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Abstract: Existing studies often lack a systematic solution for an Unmanned Aerial Vehicles (UAV)
inspection system, which hinders their widespread application in crack detection. To enhance its
substantial practicality, this study proposes a formal and systematic framework for UAV inspection
systems, specifically designed for automatic crack detection and pavement distress evaluation. The
framework integrates UAV data acquisition, deep-learning-based crack identification, and road
damage assessment in a comprehensive and orderly manner. Firstly, a flight control strategy is
presented, and road crack data are collected using DJI Mini 2 UAV imagery, establishing high-quality
UAV crack image datasets with ground truth information. Secondly, a validation and comparison
study is conducted to enhance the automatic crack detection capability and provide an appropriate
deployment scheme for UAV inspection systems. This study develops automatic crack detection
models based on mainstream deep learning algorithms (namely, Faster-RCNN, YOLOv5s, YOLOv7-
tiny, and YOLOv8s) in urban road scenarios. The results demonstrate that the Faster-RCNN algorithm
achieves the highest accuracy and is suitable for the online data collection of UAV and offline
inspection at work stations. Meanwhile, the YOLO models, while slightly lower in accuracy, are the
fastest algorithms and are suitable for the lightweight deployment of UAV with online collection and
real-time inspection. Quantitative measurement methods for road cracks are presented to assess road
damage, which will enhance the application of UAV inspection systems and provide factual evidence
for the maintenance decisions made by road authorities.

Keywords: road cracks; UAV; deep learning; target detection; road damage evaluation; framework

1. Introduction

Roads are one of the crucial transportation infrastructures that deteriorate over time,
due to factors such as heavy vehicles, changing weather conditions, human activity, and
the use of inferior materials. This deterioration impacts economic development, travel
safety, and social activities [1]. Therefore, it is crucial to periodically assess the condition of
roads to ensure their longevity and safety. Additionally, it is imperative to accurately and
promptly identify road damage, especially cracks, in order to prevent further deterioration
and enable timely repairs.

Currently, pavement condition inspection technologies mainly include traditional
manual measurements and automatic distress inspections, such as vehicle-mounted in-
spection [2]. Manual inspection methods rely primarily on visual discrimination, requiring
personnel to travel along roads to identify damage points. However, this approach is slow,
laborious, subjective, time-consuming, and has a lower accuracy [3]. Therefore, the devel-
opment of automatic inspection technologies is crucial for quickly and accurately detecting
and identifying cracks on the road. In recent years, intelligent crack inspection systems
have gained increasing attention and application, such as vehicle-mounted inspections and
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their intelligent systems [4]. Guo et al. [5] utilized core components such as on-mounted
high-definition image sensors, laser sensors, and infrared sensors, etc. These components
enable the acquisition of high-precision road crack data in real-time. However, the overall
configuration of the vehicle-mounted system is expensive and limited in scope, making it
challenging to widely apply [2].

Notably, automatic pavement distress inspection has traditionally utilized image-
processing techniques such as Gabor filtering [6], edge detection, intensity thresholding [7],
and texture analysis. Cracks are identified by analyzing the changes in edge gradients
and intensity differences compared to the background, and then extracting them through
threshold segmentation [2]. However, these methods are highly influenced by environmen-
tal factors, including lighting conditions, which can affect their accuracy. Moreover, these
methods are not effective when the camera configurations vary, making their widespread
use impractical [1,8]. Given the limitations of these traditional approaches, it is crucial to
develop a cost-effective, accurate, fast, and independent method for the accurate detection
of road cracks.

In recent years, there have been significant advancements in machine learning and
deep learning algorithms, leading to the emergence of automatic deep learning methods
as accurate alternatives to traditional object recognition methods. These methods have
shown immense potential in visual applications and image analysis, particularly in road
distress inspection [1,8]. Krizhevsky et al. [9] proposed a deep convolutional neural net-
work (CNN) architecture for image classification, especially in the detection of distresses
in asphalt pavements. Cao et al. [3] presented an attention-based crack network (AC-
Net) for automatic pavement crack detection. Extensive experiments on the CRACK500
demonstrated that ACNet achieved a higher detection accuracy compared to eight other
methods. Tran et al. [10] utilized a supervised machine learning network called RetinaNet
to detect and classify various types of cracks that had developed in asphalt pavements,
including lane markers. The validation results showed that the trained network model
achieved an overall detection and classification accuracy of 84.9%, considering both the
crack type and severity level. Xiao et al. [11] proposed an improved model called C-Mask
RCNN, which enhances the quality of crack region proposal generation through cascad-
ing multi-threshold detectors. The experimental results indicated that the mean average
precision of the C-Mask RCNN model’s detection component was 95.4%, surpassing the
conventional model by 9.7%. Xu K et al. [12] also proposed a crack detection method based
on an improved Faster-RCNN for small cracks in asphalt pavements, even under complex
backgrounds. The experiments demonstrated that the improved Faster-RCNN model
achieved a detection accuracy of 85.64%. Xu X et al. [13] conducted experiments to evaluate
the effectiveness of Faster R-CNN and Mask R-CNN and compared their performances in
different scenarios. The results showed that Faster R-CNN exhibited a superior crack detec-
tion accuracy compared to Mask R-CNN, while both models demonstrated efficiency in
completing the detection task with small training datasets. The study focuses on comparing
Faster R-CNN and Mask R-CNN, but does not compare the proposed methods with other
existing crack detection methods. In general, these above-mentioned methods not only
detect the category of an object, but also determine the object’s location in the image [14].
The use of deep learning methods can reduce labor costs and improve work efficiency and
intelligence in recognizing road cracks [1].

Meanwhile, unmanned aerial vehicles (UAV) have demonstrated their versatility in a
wide range of applications, including urban road inspections. This is attributed to their
exceptional maneuverability, extensive coverage, and cost effectiveness [2]. Equipped with
high-resolution cameras and various sensors, these vehicles can capture images of the
road surface from multiple angles and heights, providing a comprehensive assessment
of its condition. Several researchers have utilized UAV imagery to study deep learning
methods for road crack object detection, and they have achieved impressive accuracy
results. Yokoyama et al. [15] proposed an automatic crack detection technique using arti-
ficial neural networks. The study focused on classifying cracks and non-cracks, and the
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algorithm achieved a success rate of 79.9%. Zhu et al. [2] utilized images collected by a
UAV to conduct experimental comparisons of three deep learning target detection methods
(Faster R-CNN, YOLOv3, and YOLOv4) via convolutional neural networks (CNN). The
study verified that the YOLOv3 algorithm is optimal, with an accuracy of 56.6% mAP. In
another study, Jiang et al. [16] proposed an RDD-YOLOv5 algorithm with Self-Attention
for UAV road crack detection, which significantly improved the accuracy with an mAP of
91.48%. Furthermore, Zhang et al. [17] proposed an improved YOLO3 algorithm for road
damage detection from UAV imagery, incorporating a multi-layer attention mechanism.
This enhancement resulted in an improved detection accuracy with an mAP of 68.75%.
Samadzadegan et al. [1] utilized the YOLOv4 deep learning network and evaluated its
performance using various metrics such as F1-score, precision, recall, mAP, and IoU. The
results showed that the proposed model had an acceptable performance in road crack
recognition. Additionally, Zhou et al. [18] introduced a UAV visual inspection method
based on deep learning and image segmentation for detecting cracks on crane surfaces.
Moreover, Xiang et al. [19] presented a lightweight UAV road crack detection algorithm
called GC-YOLOv5s, which achieved an accuracy validation mAP of 74.3%, outperforming
the original YOLOv5 by 8.2%. Wang et al. [20] introduced BL-YOLOv8, an improved road
defect detection model that enhances the accuracy of detecting road defects compared to
the original YOLOv8 model. BL-YOLOv8 surpasses other mainstream object detection
models, such as Faster R-CNN, SDD, YOLOv3-tiny, YOLOv5s, YOLOv6s, and YOLOv7-
tiny, by achieving detection accuracy improvements of 17.5%, 18%, 14.6%, 5.5%, 5.2%,
2.4%, and 3.3%, respectively. Furthermore, Omoebamije et al. [21] proposed an improved
CNN method based on UAV imagery, demonstrating a remarkable accuracy of 99.04% on
a customized test datasets. Lastly, Zhao et al. [22] proposed a highway crack detection
and CrackNet classification method using UAV remote sensing images, achieving 85% and
78% accuracy for transverse and longitudinal crack detection, respectively. These aforemen-
tioned studies primarily aim to enhance the deep learning algorithm using UAV images.
This enhancement improves the accuracy of road crack detection and also establishes
the methodological foundation for the crack target recognition algorithm discussed in
this paper.

However, most of the above-mentioned studies primarily focused on UAV detection
algorithms and neglected UAV data acquisition and high-quality imagery integrated into
detection methods. For instance, the flight settings required for capturing high-quality
images have not been thoroughly studied [2]. Flying too high or too fast may result in
poor-quality images [22]. Zhu et al. [2] and Jiang et al. [16] both introduced flight setup and
experimental tricks for efficient UAV inspection. Liu K.C. et al. [23] proposed a systematic
solution for automatic crack detection for UAV inspection. These studies are still incomplete
due to a lack of detailed data acquisition and pavement distress assessment. Additionally,
there is a lack of quantitative measurement methods for cracks, which hampers accurate
data support for road distress evaluation. Furthermore, inconsistency in flight altitude and
the absence of ground real-scale information of cracks adversely impact the subsequent
quantitative assessment of cracks.

Obviously, existing studies frequently lack a systematic solution or integrated frame-
work for UAV inspection technology, which hinders its widespread application in pavement
distress detection. Therefore, this study aims to propose a formal and systematic framework
for automatic crack detection and pavement distress evaluation in UAV inspection systems,
with the goal of making them widely applicable.

Our proposed framework for a UAV inspection system for automatic road crack
detection offers several advantages: (1) It demonstrates a more systematic solution. The
framework integrates data acquisition, crack identification, and road damage assessment
in orderly and closely linked steps, making it a comprehensive system. (2) It exhibits
a greater robustness. By adhering to the flight control strategy and model deployment
scheme, the drone ensures high-quality data collection while employing state-of-the-art
automatic detection algorithms based on deep learning models that guarantee accurate
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crack identification. (3) It presents an enhanced practicality. The system utilizes the cost-
effective DJI (DJ-Innovations Company, headquartered in Shenzhen, China) Min2 drone for
imagery acquisition and DL-based model deployment, making it an economically viable
solution with significant potential for widespread implementation.

The rest of this paper is organized as follows: Section 2 presents the framework for the
UAV inspection system designed specifically for pavement distress analysis. In Section 3,
we provide a comprehensive overview of four prominent deep-learning-based crack de-
tection algorithms, namely Faster-RCNN, YOLOv5s, YOLOv7-tiny, and YOLOv8s, along
with their distinctive characteristics. Section 4 elaborates on the well-defined procedures
employed for UAV data acquisition and subsequent data reprocessing. The experimental
setup and comparative results are presented in Section 5. In Section 6, we propose quan-
titative methods to evaluate road cracks and assess pavement distress levels. Finally, in
Section 7, we summarize our research while discussing future work.

2. Framework of UAV Inspection System

To enhance the practical application of UAV inspection systems in road crack detection,
this study presents a comprehensive DL-based method and technical solution framework.
As illustrated in Figure 1, the technical framework consists of four main components:
(1) Data Acquisition: a flight suitability parameter model is established to ensure high-
quality pavement imagery acquisition by the UAV. Prior image data are utilized to create
crack datasets for model training, while the subsequent phase is directly employed for pave-
ment crack detection. (2) Model Training and Evaluation: UAV imagery is pre-processed
through frame extraction, image dividing, and data enhancement, and then labeled ac-
cording to five major categories of cracks (longitudinal, transverse, diagonal, mesh, and no
cracks) to create the datasets. Based on this, four mainstream DL target detection algorithms
(Faster-RCNN, YOLOv5, YOLOv7, and YOLOv8) are individually conducted for the road
crack detection model training. Finally, the models are compared and validated using
precision (P), recall (R), F1-score, and mean accuracy precision (mAP) as evaluation metrics,
and the best model is selected. (3) Model Application and Road Crack Detection: The
preferred model is employed to identify road crack targets using UAV imagery. To reduce
the computing resources, the full-scale images are divided into smaller images before
detection. (4) Road Distress Evaluations: Quantitative assessments (for instance, cracks
count, cracks length, and crack area etc.) are conducted to evaluate pavement distress,
which provide factual evidence and a solid data foundation for evaluating road damage
and planning road repair work for transportation departments.
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3. Deep Learning Algorithms

In recent years, there has been significant progress in deep learning technology, lead-
ing to a paradigm shift in target detection methods from traditional algorithms based
on manual features to deep-neural-network-based detection methods [24]. These deep
learning algorithms can be categorized into two major approaches (Figure 2): (1) Two-stage
methods (two-stage algorithms), which involve labeling multiple target candidate regions
in the image and subsequently classifying and regressing the boundary of each candidate
region. Representative algorithms belonging to this approach include the RCNN series.
(2) Single-stage methods (one-stage algorithms), which directly perform the localization
and classification of all detected targets across the entire image without requiring the ex-
plicit labeling of candidate regions. Representative algorithms belonging to this approach
include the YOLO (You Only Look Once) series. Both approaches have their own advan-
tages, with the single-stage algorithm being faster and the two-stage algorithm being more
accurate. Therefore, this study selects the Faster RCNN algorithm [25] and the YOLOv5
algorithm [26] as typical representatives of these two major approaches. Additionally,
the latest improved algorithms of YOLOv5, namely YOLOv7 [27] and YOLOv8 [28], are
introduced into comparative validation in this study on the use of deep learning algorithms
for road crack detection using drones.
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3.1. Faster-RCNN Algorithm

The Faster-RCNN algorithm is a typical representative example of a two-stage al-
gorithm for target detection. The Faster-RCNN model consists of four components: a
Backbone, Region Proposal Networks (RPN), ROI (Region of Interest) Pooling, and Classi-
fier. The Backbone extracts a feature map that is used for candidate detection area extraction
and classification. The RPN further refines the candidate detection areas based on the initial
feature map, which may contain the target features. These refined areas are then used for
further classification and localization. The ROI Pooling fine-tunes the candidate detection
areas based on their candidate box coordinates. Finally, the Classification component uses
the proposals and feature maps to determine the category of the proposal and regress the
candidate detection frames to obtain their final precise locations.

The network architecture of Faster-RCNN is illustrated in Figure 3. Firstly, an arbitrary
input image (P × Q) is resized to a standard image (M × N) and then fed into the
network. The backbone (e.g., VGG and ResNet, etc.) extracts features from the M × N
image, followed by convolution and pooling operations, resulting in feature maps for
this input. These feature maps contain information about different scales and semantics,
enabling the detection of objects with various scales and shapes in the image. In the Region
Prediction Network (RPN), the RPN network performs a 3 × 3 convolution to generate
Positive Anchors and the corresponding Bounding Box Regression offsets. It then calculates
Proposals, which are utilized by the ROI pooling layer to extract the Proposals from the
Feature Maps. The Proposal Feature is further processed through fully connected and
softmax networks for classification.
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3.2. YOLO Series Algorithms

The YOLO series algorithm is a typical representative example of the one-stage al-
gorithm target detection model. In comparison to the Faster RCNN algorithm, YOLO
eliminates the need to extract candidate regions that may contain targets. It completes
the detection task using only one network and predicts the category and location of the
target object in the detection output through regression. Currently, YOLOv5 is the initial
model of the series, which has been proven to be stable and is widely used in lightweight
road crack detection methods due to its excellent accuracy [17,21]. YOLOv5 consists of
several networks with different depths, namely n, s, m, l, and x. The depth and width of
the network increase in the order of n, s, m, l, and x. Among these options, YOLOv5s is
suitable for small deep networks or small-scale datasets.

The network architecture of YOLOv5 is depicted in Figure 4. The model comprises
three main components: the backbone network (BackBone), the neck network (Neck), and
the head detection network (Head). The backbone network (Backbone) primarily performs
feature extraction by utilizing a convolutional network to extract object information from
the image. This information is then used to create a feature pyramid, which is later
employed for target detection. The backbone network consists of various modules, such
as the Focus module, Conv module, C3 module, and SPFF module. Notably, the SPPF
(Spatial Pyramid Pooling Faster) module is capable of converting feature maps of any size
into fixed-size feature vectors. This allows for the fusion of local and global features at the
Feather Map level and further expands the receptive field of the feature map. Consequently,
objects can be effectively detected even when input at different scales. The neck network
(Neck) is responsible for the multi-scale feature fusion of the feature map. It adopts the
structure of the Feature Pyramid Network (FPN) and the Path Aggregation Network (PAN),
which enhances the model’s ability to capture object features at various scales and improves
the accuracy and performance of target detection. The head network (Head), also known
as the detection module, utilizes techniques like anchor boxes to process the input feature
mapping and generate regression predictions. These predictions include information about
the type, location, and confidence of the crack detection object.

YOLOv7 [27] is an enhanced target detection framework based on YOLOv5. It in-
corporates a deeper network structure and robust methods, resulting in an improved
accuracy and speed compared to YOLOv5. YOLOv7 introduces several techniques, such
as Long-Range Attention Off Network (ELAN) and Bottleneck Attention Module (BAM),
to enhance its learning capability. ELAN expands, shuffles, and merges the quantity (Car-
dinality), thereby improving the equilibrium state of the learning network. To prevent
overfitting, YOLOv7 employs a regularization method similar to DropBlock. This regular-
ization method enhances the stability and robustness of the model, enabling it to be trained
on larger datasets.
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YOLOv8 [28] was released in January 2023 by Ultralytics, the company that developed
YOLOv5. YOLOv8 further optimizes the model structure and training strategy based on
YOLOv7 to enhance both detection speed and accuracy. Notably, YOLOv8 incorporates
a more efficient long-range attention network called Extended-ELAN (E-ELAN), which
enhances the model’s feature extraction capability. Moreover, YOLOv8 introduces new
loss functions, such as VFL Loss and Loss+DFL (Distribution Focal Loss), to improve the
model’s localization accuracy and category differentiation ability. Additionally, YOLOv8
employs new data enhancement methods, including Mosaic + MixUp, to enhance the
generalization and robustness of the model.

In the current field of deep learning models, Faster-RCNN, YOLOv5, YOLOv7, and
YOLOv8 are all target detection methods known for their high accuracy and advanced
algorithms. However, there are some variations in terms of model structure, accuracy,
speed, training strategy, and robustness. The selection of the appropriate algorithm should
be based on specific requirements and application scenarios to effectively address the needs
of UAV road crack target detection.
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4. UAV Data Acquisition and Preprocessing
4.1. Flight Control Strategy

During the flight process of a UAV equipped with a high-definition camera, the
acquired imagery may suffer from distortion, degradation, or uncovered road due to
improper human control or mismatched flight parameters. Therefore, it is crucial to
establish a flight control strategy and experimental techniques for the UAV flight parameters
to enhance the quality of the imagery captured by the UAV in real-world scenarios.

4.1.1. Flight Height

To determine the optimal altitude of the UAV and ensure its efficient flight, the
following considerations should be taken into account: (i) the UAV camera view should
cover the full width of the road that needs to be inspected; (ii) it is important to avoid any
interference from auxiliary facilities such as road trees and street lights during the flight;
and (iii) to minimize image distortion, it is crucial to maintain a constant altitude, consistent
speed, and capture vertical imagery.

To cover the full width of the pavement, a minimum flight altitude is required. Based
on the Pinhole Imaging Principle and the Triangular Similarity Geometric Relationship
(Figure 5a), the minimum flight altitude should satisfy Equation (1):

H ≥ ( f ∗ W)/Sw (1)

where H represents flight vertical height. f represents the focal length of the camera. W
represents the width of the road to be inspected. Sw represents the camera sensor size
(Sw × Sh).
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In our experiment, the DJI Mini 2 drone was chosen to perform the flight mission.
The camera sensor format was CMOS 1/2.3 inches, with a full-frame sensor size of
17.3 mm × 13.0 mm. The main focal length (f ) was 24.0 mm. The experimental pave-
ment consisted of a bi-directional eight-lane road. To ensure high-definition imagery
quality, the experiment was conducted only on the left lane, from east to west. The width
of the road (W) was measured to be 16 m. The minimum flight altitude was calculated at
22.20 m. Taking into account the tolerance for flight stability, the final flight height was
chosen as 22.5 m.

4.1.2. Ground Sampling

The Ground Sampling Distance (GSD) is a crucial parameter in remote sensing and
image processing. It quantifies the distance between the individual pixels in an image
and the ground truth, which directly affects the accuracy of geospatial measurements for
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cracks. (i) DJI can officially provide GSD values that are applicable to a wide range of focal
lengths [16]. The most commonly observed GSD value, typically associated with a 24 mm
focal length, is calculated as H/55. (ii) Alternatively, GSD can be derived directly from the
diagram in Figure 5b, using Equation (2):

GSD ≈ (µ ∗ H)/ f (2)

where GSD represents the ground sampling distance of a flight, and its unit is cm/pixel;
µ is the image pixel calibration size (µm), which can be officially provided by DJI. Take DJI
Mini 2 as an example, where µ is given as 4.4 µm. If the flight height is 22.5 m, thereby
GSD can be computed as 0.4125 cm/pixel.

4.1.3. Flight Velocity

The appropriate flight velocity is also essential in UAV imagery acquisition to avoid
redundancy and motion blurring. It should be determined based on the degree of overlap
between neighboring images and the consistency and quality stability of the aerial images.
Typically, a minimum forward overlap of 75% and a minimum side overlap of 60% are
recommended. Figure 5c illustrates how the flight velocity can be calculated based on
the desired overlap degree and the sampling frequency of the neighboring frames, using
Formula (3):

v = L ∗ (1 − r)/t (3)

where v is the flight velocity (m/s) and t represents the shooting interval of two adjacent
images (s), typically set to 2. The overlap degree (r) is defined as the forward overlap and is
commonly taken as 50–75%, since UAVs are often operated at the same speed and uniform
linear motion with the forward direction. L represents the ground truth length of the road
in an image (m). L can be determined based on the GSD and the road width (W) covered
by the UAV imagery, using the following formula.

L = W/GSD = (W ∗ f )/(µ ∗ H) (4)

In our experiment, the road width (W) was chosen as 16.0 m and the GSD was
computed as 0.4125 m/pixel using Equation (2), thereby, the ground-truth road length
(L) in an image was calculated as 38.78 m using Equation (4). Given that the sampling
frequency t was 2 s, the forward overlap of the captured images was set to 75%. According
to the Equation (3), the minimum speed v was 4.85 m/s, and finally, 5 m/s was determined
as the flight velocity for this experiment.

4.2. UAV Imagery Data Preprocessing
4.2.1. Frame Extraction and Fusion from UAV Imagery Video

Video frame data play a crucial role in acquiring UAV pavement crack images. In order
to obtain and supplement the original pavement crack datasets, it is necessary to extract
and crop the frames. During the frame extraction process, it is important to consider the
overlap, spacing, and seamlessness of neighboring video frames to ensure the integrity and
independence of each frame. Additionally, the setting of the frame extraction interval is of
the utmost importance. If the interval is too large, it may result in a lack of seamless fusion
and docking. On the other hand, if the interval is too small, there will be significant overlap
between frames, leading to an excessive number of frames and an increased computing
cost. The formula for calculating the extraction interval number (N) is as follows:

N ≤
[

GSD × Fl × (1 − r)
v

× f ps
]

(5)

where Fl is the frame image size (px), i.e., the flight direction; fps represents the frames per
second in each video; and the other variables are described in the previous section.
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For this experiment, UAV imagery in the DJI Mini 2 was set to 4K HD, which cor-
responds to the DJI official frame image size of 3840 px × 2160 px. Namely, Fl was
taken as 3840 px. The fps was officially 24 f·s−1, and GSD and v were calculated to be
0.4125 cm/pixel and 5.0 m/s as above, respectively. The overlap (r) was taken as 75%.
Using Equation (5), the extraction interval number (N) was found to be [19.01], which was
rounded to 19. Finally, to ensure sufficient overlap, this study extracted an image every
19 frames from the video. The extracted frame images were then used to stitch together
overlapping parts of neighboring frames using the picture fusion technique.

4.2.2. Pavement Cracks Datasets with GSD Information

Due to the large size of the acquired images or frame images, utilizing them directly
as inputs for model training would lead to a sluggish training speed and a significant
consumption of processing resources. Therefore, to enhance the parallel batch comput-
ing speed, deep learning models have specific requirements for training image datasets.
The original images need to be trimmed after frame extraction and fusion, resulting in
images with consistent specifications. In this experiment, the extracted frame images from
videos were used as the initial images, which were further cropped into 640 px × 640 px
specification images. The cropping process is shown in Figure 6. Assuming the original
image size of a frame was a 3840 px × 2160 px road image, 18 640 px × 640 px specification
images could be cropped. To expand the number of samples for crack categories, data en-
hancement methods such as augmentation, translation, flipping, and rotation were applied.
Additionally, the blurred images were removed to ensure they did not affect the training
effect of the model training. The UAV crack original datasets were constructed by manually
screening, classifying, and confirming the coverage of the four major crack categories and
the no-crack images.
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Road crack labeling plays a crucial role in training and testing deep learning models.
The accuracy of labeling directly impacts the quality of model learning. In this experiment,
we employed various methods, including manual visual labeling and the Labelimg tool, to
decipher, mark, and categorize different types of cracks based on the original UAV crack
datasets. The goal was to create an improved training set for crack recognition. Based on the
prominence of cracks and their associated damage hazards, road cracks were categorized
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into four types: longitudinal cracks, transverse cracks, diagonal cracks, and mesh cracks.
These categories are illustrated in Table 1.

Table 1. Classification and description of road cracks.

Longitudinal Crack
(LC)

Transverse Crack
(TC)

Oblique Crack
(OC)

Alligator Crack
(AC)

No-Cracks
(Other)
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Generally, the problem of imbalanced sample distribution in datasets can often lead to
overfitting of the model [30]. To address this issue, this experiment fully considered the
balance of the sample distribution when creating the labeling datasets. Each type of road
pavement crack had a more equal number distribution, as shown in Figure 7. A total of
1388 pavement crack images based on a UAV were collected and labeled, with 304 samples
identified as being of the longitudinal crack (LC) type, 303 samples identified as being of the
transverse crack (TC) type, 313 samples identified as being of the obliquely oriented crack
(OC) type, 368 samples identified as being of the alligator crack (AC) type, and 100 samples
being identified as of the no-crack type. To ensure the DL-based model’s effectiveness, the
datasets were divided into training, validation, and test sets in the ratio of 80%, 10%, and
10%, respectively.
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Notably, existing crack datasets often do not provide ground-truth information, partic-
ularly regarding the spatial resolution of UAV imagery. This lack of information directly
affects the accuracy of crack identification and measurement in future studies. In this study,
the UAV data collection process included the recording of the real-time flight height, an
important parameter for each image. Thereby, the Ground Sample Distance (GSD) can be
calculated using Formula (2), and also documented in each treated image, which is crucial
for the subsequent automated evaluation of pavement damage.
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5. Experiments and Results
5.1. Experimental Scenario

In this experiment, the flight mission was located on Xuefu Road, Xiangtan City,
Hunan Province, China, as shown in Figure 8. The Xuefu Road is an asphalt pavement
with eight two-way lanes and a one-way road width of 16 m. The UAV aerial photography
covered a distance of 1.5 km. The road was built and opened to traffic in 2010. After more
than 13 years, the road surface has suffered significant damage, including transverse cracks,
longitudinal cracks, alligator cracks, and no-cracks. The experiment was conducted at
10:00 a.m. on a sunny day with relatively sparse traffic. Based on the previously obtained
UAV flight parameters, the flight height (H) was set to 22.5 m and the flight velocity (v)
was set to 5.0 m/s.
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5.2. Experimental Configuration

The deep learning algorithms used in this experiment were executed on the same spec-
ifications. The specific configuration and experimental environment are detailed in Table 2.
The Faster-RCNN model employed the VGG feature extraction network, while YOLOv5,
YOLOv7, and YOLOv8 utilized YOLOv5s, YOLOv7-tiny, and YOLOv8s, respectively. The
input image size of these models was unified to 640 px × 640 px. The training iterations
(Epoch) were set to 200, as depicted in Figure 9. The YOLO algorithm series models were
trained with a batch size of eight, whereas the Faster-RCNN used a batch size of four. The
experiment’s hyperparameters were configured as follows: the initial learning rate was set
to 0.01, the learning rate decay employed the Cosine Annealing algorithm, the optimizer
used was SGD (Stochastic Gradient Descent), and the Momentum was set to 0.937.

Table 2. Configuration of the experimental environment.

Software Configure Matrix Versions

Operating system Windows10 Python 3.9
CPU Intel Core i5-9300H PyTorch 2.0
GPU NVIDIA GeoForce GTX 1660Ti 6G CUDA 11.8
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5.3. Evaluation Metrics of Models
5.3.1. Running Performance

To validate the computational complexity of deep learning models, five evaluation
metrics in this experiment were firstly used to assess the algorithm’s running performance:
the number of parameters, video memory usage, training duration, memory consumption,
and frame rate (FPS). It is important to note that the FPS measures the number of images
processed per second and serves as a significant indicator of prediction speed.

5.3.2. Accuracy Effectiveness

Furthermore, in order to demonstrate the algorithm’s effectiveness for deep learning
models, four evaluation metrics in this experiment were used to access the detection
accuracy: Precision (P), Recall (R), F1-Score, Average Precision (AP), and Mean Average
Precision (mAP). P represents the probability of correct target detection and is calculated as
the ratio of the number of correctly classified samples (TP) to the total number of samples.
R represents the probability of correctly recognizing the target among all positive samples
and is calculated as the ratio of the number of correctly classified positive samples to the
number of all positive samples. F1-Score is a comprehensive evaluation index that takes
into account the effects of accuracy and recall. AP is obtained by calculating the area under
the Precision–Recall curve and reflects the precision of individual crack categories. The
mAP characterizes the average across the four crack categories and reflects the overall
classification precision of the crack prediction.

5.4. Experimental Results

To validate the viability of our proposed framework for analyzing UAV imagery
crack datasets, this study employed four prominent deep learning algorithms (Faster-
RCNN, YOLOv5s, YOLOv7-tiny, and YOLOv8s) for conducting pavement crack object
detection and a comparative analysis. The experiments were conducted using identical
hardware and software environments, with consistent iteration numbers, training datasets,
validation datasets, and test datasets. The results were evaluated based on the model
performance during execution, the recognition accuracy of the models, and variations in
crack category classification.
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5.4.1. Comparison Results of Running Performance

The operational performances of the four models are presented in Table 3. Among
them, the Faster-RCNN model exhibited, significantly, the lowest performance, with the
highest number of parameters (136.75 × 106), memory consumption (534.2 MB), and video
memory usage (5.6 GB), as well as the longest training duration (7.1 h) and the lowest
frame rate (12.80 f·s−1). On the other hand, the YOLO series models, which are single-stage
algorithms, demonstrated significantly faster running performances. The YOLOv7-tiny
model had the fewest parameters and minimal memory requirements, while achieving
higher frame rates for YOLOv5s and YOLOv8s, along with a faster execution speed.

Table 3. The results of running performance with various models.

Models Number of
Parameters (×106)

Training Duration
(h)

Memory
Consumption (MB)

Video Memory
Usage (GB) FPS (f·s−1)

Faster-RCNN 136.75 7.1 534.2 5.6 12.80
YOLO v5s 7.02 3.7 14.12 3.5 127.42
YOLO v7-tiny 6.01 3.8 12.01 1.9 82.56
YOLO v8s 11.13 3.1 21.98 3.6 125.74

When considering identical datasets, it can be concluded that the Faster-RCNN model
required a superior running performance and environment configuration, whereas the
YOLO model series required a lower hardware and software environment configura-
tion, while offering faster training speeds. Consequently, the YOLO model series algo-
rithms are highly suitable for the lightweight deployment of real-time detection tasks on
UAV platforms.

5.4.2. Comparison Results of Detection Accuracy
The Results of Overall Detection Accuracy

The results of comparing the overall detection accuracy are presented in Table 4.
Among all models, the Faster-RCNN model demonstrated the highest accuracy, surpassing
the YOLO series models in all evaluation indexes of accuracy. It achieved a precision (P),
recall (R), F1 value, and mean average precision (mAP) of 75.6%, 76.4%, 75.3%, and 79.3%,
respectively. Among the YOLO series models, YOLOv7-tiny exhibited a lower overall
precision with values of 66.9% (P), 66.5% (R), 66.7% (F1-score), and 65.5% (mAP). On
the other hand, both YOLOv5s and YOLOv8s showed similar overall precision, but were
slightly inferior to Faster-RCNN by approximately a margin from around 3% to 5%.

Table 4. Results of overall accuracy with various models (%).

Models Precision Recall F1-Score mAP

Faster-RCNN 75.6 76.4 75.3 79.3
YOLO v5s 75.1 71.0 72.6 74.0

YOLO v7-tiny 66.9 66.5 66.7 65.5
YOLO v8s 74.4 75.6 75.0 77.1

The Results of Detection Accuracy under Different Crack Types

To further clarify the discrepancies in the model recognition accuracy among the
different crack categories, a comparative analysis of the model recognition accuracy was
conducted for the four types of cracks: longitudinal cracks (LC), transverse cracks (TC),
oblique cracks (OC), and mesh cracks (AC). The results are presented in Table 5.

(i) Regarding the identification of longitudinal cracks (LC), the Faster-RCNN model
exhibited the highest accuracy, with an average precision (AP) of 85.7% and the highest
F1 value of 82.3%. In contrast, the YOLO series demonstrated a relatively inferior
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average precision, with YOLOv7-tiny exhibiting the lowest performance. Therefore,
Faster-RCNN outperformed the other models in recognizing longitudinal cracks.

(ii) For transverse cracks (TC), the YOLOv8s model achieved a superior recognition accu-
racy with an AP score of 89.5%, followed by YOLOv5s. Although there was a slight
decrease in F1 score for YOLOv8s compared to YOLOv5s, their overall recognition ac-
curacies did not significantly differ from each other; however, YOLOv7-tiny displayed
a weaker recognition accuracy.

(iii) All four algorithm models exhibit low recognition accuracy and F1 values for oblique
cracks (OC) compared to the other types of cracks; however, among them, Faster-
RCNN still maintained the highest level of recognition accuracy, while all models
belonging to the YOLO series demonstrated lower levels of recognition accuracy—this
explains why Faster-RCNN performed better overall.

(iv) In terms of recognizing mesh cracks (AC), an outstanding performance was observed
from the YOLOv8s model, which attained a remarkable recognition accuracy and F1
value at 91.0% and 90.6%, respectively; meanwhile, although slightly less effective
than its counterpart, the YOLOv5s model also showcased a commendable perfor-
mance, whereas a poor performance was exhibited by the YOLOv7-tiny model.

Table 5. Results of detection accuracy with various models under four crack types (%).

Models
AP (%) F1-Score

TC LC AC OC TC LC AC OC

Faster-RCNN 85.7 83.4 60.2 87.8 82.3 78.0 58.1 82.9
YOLO v5s 75.5 87.4 43.8 89.1 72.3 86.5 43.5 88.0
YOLO v7-tiny 70.4 81.2 40.7 80.7 70.0 79.0 44.8 77.1
YOLO v8s 75.4 89.5 45.4 91.0 74.4 85.0 48.5 90.6

The Results of Detection Accuracy under Different Crack Datasets

In this study, our self-made pavement crack datasets strictly followed the UAV flight
parameter settings and data acquisition process mentioned in Section 4. To validate the
reliability and advantages of our self-made crack datasets, we conducted a comparative
study using these four model algorithms on existing various open-source UAV pavement
crack datasets. Our experiment involved comparing the detection accuracy of our crack
datasets with datasets such as UAPD [2], RDD2022 [31], UMSC [19], UAVRoadCrack [21],
and CrackForest [32]. We evaluated and compared the accuracy performances of Faster-
RCNN, YOLOv5, YOLOv7-tiny, and YOLOv8s after 200 training cycles, as well as Faster-
RCNN after 15 rounds.

The results, as presented in Table 6, indicate that our lab’s datasets outperformed
other datasets used in similar models on most metrics, exhibiting the highest accuracy
for crack recognition and algorithmic efficiency. However, the model performance varied
across different datasets; while UAVRoadCrack performed relatively well, the UAPD
dataset showed the worst performance. These findings strongly highlight the advantages
of utilizing our self-collected pavement images via a UAV and emphasize the importance
of flight parameter modeling for the quality control of UAV imagery.

The Results of Detection Effectiveness

To facilitate a more intuitive comparison of the effects, a specific image with four
types of cracks was selected from the test set to evaluate and compare their recognition
performances, as presented in Table 7. Based on the results obtained, it is evident that
Faster-RCNN outperformed the YOLO series algorithms in terms of overall performance.
It is worth noting that, for challenging oblique cracks (OC), all the YOLO series algorithms
exhibited unsatisfactory recognition with low confidence levels, often resulting in the
omission or separate identification of complete cracks, whereas the Faster-RCNN model
demonstrated a superior capability in recognizing oblique cracks (OC) more comprehen-
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sively. Additionally, the Faster-RCNN model also exhibited an excellent performance in
detecting subtle cracks, as shown in Table 7. For instance, it successfully identified a subtle
transverse crack within a longitudinal crack. In other crack types, all four modeling algo-
rithms demonstrated effectiveness in crack detection. A comparative analysis considering
both combined effects and confidence levels reveals that Faster-RCNN achieved the best
overall performance; among the YOLO series algorithms, YOLOv5s and YOLOv8s showed
comparable results, while YOLOv7-tiny performed relatively poorly, with lower confidence
levels observed across all detected results.

Table 6. Comparison of model valuation with various UAV cracks datasets.

Datasets
Faster-RCNN YOLO v5s YOLO v7-Tiny YOLO v8s

FPS
(f.s−1)

F1
(%)

mAP
(%)

FPS
(f.s−1)

F1
(%)

mAP
(%)

FPS
(f.s−1)

F1
(%)

mAP
(%)

FPS
(f.s−1)

F1
(%)

mAP
(%)

UAPD [2] 9.14 47.9 48.8 59.7 52.7 57.7 74.51 56.7 52.8 65.4 57.4 58.6
RDD2022 [31] 11.36 69.5 68.8 63.21 65.2 60.9 65.47 63.1 65.6 53.71 66.5 67.7
UMSC [19] 11.72 73.4 68.8 97.87 68.7 74.3 76.81 63.8 70.1 89.78 72.8 70.4
UAVRoadCrack [21] 10.57 68.9 68.5 108.6 77.8 75.7 75.39 62.5 65.3 69.36 71.0 68.8
CrackForest [32] / 57.4 59.1 / 57.8 58.8 67.45 61.2 63.5 61.21 60.9 65.2
Our Datasets 12.80 75.3 79.3 127.4 72.6 74.0 82.56 66.7 65.5 125.7 75.0 77.1

Table 7. Comparison of detection results with various models.

Input Images Faster-RCNN YOLOv5s YOLOv7-Tiny YOLOv8s
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In summary, this experiment compared the accuracy and effectiveness of different
models for crack recognition from UAV imagery. The Faster-RCNN model demonstrated
the highest accuracy and effectiveness in recognizing fine cracks. On the other hand, the
YOLO series model showed significant advantages in terms of training speed and low
requirements for video memory. Among the YOLO models, YOLOv5s and YOLOv8s
exhibited a comparable recognition accuracy, while YOLOv7-tiny performed the worst. The
experiment primarily focused on evaluating the data acquisition quality of UAV imagery,
which yielded optimal results in the testing phase.

6. Road Crack Measurements and Pavement Distress Evaluations

The primary goal of road crack recognition is to evaluate pavement damage on roads.
This will help to enhance the application of these models and provide factual evidence for
the maintenance decisions made by road authorities. After conducting a comparative study
of various modeling algorithms, it was determined that the model trained by Faster-RCNN
outperformed the YOLO serial models and could be identified as the refined model for
this experiment.

Due to the large size of the obtained images, it is not efficient to use them directly
for road crack recognition. This would result in a slow recognition speed and require
a significant amount of processing resources. To address this issue and ensure that the
UAV recognition model remained small and fast, the strategy of ‘Divide and Merge’ was
employed into the UAV imagery with large-size photos. This strategy utilizes a ‘Divide-
Recognition-Merge-Fusion’ method during crack detection, as illustrated in Figure 10. The
original frame image (3840 px × 2160 px) was divided into 18 consistently smaller images
(640 px × 640 px), each assigned a unique number. Using the optimal model trained by
Faster-RCNN in this experiment, cracks were identified within each cropped image. Finally,
these identified images were stitched together, with overlapping multi-crack confidence
recognition boxes merging with neighboring combinations.
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6.1. Measurement Methods of Pavement Cracks

The measurement methods for crack analysis play a crucial role in statistically analyz-
ing the quantity of cracks. These methods consider various factors, such as crack location,
crack type, crack length, crack width, crack depth, and crack area. In order to improve the



Appl. Sci. 2024, 14, 1157 18 of 23

practicality of these methods in road damage maintenance, the quantity of cracks can be
roughly estimated, temporarily excluding small cracks.

(i) Pavement Crack Location: The pixel position of the detected crack in the original UAV
imagery can be determined based on the corresponding image number; meanwhile,
the actual ground position can be inferred through GSD calculation.

(ii) Pavement Crack Length: This can be determined based on the pixel size of the
confidence frame model, as illustrated in Figure 11. Horizontal cracks are measured
by their horizontal border pixel lengths; vertical cracks by their vertical border pixel
lengths; diagonal cracks by estimated border diagonal distance pixels; and mesh
cracks primarily by measuring border pixel areas.

(iii) Pavement Crack Width: The maximum width of a crack can be determined by identi-
fying the region with the highest concentration of extracted crack pixels.

(iv) Pavement Crack Area: This mainly aims at alligator cracks (AC), with a measurement
of the crack area. It can be calculated by the pixels of AC based on the confidence
frame model.
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Finally, to determine the location, length (L), and area (A) of road cracks with ground
truth, the quantitative results of cracks can be determined by multiplying the ground
sampling distance (GSD, Unit: cm/pixel) by the pixels at which they are located. The actual
length or width of the crack in meters can be calculated as the pixel length (m) × GSD/100,
while the actual area of the block affected by the crack in square meters can be derived
from the pixel area (m2) × GSD2/1002.

6.2. Evaluation Methods of Pavement Distress

The evaluation of pavement damage can be determined using the internationally
recognized pavement damage index (PCI), which is also adopted in China. The PCI
provides a crucial indicator for assessing the level of pavement integrity. Additionally,
the pavement damage rate (DR) represents the most direct manifestation and reflection
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of the physical properties related to the pavement condition. In this study, we refer to
specifications such as ‘Technical Code of Maintenance for Urban Road (CJJ36-2016)’ [33] and
‘Highway Performance Assessment Standards (DB11/T1614-2019)’ [34] from the Chinese
government, incorporating their respective calculation formulas as follows:

DR = 100 ×
N

∑
i=1

wi Ai/A (6)

PCI = 100 − a0DRa1 (7)

where Ai is the damage area of the pavement of the ith crack type (m2); N is the total
number of damage types, taken here as 4; A is the pavement area of the investigated road
section (the investigated road length multiplied by the effective pavement width, m2); and
wi is the damage weight of the pavement of the ith crack type, directly set as 1. According
to the “Highway Performance Assessment Standards (DB11/T 1614-2019)” [34], a0 and a1
represent the material coefficients of the pavement, in which asphalt pavement is taken as
a0 = 10 and a1 = 0.4, while concrete pavement is taken as a0 = 9 and a1 = 0.42. It is evident
that a higher DR leads to a lower PCI value, indicating poorer pavement integrity.

6.3. Visualization Results of Pavement Distress

The original frame image was utilized for crack detection in this experiment, as vi-
sualized in Figure 12. On the right side, the statistical results of the four types of crack
measurement are presented. This study employed the preferred Faster-RCNN trained
model with a remarkable detection accuracy of 87.2% (mAP). By conducting crack measure-
ment and statistics on a regional road section, a damage rate (DR) of 29.5% and pavement
damage index (PCI) of 61.28 were calculated, indicating a medium rating for the road
section integrity in this region.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 24 
 

section (the investigated road length multiplied by the effective pavement width, m2); and 
wi is the damage weight of the pavement of the ith crack type, directly set as 1. According 
to the “Highway Performance Assessment Standards (DB11/T 1614-2019)” [34], a0 and a1 
represent the material coefficients of the pavement, in which asphalt pavement is taken as 
a0 = 10 and a1 = 0.4, while concrete pavement is taken as a0 = 9 and a1 = 0.42. It is evident 
that a higher DR leads to a lower PCI value, indicating poorer pavement integrity. 

6.3. Visualization Results of Pavement Distress 
The original frame image was utilized for crack detection in this experiment, as vis-

ualized in Figure 12. On the right side, the statistical results of the four types of crack 
measurement are presented. This study employed the preferred Faster-RCNN trained 
model with a remarkable detection accuracy of 87.2% (mAP). By conducting crack meas-
urement and statistics on a regional road section, a damage rate (DR) of 29.5% and pave-
ment damage index (PCI) of 61.28 were calculated, indicating a medium rating for the 
road section integrity in this region. 

 
Figure 12. Visulization results of crack detection and pavement distress evaluation. 

7. Discussion 
This study proposes a comprehensive and systematic framework and method for au-

tomatic crack detection and pavement distress evaluation in a UAV inspection system. 
The framework begins by establishing the flight parameter settings and experimental 
techniques to enhance the high-quality imagery using the DJI Min2 drone in real-world 
scenarios. Additionally, a benchmark dataset was created and has been made available to 
the community. The dataset includes important information such as the GSD, which is 
essential for evaluating pavement distress. In this experiment, our self-made crack dataset 
demonstrated its superiority compared to existing datasets used in similar algorithms, 
achieving the highest accuracy in crack recognition and algorithmic efficiency. The exper-
imental result (refer to Table 6) revealed the significance of data acquisition quality in the 
accuracy of crack target recognition, with high-quality image data from the UAV imagery 
effectively improving the recognition accuracy. 

In this experiment, the detection capability for road cracks in a UAV inspection sys-
tem could be enhanced through a range of strategies. Firstly, adhering to a drone flight 
control strategy ensured a consistent high and stable speed during data acquisition on 
urban roads. This guaranteed the collection of clear and high-quality drone images with 

Figure 12. Visulization results of crack detection and pavement distress evaluation.

7. Discussion

This study proposes a comprehensive and systematic framework and method for
automatic crack detection and pavement distress evaluation in a UAV inspection system.
The framework begins by establishing the flight parameter settings and experimental
techniques to enhance the high-quality imagery using the DJI Min2 drone in real-world
scenarios. Additionally, a benchmark dataset was created and has been made available
to the community. The dataset includes important information such as the GSD, which is
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essential for evaluating pavement distress. In this experiment, our self-made crack dataset
demonstrated its superiority compared to existing datasets used in similar algorithms,
achieving the highest accuracy in crack recognition and algorithmic efficiency. The experi-
mental result (refer to Table 6) revealed the significance of data acquisition quality in the
accuracy of crack target recognition, with high-quality image data from the UAV imagery
effectively improving the recognition accuracy.

In this experiment, the detection capability for road cracks in a UAV inspection system
could be enhanced through a range of strategies. Firstly, adhering to a drone flight control
strategy ensured a consistent high and stable speed during data acquisition on urban
roads. This guaranteed the collection of clear and high-quality drone images with attached
real spatial scale information for distress assessments. Secondly, the sampling ‘divide
and conquer’ strategy for model training and target detection involves various key steps,
including ‘the frame extracting from video and image cropping for large image’ and ‘model
learning and crack detection for small images’, as well as ‘fusion and splicing from small
images’. This approach effectively improves the accuracy of identifying cracks in large-
scale images while enhancing the operational efficiency of these models. Thirdly, the
deployment of drone detection algorithms using both ‘online–offline’ and ‘online–online’
strategies provides flexibility based on different scenarios. The ‘one-stage’ algorithm
operates quickly, but has a lower detection accuracy, whereas the ‘two-stage’ algorithm
exhibits a slower running efficiency but a higher detection accuracy. These deep learning
models can be deployed accordingly, depending on the specific application scenarios. For
instance, in sudden situations requiring fast real-time detection, lightweight deployment
using a ‘two-stage’ algorithm such as YOLO series models can be employed.

To propose a suitable deployment scheme for the UAV inspection system, this study
utilized prominent deep learning algorithms, namely Faster-RCNN, YOLOv5s, YOLOv7-
tiny, and YOLOv8s, for pavement crack object detection and a comparative analysis. The
results revealed that Faster-RCNN demonstrated the best overall performance, with a
precision (P) of 75.6%, a recall (R) of 76.4%, an F1-score of 75.3%, and a mean Average
Precision (mAP) of 79.3%. Moreover, the mAP of Faster-RCNN surpassed that of YOLOv5s,
YOLOv7-tiny, and YOLOv8s by 4.7%, 10%, and 4%, respectively. This indicates that Faster-
RCNN outperformed in terms of detection accuracy, but required a higher environment
configuration, making it suitable for online data collection using a UAV and offline in-
spection at work stations. On the other hand, the YOLO serial models, while slightly less
accurate, were the fastest algorithms and are suitable for the lightweight deployment of
UAVs with online collection and real-time inspection. Many studies have also proposed re-
fined YOLO-based algorithms for crack detection in drones, mainly due to their lightweight
deployment in UAV systems. For instance, the BL-YOLOv8 model [20] reduces both the
number of parameters and computational complexity compared to the original YOLOv8
model and other YOLO serial models. This offers the potential to directly deploy the YOLO
serial models on cost-effective embedded devices or mobile devices.

Finally, road crack measurement methods are presented to assess road damage, which
will enhance the application of the UAV inspection system and provide factual evidence
for the maintenance decisions made by road authorities. Notably, a crack is a significant
indicator for evaluating road distress. In this study, the evaluation results were primarily
obtained through a comprehensive assessment of the crack area, degree of damage, and
their proportions. However, relying solely on cracks to determine road distress may be
deemed limited, and this should only be considered as a reference for the relevant road
authorities. Therefore, it is essential to conduct a comprehensive evaluation that takes into
account multiple factors, such as rutting and potholes.

8. Conclusions

The traditional manual inspection of road cracks is inefficient, time-consuming, and
labor-intensive. Additionally, using multifunctional road inspection vehicles can be ex-
pensive. However, the use of UAVs equipped with high-resolution vision sensors offers
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a solution. These UAVs can remotely capture and display images of the pavement from
high altitudes, allowing for the identification of local damages such as cracks. The UAV
inspection system, which is based on the commercial DJI Min2 drone, offers several advan-
tages. It is cost-effective, non-contact, highly precise, and enables remote visualization. As
a result, it is particularly well-suited for remote pavement detection. In addition, automatic
crack detection technology based on deep learning models brings significant additional
value to the field of road maintenance and safety. It can be integrated into the commercial
UAV system, thereby reducing the workload of maintenance personnel.

In this study, the contributions are summarized as follows: (1) A pavement crack
detection and evaluation framework of a UAV inspection system based on deep learn-
ing was proposed and can provide technical guidelines for road authorities. (2) To en-
hance automatic crack detection capability and design a suitable scheme for implementing
deep-learning-based models in a UAV inspection system, we conducted a validation and
comparative study on prevalent deep learning algorithms for detecting pavement cracks
in urban road scenarios. The study demonstrates the robustness of these algorithms in
terms of their performance and accuracy, as well as their effectiveness in handling our
customized crack image datasets and other popular crack datasets. Furthermore, this
research provides recommendations for leveraging UAVs in deploying these algorithms.
(3) Quantitative methods for road cracks were proposed and pavement distress evaluations
were also carried out in our experiment. Obviously, our final evaluation results were also
guaranteed according to GSD. (4) A pavement crack image dataset integrated with GSD
was established and has been made publicly available for the research community, serving
as a valuable supplement to existing crack databases.

In summary, the UAV inspection system, under the guidance of our proposed frame-
work, has been proven to be feasible, yielding more satisfactory results. However, drone
inspection has the inherent limitation of a limited battery life, making it difficult to perform
long-distance continuous road inspection tasks. Drones are better suited for short-distance
inspections in complex urban scenarios [16]. With advancements in drone and vision
computer technology, drones equipped with lightweight sensors and these lightweight
crack detection algorithms are expected to gain popularity for road distress inspection.
In the future, this study aims to incorporate improved YOLO algorithms into the UAV
inspection system to enhance road crack recognition accuracy. Furthermore, in order to
establish a comprehensive UAV inspection system for road distress, we plan to continue
researching multi-category defect detection systems in the future, including various road
issues such as rutting and potholes, among which are cracks. Additionally, efforts will be
made to enhance UAV flight autonomy for stability and high-speed aerial photography,
further improving the quality of aerial images and catering to the requirements of various
complex road scenarios.
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