of centrifugal compressors. The results demonstrated that
existing models designed for vehicle engines and turbocharger centrifugal compressors
do not sufficiently meet the requirements for centrifugal compressors, highlighting the
necessity for accurate models tailored specifically to this application. Zhao et al. [21] in-
troduced a control approach employing dynamic disturbance decoupling control for a
centrifugal compression system. This system is responsible for delivering compressed air
to fuel cells, facilitating the generation of electricity through hydrogen reactions. With its
ultra-high speed, this compressor boasts remarkable performance, rendering it well-suited
for transportation applications.

These investigations mentioned above studied the impact of the rotor, impeller, motor,
and control on the performance enhancement of the air compressor. However, the sensitiv-
ity analysis of operational parameters on air compressor performance and multi-objective
optimization are ignored. Moreover, the demands of the fuel cell stack on the air compres-
sor vary in real time due to the complex and varied operating conditions. Therefore, it is
quite necessary to study the impact of the operating parameters on the performance of the
air compressor.

The Morris sensitivity analysis method has been effectively utilized in various ap-
plications and fields, such as engines [22], the environment [23], and construction [24].
Essentially, it involves exploring multidimensional spaces, offering strengths such as strong
model adaptability, reliable outcomes, and rapid screening capabilities. Liu et al. [25]
introduced a comprehensive sensitivity analysis that combined various global sensitivity
analysis methods, the design of experiment algorithms and indicators, and sample size
designs. This integrated system effectively screened sensitive parameters robustly and
efficiently reduced the burden of parameter optimization. Xiong et al. [26] used a method
for the inversion of mechanical parameters in arch dams, leveraging the sensitivity analysis
of the Morris method and the Hooke-Jeeves algorithm. The results demonstrated that the
Morris analysis can identify the critical factors. Based on the previous research, it was
found that the Morris analysis has a significant effect on the multi-objective.

Addressing multi-factor and multi-objective optimization presents a complex nonlin-
ear challenge. Conventional methods struggle to identify the optimal solution under multi-
ple objectives. For example, the Taguchi method is only capable of solving single-objective
problems [27]. However, the grey relational analysis method can effectively address engi-



Appl. Sci. 2024, 14, 1232 3 of 18

neering problems with multiple optimization objectives simultaneously. Wang et al. [28]
proposed an approach that combines experimental design and grey relational analysis for
addressing problems in multiple criteria decision-making. Zheng et al. [29] presented an
uncomplicated yet dependable approach for evaluating and optimizing building envelopes
during the conceptual phase. An enhanced grey relational projection method was intro-
duced to determine the optimal building envelope solution. Furthermore, a combined
weighting approach, amalgamating subjective and objective weighting methods, was em-
ployed to compute the weights of the factors and sub-factors. Kuo et al. [30] recommended
employing grey relational analysis for multiple-attribute decision-making purposes for
such problem-solving scenarios. This research demonstrates that grey relational analysis
effectively addresses multi-objective optimization problems.

Therefore, in this paper, the experimental setup of the dynamic performance of an air
compressor for application in hydrogen energy vehicles is built. The effects of operating
parameters on the performance of the air compressor are obtained. Based on Morris global
sensitivity, the influence grade of operating parameters on the performance of air compres-
sors is identified to guide the control strategy effectively for efficient operation. Considering
both the operating requirements and grey relational multi-objective optimization theory,
the optimal operating combination of the air compressors with higher efficiency, larger
mass flow, and low energy consumption is determined for the first time. Compared to the
average value, the optimal combination is verified. The research results can be applied
to guide the efficient and stable operation of compressors in HFCVs. The comprehen-
sive methodology presented in this study is also applicable to other studies concerning
compressors in HFCVs.

2. Methodology
2.1. Air Compressors in HFCVs

PEMFCs are the most promising green and sustainable power systems in HFCVs, as
depicted in Figure 1. The anode hydrogen and cathode air undergo oxidation–reduction
reactions within the fuel cell stack, generating electrical energy and water. In PEMFCs, the
seamless integration of components, including the air compressor, fuel cell stack, hydrogen
supply system, and control system, enables the efficient coordination and optimization of
functions. This integration ensures that the air supply aligns with the dynamic demands of
the fuel cell stack, optimizing oxygen delivery and electrochemical reactions. Additionally,
synergies among components, such as integrating the air compressor with advanced control
systems, allow real-time adjustments based on vehicle power requirements, enhancing the
overall efficiency of the fuel cell system [6].
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Among these components, the air compressor is a crucial rotating component within
the cathode power generation system of hydrogen vehicles. It ensures that the air supplied
to the stack for pressurization is clean and oil-free while also maintaining specific pressure
ratios and flow rates. The interaction between air compressors and the fuel cell stack is
vital for the overall performance of the system. The air compressor must deliver oxygen to
the fuel cell stack at appropriate pressure and temperature levels to guarantee the overall
system performance [2,4]. Fuel cell systems often encounter varying power demands,
and the air compressor must exhibit flexibility to ensure a continuous and suitable air
supply to the fuel cell stack [6]. Effective integration with the control system is paramount,
ensuring an air supply that meets the dynamic demands of the fuel cell stack [19]. In the
air compressor, the permanent magnet synchronous motor directly drives the rotor system,
allowing maximum speeds of up to 100,000 rpm. Two gas foil radial bearings utilize an
effective dynamic pressure gas film to levitate the rotor system, ensuring stable operation
that is oil-free at ultra-high speeds for the air supply system in HFCVs.

2.2. Content and Methodologies Employed in the Research

In this paper, multi-objective optimization of operational characteristics of the air
compressor utilized in hydrogen-powered vehicles is conducted to guide its efficient and
stable operation. There are five parts including design experiments, sensitivity analy-
sis, performance analysis, multi-objective optimization, and optimization verification, as
presented in Figure 2.
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Firstly, the experimental setup is built to assess the performance of the air compressor
under real operating conditions in HFCVs. The second part focuses on examining the
influence magnitude of operational parameters on the optimization objectives using the
Morris sensitivity analysis. Thirdly, the research investigates the impact mechanisms of
operational parameters on objective parameters based on the experimental results. Fourthly,
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employing grey relational analysis and targeting a higher efficiency, larger flow rate,
and lower energy consumption as optimization objectives, the study obtains the optimal
operational combination for the air compressor. Finally, through weight analysis and
comparison with average values, the optimal operational condition of the air compressor
applied in hydrogen energy vehicles is verified to improve efficiency and stability.

3. Experimental Bench and Theoretical Model
3.1. Experimental Bench
3.1.1. Experimental Setup

The experimental setup for the air compressor employing a two-stage centrifugal
mechanism is depicted in Figure 3. Filtered air enters the first stage of the centrifugal
compressor. It undergoes compression across two stages before the compressed gas is
discharged into the atmosphere. The experiment utilizes a DC power cabinet to supply
power to the air compressor. A controller interfaces with control software on a computer
to manage the operational parameters of the compressor. The gas pressure at the inlet
and outlet of the compressor is monitored and recorded using pressure gauges, and the
temperature is measured using temperature sensors. The exhaust flow rate is measured
using a vortex flowmeter. The arrangement of all instruments and pipelines follows the
corresponding international standards, ensuring the reliability of the measurement results.
More information about the equipment and appliances is summarized in Table 1.
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Table 1. Detailed information on the equipment and appliances of the air compressor.

No. Equipment and Appliances Limit Precision

1 Filter ≥0.003 µm /
2 Centrifugal compressor 20,000–90,000 rpm, 0.01–0.162 kg/s /
3 Compressor controller 180–445 VDC ±200 rpm
4 DC power cabinet 500 V ±1%
5 Automatic valve 0–1 /
6 Temperature transducer 300 ◦C ±1 ◦C
7 Pressure transducer 0.6 MPa ±0.2%
8 Vortex flow meter 30–500 m3/h ±1%

3.1.2. Theoretical Calculation of Air Compressor

To address the issue of high energy consumption and poor stability in existing cen-
trifugal air compressors for hydrogen vehicles, a study focused on developing an optimal
air compressor with a lower energy consumption, higher isentropic efficiency, and a larger
mass flow rate is conducted.

The isentropic compression work of the air compressor is calculated as Equation (1)
based on isentropic compression work Ws, adiabatic index k, gas constant R, and intake
temperature T1 [31]:

Ws =
k

k − 1
RT1

[(
p2

p1

) k−1
k

− 1

]
(1)

The shaft power Wtot represents the total power consumption, which is expressed by
Equation (2):

Wtot = P × ηmo (2)

where P is the power displayed on the DC power cabinet and ηmo is the motor efficiency.
Isentropic efficiency η can be expressed as Equation (3) [14]:

η =
Ws

Wtot
(3)
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3.2. Theoretical Model
3.2.1. Global Sensitivity Analysis

The Morris sensitivity analysis technique is commonly employed to evaluate the
sensitivity of input factors globally. It determines the influence grade of input factors on
the output results by calculating sensitivity coefficients for each factor. It is considered a
highly effective method for identifying sensitive and insensitive parameters. In this study,
the impact of operating parameters on the optimization objectives based on the Morris
method is obtained to guide the efficient control of the air supply system used in HFCVs.

In the Morris sensitivity analysis, the utilization of elementary effects can be used to
quantify the influence grade of a single perturbation on the objectives. Equation (4) allows
for the calculation of the elementary effect of the ith input parameter [26]:

Si =
y(x1, x2, . . . , xi + ∆x, . . . , xn)− y(x1, x2, . . . , xn)

∆x
(4)

The average value µi determines the assessment of the input parameter influence on
the optimization objectives. A higher µi signifies a greater impact of the input parameters
on the objective. Therefore, the average value can be expressed as [24]:

µi =
1
m∑m

j=1 Sij (5)

Taking into account the impact of negative values on the average, a corrected average
is used to represent sensitivity. Therefore, the corrected average can be expressed as [24]:

µi
∗ =

1
m∑m

j=1

∣∣Sij
∣∣ (6)

where Si is the elementary effect of the ith input factor, y(x1, x2, . . . , xn) is the initial output
result, y(x1, x2, xi + ∆x . . . , xn) is the output result after the perturbation of the input factor,
∆x is the perturbation of the input factor, and m represents the quantity of autonomous
random pathways utilized in the global sensitivity analysis.

3.2.2. Initial Sample and Multi-Objective Optimization

Determining the initial sample set is the first step in conducting multi-objective opti-
mization [32]. An orthogonal array is a design method used to study the impact of multiple
factors on objectives within the fewest possible experiments, effectively analyzing the rela-
tionships between factors and objectives and ensuring the validity of the analysis results.
Due to the presence of three input factors in this study, an orthogonal design table L9 (34)
is employed as the initial sample set [33,34]. It should be emphasized that experts design
orthogonal arrays, and researchers need to choose a reasonable orthogonal table according
to the specific research content to obtain comprehensive and reasonable results [34].

The key to grey relational analysis (GRA) is to calculate the grey relational grade (GRG)
of integrated parameters based on weighted allocation in multi-objective scenarios [35].
A higher grey relational grade indicates better outcomes [27].

Firstly, the multi-objective parameters yi(k) obtained from the orthogonal array un-
dergo normalization. Equations (7) and (8) are used for objectives favoring larger and
smaller values, respectively:

Xi(k) =
yi(k)− min(yi(k))

max(yi(k))− min(yi(k))
(7)

Xi(k) =
max(yi(k))−yi(k)

max(yi(k))− min(yi(k))
(8)
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The grey relational coefficient γ can be expressed as [26]:

γ(X0i, Xi(k)) =
∆min + ζ∆max

∆ik + ζ∆max
(9)

∆ik = |X0i − Xi(k)| (10)

∆min = min{∆ik} (11)

∆min = max{∆ik} (12)

where ζ is the weight coefficient assigned to objectives, ranging from 0 to 1.
A larger grey relational degree δ(R0, Rk) indicates better results, and it is calculated

as [26,27]:

βi =
1 − Ti

∑
Nqc
i (1 − Ti)

i = 1, 2, . . . , Nqc (13)

Ti = −∑Nex
k=1 piklnpik

lnNex
(14)

pik =
γ(X0i, Xi(k))

∑Nex
k=1 γ(X0i, Xi(k))

k = 1, 2, . . . , Nex (15)

δ(R0, Rk) = ∑Nqc
i=1 βiγ(X0i, Xi(k)) (16)

where Nex is the number of the experiment, and Nqc is the number of the objective.

4. Results and Discussions

In this study, the operational parameters, including rotation speed, pressure ratio, and
intake air temperature, are selected based on previous investigations [17]. It should be
noted that the total power consumption, corrected mass flow rate, and isentropic efficiency
are considered the optimization objectives for the air compressor to optimize the dynamic
performance of the hydrogen energy vehicles [11].

4.1. Sensitivity Analysis

The impact of operational parameters on the total power consumption of the air
compressor in hydrogen energy vehicles is illustrated in Figure 4. Based on the results, the
rotational speed exhibits the highest sensitivity to total power consumption. In contrast, the
pressure ratio and intake air temperature demonstrate a comparable level of sensitivity to
total power consumption. It is noteworthy that the impact of rotational speed on total power
consumption significantly surpasses that of the pressure ratio and intake air temperature.
This is because the total power consumption is primarily determined by the permanent
magnet synchronous motor, and the rotational speed represents the most influential factor
affecting the energy consumption of the motor. Therefore, to reduce the power usage of
the air compressor and enhance the energy efficiency of HFCVs, efforts should be made to
operate the air compressor at lower rotational speeds whenever possible.
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Figure 4. The sensitivity of operational parameters to total power consumption.

The sensitivity analysis results of operational parameters on the efficiency under
isentropic conditions in a dual-stage centrifugal air compressor are depicted in Figure 5.
Among these factors, the pressure ratio exhibits the most pronounced sensitivity to the
isentropic efficiency, followed by rotational speed, while the intake air temperature has
the least impact. This is because the pressure ratio directly influences the adiabatic com-
pression work of the centrifugal air compressor. Moreover, the pressure ratio should be
prioritized for adjustment as the primary factor when targeting high isentropic efficiency.
In comparison to the influence of the pressure ratio and rotational speed on isentropic
efficiency, the impact of the inlet temperature is minimal.
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The sensitivity analysis of operational parameters on the corrected mass flow rate
of the air compressor in hydrogen energy vehicles is illustrated in Figure 6. The research
findings indicate that the pressure ratio has the most significant impact on the mass flow
rate of the air compressor, followed closely by the rotational speed, and the influence of inlet
temperature on the flow rate is minimal. Therefore, the primary adjustment should focus on
modifying the pressure ratio of the compressor when hydrogen-powered vehicles require
higher mass flow rates from the air compressor to the stack. Furthermore, simultaneous
adjustments, including the pressure ratio and the rotational speed of the air compressor,
could be considered to meet the larger flow rate requirements of the fuel cell stack.
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Figure 6. The sensitivity of operational parameters to corrected mass flow.

Based on the above results and discussions, it is evident that the Morris global sensi-
tivity analysis accurately identifies the impact magnitude of operational parameters on the
objective variables. When hydrogen energy vehicles exhibit varying demands on the air
compressor, the Morris sensitivity analysis results effectively guide the efficient operation of
the air compressor to meet the specific requirements of the fuel cell stack. However, further
discussion and research are required to investigate the effects of operational parameters on
the optimization objectives of the air compressor.

4.2. Impact of Operational Parameters on the Performance of the Air Compressor
4.2.1. Total Power Consumption

The influence of operational parameters on the total power consumption of the two-
stage centrifugal air compressor is depicted in Figure 7. The research findings indicate
that the total power consumption increases with a higher rotational speed and intake
air temperature. It is noteworthy that with an increase in the pressure ratio, the total
power consumption initially rises before subsequently decreasing. It is noteworthy that
the total power consumption increases first and then decreases with the increase in the
pressure ratio. This means that a specific pressure ratio exists at which the total power
consumption of the air compressor reaches its maximum, which is undesirable for achieving
low-energy operation of the compressor and should be avoided as much as possible. In this
experiment, the pressure ratio corresponding to the maximum energy consumption is 2.3.
Considering the sensitivity analysis of operational parameters on total power consumption,
the primary step would be to decrease the rotational speed to reduce the energy utilized by
the air compressor.

4.2.2. Isentropic Efficiency

The impact of operational parameters on the isentropic efficiency of the air compressor
is illustrated in Figure 8. An analysis reveals that the isentropic efficiency increases with
higher values of the rotational speed, pressure ratio, and inlet temperature. In this experi-
ment, the maximum isentropic efficiency is observed at a rotational speed of 90,000 rpm,
a pressure ratio of 2.9, and an intake air temperature of 20.7 ◦C. Taking into account both
the sensitivity analysis of operational parameters on isentropic efficiency and their specific
impact, the primary step should be to increase the rotational speed when high isentropic
efficiency is required from the air compressor.

4.2.3. Corrected Mass flow Rate

The specific trend of operational parameters on the corrected mass flow rate of the air
compressor is depicted in Figure 9. This study reveals that the mass flow rate increases
as the rotational speed increases. However, as the pressure ratio and inlet temperature
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increase, the mass flow rate decreases. Combining the sensitivity analysis of operational
parameters on the air compressor’s mass flow rate and their specific impact trends, the
initial step would involve decreasing the pressure ratio and increasing the rotational speed
when the fuel cell stack requires high flow rates from the air compressor. On the contrary,
it is recommended to decrease the rotational speed to achieve a higher pressure ratio.
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4.3. Results of Multi-Objective Optimization
4.3.1. Initial Sample

To achieve a high-efficiency and energy-saving operation in HFCVs, the air compressor
within the cathode air system is required to possess the characteristics of having a higher flow
rate, larger efficiency, and lower power consumption. Based on prior research [17,19,21], the
rotational speed, pressure ratio, and intake air temperature are chosen as factors, while high
efficiency, low energy consumption, and high mass flow rate are selected as optimization
objectives. The levels of each factor are shown in Table 2. Based on the orthogonal design
table L9 (34) and Table 2, the initial sample set is illustrated in Table 3 [34]. The objective
parameters under the initial samples are depicted in Figure 10.

Table 2. Levels of each factor.

Factors
Levels

1 2 3

Rotational speed/rpm 20,000 50,000 80,000
Intake air temperature/◦C 18.3 18.8 19.3

Pressure ratio 1.0 1.4 1.8

Table 3. Initial sample based on orthogonal array L9 (34).

No.
Operational Parameters

Rotational Speed/rpm Intake Air Temperature/◦C Pressure Ratio

1 20,000 18.3 1.0
2 20,000 18.8 1.4
3 20,000 19.3 1.8
4 50,000 18.3 1.4
5 50,000 18.8 1.8
6 50,000 19.3 1.0
7 80,000 18.3 1.8
8 80,000 18.8 1.0
9 80,000 19.3 1.4

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 19 
 

Table 3. Initial sample based on orthogonal array L9 (34). 

No. 
Operational Parameters 

Rotational Speed/rpm Intake Air Temperature/°C Pressure Ratio 
1 20,000 18.3 1.0 
2 20,000 18.8 1.4 
3 20,000 19.3 1.8 
4 50,000 18.3 1.4 
5 50,000 18.8 1.8 
6 50,000 19.3 1.0 
7 80,000 18.3 1.8 
8 80,000 18.8 1.0 
9 80,000 19.3 1.4 

 
Figure 10. Objective parameters under the initial sample. 

4.3.2. Multi-Objective Optimization Results 
The multi-objective optimization results considering both high isentropic efficiency 

and low power dissipation (Optimization A) are illustrated in Figure 11 based on the GRA 
theory formulas. The maximum GRG of 0.7937 is achieved for the initial sample No. 4. At 
this point, the isentropic efficiency is 58.97%, the total power consumption is 3.56 kW, and 
the mass flow rate is 0.066 kg/s. 

0

0.04

0.08

0.12

0.16

0

20

40

60

80

1 2 3 4 5 6 7 8 9

Co
rre

ct
ed

 m
as

s f
lo

w
 ra

te
 (k

g/
s)

Is
en

tro
pi

c 
ef

fic
ie

nc
y 

(%
) /

 T
ot

al
 p

ow
er

 c
on

su
m

pt
io

n 
(k

W
)

No.

Total power consumption Isentropic efficiency
Corrected mass flow rate

Figure 10. Objective parameters under the initial sample.



Appl. Sci. 2024, 14, 1232 14 of 18

4.3.2. Multi-Objective Optimization Results

The multi-objective optimization results considering both high isentropic efficiency
and low power dissipation (Optimization A) are illustrated in Figure 11 based on the GRA
theory formulas. The maximum GRG of 0.7937 is achieved for the initial sample No. 4.
At this point, the isentropic efficiency is 58.97%, the total power consumption is 3.56 kW,
and the mass flow rate is 0.066 kg/s.
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Figure 11. Multi-objective optimization results in high efficiency and low energy consumption.

When considering both high mass flow rate and low energy consumption simulta-
neously (Optimization B), the solution for the GRG in the multi-objective optimization is
shown in Figure 12. The maximum GRG of 0.6873 is discovered for the initial sample No. 8.
At the maximum GRG, the mass flow rate is 0.1389 kg/s, the total power consumption is
15.32 kW, and the isentropic efficiency is 41.30%.
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Figure 12. Multi-objective optimization results in high mass flow rate and low energy consumption.

However, the optimized results considering high flow rate, high efficiency, and low
energy consumption simultaneously (Optimization C) are illustrated in Figure 13. The re-
sults indicate that the maximum GRG of 0.734 is achieved for the initial sample No. 7.
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At the optimal operating parameters, the isentropic efficiency is 61.48%, the total power
consumption is 16.12 kW, and the mass flow rate is 0.1274 kg/s.
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Figure 13. Multi-objective optimization results in high efficiency, large flow rate, and low energy
consumption.

4.4. Optimal Combination Verification

Table 4 illustrates the optimal operational parameters of the air compressor under
different optimization objectives. The results indicate substantial differences in the optimal
operational parameters when varying weights are assigned to total power consumption,
isentropic efficiency, and mass flow rate as optimization objectives. In engineering ap-
plications, researchers can utilize the grey relational optimization theory to adjust the
weights assigned to different objectives, thereby making corresponding adjustments to the
operational parameters of the air compressor. This approach aims to achieve high efficiency
and energy conservation in the operation of the air compressor.

Table 4. Optimum operational combinations of the air compressor under different objectives.

Weight Optimization A Optimization B Optimization C

Total power consumption ↓ 0.45 0.48 0.35
Isentropic efficiency ↑ 0.55 0 0.35

Corrected mass flow rate ↑ 0 0.52 0.30
Optimal combination No. 4 No. 8 No. 7

Note: ↓ the smaller, the better. ↑ the larger, the better.

As shown in Figure 14, compared to the initial sample average values (isentropic
efficiency 41.48%, total power consumption 6.463 kW, 0.0712 kg/s), Optimization A demon-
strates a notable 42.18% enhancement in isentropic efficiency and a substantial 44.92%
reduction in energy consumption. Optimization B results in a significant 95.1% increase
in mass flow rate. Optimization C achieves a remarkable 78.88% elevation in mass flow
rate and a 48.23% improvement in isentropic efficiency while only experiencing a 50% rise
in energy consumption. The validation results indicate that Optimization A significantly
reduces energy consumption aimed at lowering the power consumption of the air com-
pressor, thereby enhancing its energy efficiency. The significant increase in mass flow rate
and isentropic efficiency achieved by Optimization B and Optimization C substantiates the
air compressor’s optimization outcomes under varying requirements. This analysis and
discussion thoroughly validate the optimization results for different demands on the air
compressor.
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4.5. Constraints and Future Investigations

This study provides novel insights and discoveries for the efficient and reliable op-
eration of air compressors in HFCVs. However, there are still limitations in the research
that require further in-depth investigation in the future. Therefore, the directions for future
research are: (1) the effects of unexpected operating conditions and component failures on
the experimental results need to be considered, especially in optimal operational parame-
ters. (2) Integrating fault tolerance and robustness theories to conduct a robustness analysis
and the testing of optimal results.

5. Conclusions

This paper investigated the global sensitivity and multi-objective optimization of
the operational parameters of the air compressor in hydrogen energy vehicles based on
experimental results. These findings hold significant value in guiding the efficient and
stable operation of air compressors. The main conclusions are summarized as follows.

1. The rotational speed exhibits the highest sensitivity to total energy consumption, while
the pressure ratio showcases the most prominent sensitivity towards the isentropic
efficiency and mass flow rate. Conversely, the impact of the intake temperature on
energy consumption, efficiency, and flow rate is minimal.

2. The total power consumption increases with higher rotational speed and inlet tem-
perature. Notably, with an increase in the pressure ratio, total power consumption
initially rises before decreasing. Isentropic efficiency increases with higher values of
rotational speed, pressure ratio, and intake temperature. As rotational speed increases,
mass flow rate increases. However, with an increase in the pressure ratio and intake
temperature, the mass flow rate decreases.

3. Considering high efficiency and low energy consumption, the optimal combination
of operational parameters is a rotational speed of 50,000 rpm, a pressure ratio of
1.4, and an intake temperature of 18.3 ◦C. At these optimal operational parameters,
the isentropic efficiency improved by 42.18%, while power consumption decreased
by 44.92%.

4. Considering the high mass flow rate and low energy consumption, the optimal
combination of operational parameters is a rotational speed of 80,000 rpm, a pressure
ratio of 1.0, and an intake temperature of 18.8 ◦C. At these optimal operational
parameters, the mass flow rate increased by 95.1%.
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5. When considering a high flow rate, high efficiency, and low energy consumption
simultaneously, the optimal combination of operational parameters is a rotational
speed of 80,000 rpm, a pressure ratio of 1.8, and an intake temperature of 18.3 ◦C.
Compared to the average values, at half the increase in power consumption, the mass
flow rate increased by 78.88%, and the isentropic efficiency increased by 48.23%.

The research findings mentioned above provide valuable insights into the efficient
operation of the air compressor under various demands from the fuel cell stack. The compre-
hensive multi-factor, multi-objective research method proposed in this paper is applicable to
other optimization studies concerning air compressors in HFCVs. In addition, air compres-
sors can be affected by transient conditions, including start–stop phases, load fluctuations,
sudden pressure changes, and temperature variations. To address these, advanced control
systems, variable speed drives, system modeling, optimized component design, and moni-
toring with predictive maintenance need to be investigated further to enhance efficiency
and stability.
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