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Abstract: Global warming and the global energy crisis are two major challenges humanity is currently
confronting that are pressuring the scientific community to find efficient, low-cost, and environ-
mentally sustainable solutions. Within this context, hydrogen has emerged as a clean and efficient
energy carrier promising to replace environmentally hazardous fossil fuels. The present study, of
relevance to the water splitting domain, concerns the synthesis of two novel hybrid structures, namely
polyvinylpyrrolidone (PVP) functionalized with Ag-doped LaMnO3 and Pd-doped LaMnO3, respec-
tively. The water electrolysis catalytic activity of these new materials was evaluated in a strongly
alkaline medium. Perovskite-based modified electrodes were manufactured through four different
procedures. The samples displayed electrocatalytic activity for the O2 evolution reaction and the most
active electrode was the one obtained by drop-casting a mixture of LaMnO3:Ag/PVP and Carbon
Black on graphite support. The study is aimed at and succeeds in increasing the scientific database
concerning the role of perovskite oxides in the water-splitting field.
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1. Introduction

Perovskites represent interesting and promising materials due to advantages such
as chemical stability, photostability, low production cost, modifiable energy in the band
gap, high absorption properties, as well as long carrier lifetime and diffusion length, which
can be used in green and sustainable environmental applications [1]. Despite the high
dielectric constant and multifunctionality of perovskite materials, they possess high density,
brittleness, and low dielectric strength, as well as poor processability [2].

Polymer–perovskite nanocomposites have attracted the attention of researchers as
multifunctional materials for the development of flexible components/devices with many
significant technological uses, in which the favorable characteristics of inorganic perovskite
nanofiller and organic polymer are effectively integrated [2].

Nanosized filler polymer composites exhibit outstanding properties due to the unique
characteristics of nanoparticles, such as the high surface-to-volume ratio and large in-
terfacial area formed between the matrix and nanoparticles, with enhanced mechanical,
electrical, and thermal properties. Nanocomposites that combine the advantages of polymer
and filler (ceramics) can be processed more easily and are viable alternatives to plain/doped
ceramic materials [3].

PVP is a water-soluble, non-toxic amorphous nonionic polymer, with high solubility
in polar solvents, widely used in the synthesis of nanoparticles [4] acting as a nanoparticle
dispersant, growth modifier, and surface stabilizer, preventing agglomeration of nanopar-
ticles [5]. Due to its amphiphilic nature, PVP can affect the morphology and growth of
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nanoparticles by providing solubility in various solvents, discriminative surface stabiliza-
tion, controlled crystal growth, playing the role of a shape control agent and facilitating the
growth of specific crystal faces, while preventing the growth others [5].

Climate change, the worldwide increase in the demand for electricity, and the depletion
of the natural resources from which non-renewable energy is obtained are among the
major problems facing humanity. In an attempt to resolve these issues, researchers have
come to advance environmentally friendly technologies that exploit renewable energy
sources and provide energy carriers [6]. Hydrogen is one such energy carrier that has
attracted the attention of the scientific community due to its properties, such as its carbon-
free composition and very high energy density [6,7]. This gas is currently regarded as
an efficient source of environmentally friendly energy that can replace the fossil fuels
considered to play a significant role in global warming [8].

There is more than one available technology for generating hydrogen and not all of
them are greenhouse gas free. For example, H2 can be obtained via biomass and fossil
fuel burning [9], but in order to avoid damaging the environment the go-to processes are
electrolysis and photoelectrolysis [10]. Today, electrochemical water splitting performed by
exploiting solar energy either directly or indirectly constitutes a very promising approach
for the large-scale generation of hydrogen in an environmentally friendly manner [11,12].

Water electrolysis is a well-known, simple, quick, and non-polluting way of decompos-
ing water molecules into O2 and H2 via two main half-reactions: the oxygen and hydrogen
evolution reactions (OER and HER) unfolding at the anode and cathode, respectively. If
the electricity required by this process is supplied from renewable energy sources—such as
solar, wind, and tidal energy—it becomes even more environmentally friendly [13]. One of
the issues facing water electrolysis that stands out is constituted by the sluggish reaction
kinetics of the OER and HER. To address this problem researchers are aiming to synthesize
materials with high electrocatalytic activity for at least one of the two half-reactions. In
order to make water splitting viable for large-scale H2 production the electrocatalysts must
also be stable and low cost [14]. Currently, Pt-based catalysts for the HER and Ru- and
Ir-based catalysts for the OER are benchmarks when it comes to the performance evaluation
of the other catalysts reported in the literature [15–17]. However, their scarcity and high cost
are significant obstacles for large-scale applications, making the identification of non-noble
materials that are both highly efficient and stable a main concern. The scientific literature
contains a large number of functional materials that have been studied regarding their
electrocatalytic water-splitting properties, ranging from noble metal-based to non-noble
metal-based and metal-free ones [18–20].

Perovskite oxides are a category of functional materials that have been revealed to be
very promising for the water-splitting domain [21,22]. These compounds share a crystal
structure characterized by the chemical formula ABO3, where the A-site is occupied by a
bigger metal cation than the one occupying the B-site, and they possess properties such as
piezoelectricity, superconductivity, ferroelectricity, and enormous magnetoresistivity which
make them useful for various industrial and commercial domains [23]. The full potential
of perovskite oxides in the water-splitting field has yet to be revealed, but the evaluation
of their relevant catalytic properties is of current interest to researchers, as reflected in the
recent publications of Sfirloaga et al. [24,25]. In one of the studies, hybrid materials based
on montmorillonite functionalized with LaMnO3 perovskite were obtained for the first time
and were tested regarding their water-splitting electrocatalytic activity in alkaline media,
which led to the identification of the modified electrode possessing the best properties for
the HER [24]. A subsequently published investigation outlines the HER electrocatalytic
properties in alkaline media of unsubstituted, Ca-substituted, and Pd-substituted LaMnO3.
The most significant results were obtained for the electrodes modified with compositions
containing the Pd-substituted perovskite oxide [25].

The current paper continues the work of Sfirloaga et al. [25] concerning the water
electrolysis catalytic properties of perovskite oxide-based modified electrodes via the study
of two new materials—LaMnO3:Ag/PVP (P11) and LaMnO3:Pd/PVP (P14)—in a strongly
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alkaline medium. The modified samples whose OER and HER activity were evaluated
experimentally were obtained using four different procedures. The results show that while
both perovskite compounds display negligible electrocatalytic activity for the HER, the
electrode modified with a composition containing P11 and manufactured with one of the
procedures (designated as Procedure 4) is more active toward the OER than the rest of the
investigated samples. In terms of novelty, the study of the water-splitting electrocatalytic
properties of P11 and P14 has not been previously performed, and the materials have not
been previously characterized with the physico-chemical methods mentioned in the paper.

2. Materials and Methods
2.1. Materials and Reagents

Perovskite materials (1% Ag-doped LaMnO3 and 1% Pd-doped LaMnO3) were ob-
tained by a previously reported sol-gel technique [26–28]. Nafion solution of 5% concen-
tration was purchased from Sigma Aldrich (Saint Louis, MO, USA) as Nafion® 117 and
Carbon Black—Vulcan XC 72 was acquired from Fuell Cell Store (Bryan, TX, USA). The role
of Nafion was that of binder, enhancing the adhesion of the catalysts and Carbon Black to
the substrate, while the use of Carbon Black was aimed at increasing the electron transfer
among electrode surface and electroactive species [29]. The glassy carbon (GC) pellets were
from Andreescu Labor & Soft SRL (Bucharest, Romania) while the spectroscopic graphite
bars (type SW.114, �= 6 mm) were manufactured at the National Corporation “Kablo
Bratislava”, the “ElectrocarbonTopolcany” factory (Bratislava, Slovakia). Polyvinylpyrroli-
done (Sigma-Aldrich), potassium hydroxide (Merck, Darmstadt, Germany), potassium
nitrate (Merck), potassium hexacyanoferrate (III) (Sigma-Aldrich), ethanol (Chimreactiv,
Bucharest, Romania), and acetone (Chimreactiv) were also used in the study. All aqueous
solutions were obtained with double-distilled water produced in the laboratory.

2.2. Synthesis of Hybrid Materials

The procedure for obtaining the new hybrid materials based on polyvinylpyrrolidone
(PVP) polymer functionalized with LaMnO3 type perovskite structures doped with Ag
(P11) or Pd (P14) consists of mixing the precursors in a mass ratio of 20:1 (PVP:perovskite)
and dispersing them in distilled water. The resulting suspensions were stirred for 2 h
maintaining the temperature at 80 ◦C and 400 rpm using a magnetic stirrer SMHS-3
(WitegLabortechnik GmbH, Wertheim am Main, Germany). The resulting viscous mixture
was cast into a thin film of 2–5 mm thickness on a flat surface (polypropylene film) and
dried at room temperature for 12 h. For further analysis, the polymer-perovskite film was
triturated until a homogeneous mixture with a small grain size (up to 1 mm) was obtained
and then dried in a forced convection oven, at 60 ◦C for 12 h.

2.3. Characterization of Hybrid Materials

X-ray diffraction (XRD) data were collected using an X’Pert PRO MPD diffractome-
ter (PANalytical, Almelo, The Netherlands) with Cu-Kα radiation in the 2θ range of
10–80◦. The ATR-FT-IR spectra were recorded at room temperature in the 4000–600 cm−1

range using a Bruker Vertex 70 spectrometer (Bruker Optik GmbH, Rosenheim, Germany)
equipped with a Platinium ATR unit, Bruker Diamond A225/Q.1. The morphology of
the samples was registered using a scanning electron microscope equipped with energy
dispersive X-ray detector (Inspect S + EDAX, FEI, Eindhoven, The Netherlands) in low
vacuum mode.

2.4. Procedures for Manufacturing the Modified Electrodes

Four different procedures were employed to obtain the studied modified electrodes.
Procedures 1 and 2 involved the use of the GC supports, while graphite was utilized as
substrate for the samples obtained with Procedures 3 and 4. The graphite supports were
prepared using a previously reported method [25]. Regarding Procedure 1, five suspensions
in ethanol were obtained having the compositions presented in Table 1, and were utilized to
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manufacture modified electrodes. The general process for electrode construction consisted
of taking a volume of 10 µL from one of the suspensions and applying it via the drop-casting
method to one of the surfaces of a glassy carbon pellet. When performing the experiments,
the dried electrodes were inserted into a polyamide support that ensured a constant
geometric surface of 0.28 cm2. Concerning Procedure 2, another set of five suspensions was
prepared but by the specifications in Table 2. Each modified electrode was manufactured
through the same process described in Procedure 1. As for Procedures 3 and 4, they are the
same as Procedures 1 and 2 with the exception of the carbon substrate—graphite was used
instead of GC.

Table 1. Electrodes obtained with Procedures 1 and 3 and the suspensions used to construct them.

Electrode Suspension Composition

Procedure 1 Procedure 3 P11 *
(mg)

P14 **
(mg)

Nafion
Solution (µL)

Carbon
Black (mg)

Ethanol
(µL)

GC1CB Gr3CB - - 50 5 450
GC1P11 Gr3P11 5 - 50 - 450

GC1P11+CB Gr3P11+CB 5 - 100 5 900
GC1P14 Gr3P14 - 5 50 - 450

GC1P14+CB Gr3P14+CB - 5 100 5 900
* PVP functionalized with 1% Ag-doped LaMnO3. ** PVP functionalized with 1% Pd-doped LaMnO3.

Table 2. Electrodes obtained with Procedures 2 and 4 and the suspensions used to construct them.

Electrode Suspension Composition

Procedure 2 Procedure 4 P11
(mg)

P14
(mg)

Nafion
Solution (µL)

Carbon
Black (mg)

Ethanol
(µL)

GC2CB Gr4CB - - 50 5 150
GC2P11 Gr4P11 5 - 50 - 150

GC2P11+CB Gr4P11+CB 5 - 100 5 300
GC2P14 Gr4P14 - 5 50 - 150

GC2P14+CB Gr4P14+CB - 5 100 5 300

2.5. Electrochemical Experiments

The electrochemical assembly used during the study of the OER and HER electro-
catalytic activity of the electrodes constructed with the four procedures consisted of a
Voltalab PGZ 402 potentiostat from Radiometer Analytical (Lyon, France), a glass electrol-
ysis cell, an auxiliary plate-type Pt electrode with the geometric surface area of 0.8 cm2,
the Ag/AgCl (sat. KCl) reference electrode and the working electrode. The role of the
working electrode was fulfilled by each of the samples obtained with Procedures 1 to 4, but
also by the unmodified glassy carbon and graphite electrodes. The electrolyte employed
during the water-splitting experiments was the strongly alkaline 1 M KOH solution. The
OER activity of the samples was evaluated by recording anodic linear sweep voltammo-
grams (LSVs) while their HER activity was investigated by tracing cathodic LSVs. The
iR-corrected polarization curves were obtained in an unstirred solution at the scan rate
(v) of 5 mV/s. Before each HER experiment the electrolyte solution was deaerated by
high-purity nitrogen bubbling.

Except if stated differently, the electrochemical potential values (E) are expressed in
terms of the Reversible Hydrogen Electrode (RHE) via Equation (1) and the current density
values (i) refer to the geometric current density.

The water electrolysis electrocatalytic properties of the electrodes identified as having
the highest activity for this process were subjected to additional electrochemical evaluation.
Their electrochemically active surface area (ECSA), the diffusion coefficient of hexacyano-
ferrate (III) ions (D), the values of their Tafel slopes and their stability were studied as
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well. The OER overpotential was calculated with Equation (2), and the HER overpotential
with Equation (3). The Tafel slope was determined with Equation (4) and the ECSA and D
values were estimated using Equation (5)—the Randles–Sevcik equation—together with
experimental data obtained from cyclic voltammetry experiments. The voltammetry curves
were recorded in 1 M KNO3 solution, in the absence and presence of 4 mM potassium
hexacyanoferrate (III), at increasing scan rate values (v = 50, 100, 150, 200, 250, 300 and
350 mV/s) and in the 0–0.8 V potential range vs. Ag/AgCl (sat. KCl).

ERHE = EAg/AgCl(sat. KCl) + 0.059 × pH + 0.197, (1)

ηOER = ERHE − 1.23, (2)

ηHER = |ERHE| − 0 V, (3)

η = b × log (i) + a, (4)

Ip =
(

2.69 × 105
)
× n3/2 × A × D1/2 × C × v1/2 (5)

where ERHE = Reversible Hydrogen Electrode potential (V), EAg/AgCl(sat. KCl) = potential
expressed in terms of the Ag/AgCl (sat. KCl) reference electrode (V), ηOER and ηHER = O2,
and H2 evolution overpotentials (V); η = overpotential (V); i = current density (mA/cm2);
b = Tafel slope (V/dec); Ip = peak current (A); n = number of electrons involved in the redox
process at T = 298 K; A = surface of the working electrode (cm2); D = diffusion coefficient
of the electroactive species (cm2/s); C = concentration of the electroactive species (M) and
v = scan rate (V/s).

Besides Equations [30–32], it is also important to mention that in the case of the
ferrocyanide/ferricyanide redox system used in the study, n = 1 and D has a theoretical
value reported as 6.7 × 10−6 cm2/s [33].

3. Results and Discussion
3.1. XRD Analysis

Figure 1 shows the XRD patterns of the hybrid materials based on polyvinylpyrroli-
done (PVP) functionalized with Ag or Pd doped LaMnO3 type perovskite structures. The
structural parameters were refined by fitting the XRD patterns using the Rietveld refine-
ment technique with High Score software was used to investigate the crystalline structure
of the new hybrid materials obtained. Thus, the XRD pattern of pure PVP showed two
broad characteristic peaks at 2θ of 11.25◦ and 21.21◦, which is in good agreement with
results reported by Li et al. [34] and El Hotaby et al. [35]. The obtained hybrid materials
present well defined peaks, mainly corresponding to the perovskite phase, which leads to
the conclusion that the polymer did not mask the perovskite material.

3.2. FT-IR Analysis

The FT-IR spectra for the precursors (PVP, LaMnO3:Ag, and LaMnO3:Pd) and the two
hybrid materials (LaMnO3:Ag/PVP (P11), LaMnO3:Pd/PVP (P14)) are shown in Figure 2.

The FT-IR spectrum of pure PVA exhibits the following significant absorption bands:
3453 cm−1 related to O-H stretching, 2950 cm−1 corresponding to asymmetric C–H2
stretching [4,36], 1493–1421 cm−1 assigned to C–H2 deformations [37], 1286 cm−1 attributed
to C–N bending vibration from the pyrrolidone structure [38].

A strong absorption peak located at 1652 cm−1 can be assigned to the C=O stretching
vibration in the pyrrolidone group [4,36,38,39]. However, Mireles et al. [37] supported the
assignment of the peak at ~1660 cm−1 as amide I rather han as a carbonyl stretch.

All the major functional groups of the host polymer can be found in the spectra of the
hybrid materials. The FT-IR spectra of the hybrid materials show certain differences regard-
ing the position of the absorption bands corresponding to PVP and increased intensities.
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Figure 1. XRD patterns for the precursors and hybrid materials: (a) LaMnO3:Ag, PVP, and
LaMnO3:Ag/PVP (P11); (b) LaMnO3:Pd, PVP, and LaMnO3:Pd/PVP (P14).
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Figure 2. The FT-IR spectra of the precursors and hybrid materials: (a) LaMnO3:Ag, PVP, and
LaMnO3:Ag/PVP (P11); (b) LaMnO3:Pd, PVP, and LaMnO3:Pd/PVP (P14).

The C-H stretching vibration peaks blue-shift to 2953 cm−1 for sample P11, and
2952 cm−1 for sample P14, respectively. The broad band around 3600–3200 cm−1 corre-
sponding to O-H stretching vibration is centered at ~3453 cm−1 in PVP spectra, while in
both hybrid materials, it is centered at 3418 cm−1.
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The C=O stretching band is shifted from 1652 cm−1 to lower wavenumbers in both
hybrid materials (1646 cm−1 for sample P11, and 1647 for sample P14). This red shift
could be explained by the coordination between metallic species and carbonyl oxygen from
PVP [39–41].

The band shifting and their variation in intensities in the FT-IR spectrum indicate
the formation of new hybrid materials. The bands of both perovskites are not visible in
the spectra of the hybrid materials in the 4000–600 cm−1 range, probably due to the large
amount of PVP used compared to the amount of perovskite materials.

3.3. SEM Micrographs

Figure 3 shows the surface morphologies revealed by SEM. Figure 3a presents the
qualitative analysis of PVP. As can be seen, the particles have a spherical shape of several
tens of micrometers. In the case of perovskite materials doped with Ag or Pd, and function-
alized with PVP (Figure 3c,e), it can be observed that the hybrid materials obtained show
agglomerations in asymmetric formations. In order to make a comparative study, the SEM
images of perovskite materials doped with Ag (Figure 3b) and Pd (Figure 3d) are presented.
Thus, it can be seen that perovskite materials have a spherical shape and nanometric sizes.
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3.4. Electrochemical Experiments

The OER studies performed on the electrodes modified with Procedure 1 revealed
GC1P11+CB and GC1P14+CB as the only samples having higher electrocatalytic activity than
the sample modified only with Carbon Black (GC1CB). The polarization curves recorded
on these electrodes are shown in Figure 4a. At i = 10 mA/cm2—the current density value
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at which ηOER is usually specified [42–44]—ηOER = 1.145 V for GC1P11+CB and 1.14 V for
GC1P14+CB.
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Figure 4. (a) Anodic LSVs recorded on the unmodified glassy carbon electrode (GC0) and on
the modified electrodes GC1CB, GC1P11+CB, and GC1P14+CB, in 1 M KOH solution, at v = 5 mV/s.
(b) Anodic polarization curves recorded on the unmodified graphite electrode (Gr0) and on the
modified electrodes Gr3CB, Gr3P11, and Gr3P14+CB, in 1 M KOH solution, at v = 5 mV/s. (c) Anodic
polarization curves recorded on Gr0, Gr4CB, Gr4P11, Gr4P14, Gr4P11+CB, and Gr4P14+CB electrodes, in
1 M KOH solution, at v = 5 mV/s.

The samples obtained using Procedure 1 did not exhibit electrocatalytic activity for
the HER, and those obtained by applying Procedure 2 exhibited negligible water-splitting
activity. In light of these results subsequent investigations focused only on the OER, and
the electrodes manufactured with Procedures 3 and 4 were evaluated in terms of their
electrocatalytic activity for this half-reaction.

Figure 4b presents the LSVs recorded on the most catalytically active samples modified
using Procedure 3. It can be observed that at current densities >25 mA/cm2 the polarization
curves traced on Gr3P11 and Gr3P14+CB overlap, but at lower values of this parameter ηOER
for the former electrode is <ηOER for the latter. However, at I = 10 mA/cm2, the ηOER value
determined for the sample obtained using only Carbon Black is higher than for Gr3P14+CB
and very close to that of Gr3P11 (0.91 V vs. 0.9 V). Considering this, the OER catalytic
activity of Gr3P11 is too low to be considered significant.

The linear voltammograms shown in Figure 4c were traced on the unmodified graphite
electrode and on the samples modified according to Procedure 4. Perovskite-containing
electrodes exhibited higher OER electrocatalytic activity compared with Gr0 and the Carbon



Appl. Sci. 2024, 14, 1186 9 of 14

Black-only modified graphite sample (Gr4CB). At i = 10 mA/cm2 ηOER = 0.875 V for Gr4P11,
0.84 V for Gr4P14 and Gr4P14+CB, and 0.83 for Gr4P11+CB. At higher i values, it is observed
that the polarization curves are very close to each other and in some cases even overlap.

By comparing the LSVs traced on the perovskite-containing electrodes manufactured
via the four procedures it can be concluded that the best results were obtained for the
samples resulted by using Procedure 4. Because of the closeness of the ηOER values Gr4P11,
Gr4P14, Gr4P11+CB, and Gr4P14+CB were all considered for the further evaluation of their
electrochemical properties, including their OER electrocatalytic ones. Firstly, their ECSA
and the diffusion coefficient of the hexacyanoferrate (III) ions (D) were estimated. To
do so, the Randles–Sevcik equation was employed together with data from experiments
performed as described in Section 2.5. The obtained values are presented in Table 3.

Table 3. The ECSA and D values were determined in the case of Gr4P11, Gr4P14, Gr4P11+CB, and
Gr4P14+CB.

Electrode ECSA (cm2) D (cm2/s)

Gr4P11 0.54 2.55 × 10−5

Gr4P14 0.74 4.85 × 10−5

Gr4P11+CB 1.19 1.21 × 10−4

Gr4P14+CB 0.80 5.51 × 10−5

High values for both parameters are to be desired since a higher D indicates a faster
diffusion process while a higher ECSA implies a larger number of catalytic active centers
involved in an electrochemical process [45]. As can be seen in Table 3, the highest values
were found for the Gr4P11+CB electrode.

The data acquired during the cyclic voltammetry experiments were used to plot
the dependence between the peak current densities of the anodic and cathodic peaks
corresponding to the ferrocyanide/ferricyanide redox couple and the square root of the
scan rate (Figure 5). In all cases, the absolute values of the peak current densities increase
proportionally with the scan rate. This increase denotes the specific behavior of diffusion-
controlled electron transfer processes [46].

The OER kinetics at the interfaces between the four electrodes and the electrolyte
solution were also studied. The obtained Tafel plots are shown in Figure 6, and the
determined values of the Tafel slopes can be seen in Table 4. To represent the Tafel curve
belonging to each sample the current density was normalized to their estimated ECSA
value (iECSA).

Table 4. Tafel slope values were determined for the Gr4P11, Gr4P14, Gr4P11+CB, and Gr4P14+CB electrodes.

Electrode Tafel Slope (V/dec) R2

Gr4P11 0.389 0.9996
Gr4P14 0.247 0.9993

Gr4P11+CB 0.197 0.9994
Gr4P14+CB 0.312 0.9995

The smallest Tafel slope value is the one calculated for the Gr4P11+CB sample. A smaller
value indicates more favorable kinetics and a higher reaction rate [47].

The electrochemical stability of the four electrodes was evaluated during 7 h chronoam-
perometric tests at the constant potential value corresponding to i = 5 mA/cm2. Gr4P11+CB
was revealed to be more stable than the other investigated samples. The i vs. time curves
recorded for this electrode and for Gr4P14+CB are presented in Figure 7. In the case of
Gr4P11+CB, the i value stabilized at 5.8 mA/cm2. LSVs were obtained on this sample before
and after the experiment and the results can be seen in Inset a. At higher i values the two
polarization curves overlap almost perfectly, but this is not the case at values < 24 mA/cm2
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where the stability test led to a decrease in the OER activity of the electrode. For example,
at i = 10 mA/cm2 ηOER = 0.88 V. This 50 mV increase is probably due to the high electro-
chemical potential applied throughout the chronoamperometric study. Still, the Gr4P11+CB
electrode was more electrochemically stable than the other samples. To exemplify this, the i
vs. time curve recorded under the same conditions but for Gr4P14+CB is also included in
Figure 7. Apparently, the behavior of the two samples is not very different, but a closer
look at the amperogram (Insets b and c) reveals the presence of features attributable to
intense alternate processes of O2 bubble accumulation and release that are not observed on
the curve traced on Gr4P11+CB [29]. More importantly, once the test ended and the surface
of the sample was investigated visually it was observed that the perovskite-containing
composition was partially detached from the graphite surface it was deposited on during
the manufacturing process.
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3.5. Further Considerations

The results of the electrochemical experiments evidence the superior properties of the
Gr4P11+CB electrode. Compared with the Gr4P11, Gr4P14, and Gr4P14+CB samples, Gr4P11+CB
displays higher OER electrocatalytic activity, higher ECSA, and D values, a lower Tafel
slope value, and is more electrochemically stable. The higher OER catalytic activity of the
electrode modified with the P11 perovskite material, Carbon Black, and Nafion is probably
the outcome of structural and transport effects [48]. However, it should also be pointed out
that the higher ECSA value estimated for this sample indicates its surface is more discontin-
uous, probably due to features including edges and defects that generate more catalytically
active centers [49]. Furthermore, it is sometimes the case that electrodes manufactured us-
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ing compositions containing at least two materials benefits from improved charge transfer
and adjusted electron density at the catalytic centers as a result of their interplay [50]. The
acquired experimental data implies this is not the case with Gr4P14+CB and Gr4P11+CB
which were manufactured using the perovskite oxides mixed with Carbon Black. At
i = −10 mA/cm2 the ηOER values for these samples are very close to those determined
for the electrodes obtained without utilizing Carbon Black. This observation is rather
unexpected since the material in question was added for electron transfer enhancement
purposes. A potential explanation has to do with the way in which the particles constitut-
ing the solid phase of the suspension applied on the surface of the carbon substrate were
arranged. Arrangements in the shape of thick layers prevent the electrolyte solution from
reaching the pores situated deep into the deposited material. The result is a decrease in
the number of catalytically active centers that would otherwise participate in the electro-
chemical reaction [24,51]. According to this explanation, the ECSA values of Gr4P14+CB and
Gr4P11+CB could have been higher and the same is true of their OER electrocatalytic activity.
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While Gr4P11+CB possesses superior OER electrocatalytic properties compared with
the electrodes investigated during the present study the same cannot be said regarding
other electrodes reported in the scientific literature, including other perovskite-based
ones [52–55]. The OER catalytic activity of Gr4P11+CB is not as high and its electrochemical
stability is not as good as those of the electrodes from recently published studies. In light
of this observation, the future water electrolysis studies that will be performed on P11,
P14, and other novel perovskite oxide structures will probably involve a more complex
electrode manufacturing method than drop-casting (e.g., pulsed laser deposition and
spray pyrolysis).

4. Conclusions

The water electrolysis electrocatalytic properties of two novel perovskite oxides were
investigated in a strongly alkaline medium. The perovskite-based electrodes were manu-
factured using four different procedures. The samples displayed OER activity but negli-
gible HER activity. The electrode obtained by drop-casting a composition containing
LaMnO3:Ag/PVP (P11), Carbon Black, and Nafion on graphite substrate was identi-
fied as being the most electrocatalytically active for the OER. Its OER overpotential at
i = 10 mA/cm2 is 0.83 V, and its Tafel slope is 0.197 V/dec. It was also found to be more
electrochemically stable than the other samples.

The present study evaluates for the first time the electrocatalytic properties of new
perovskite materials and the obtained results extend the available knowledge of rele-
vance to the water-splitting domain. Furthermore, this work is the first of a series of
planned studies and acts as a basis for future OER and HER electrocatalytic activity in-
vestigations of other compounds falling under the category of perovskite oxide-based
organic–inorganic hybrids.
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