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Abstract: Graphical user interfaces (GUIs) hold an irreplaceable position in modern software and
applications. Users can interact through them. Due to different terminal devices, there are sometimes
display errors, such as component occlusion, image loss, text overlap, and empty values during
software rendering. To address the aforementioned common four GUI display errors, a target
detection algorithm based on the improved Faster R-CNN is proposed. Specifically, ResNet-50 is used
instead of the traditional VGG-16 as the feature extraction network. The feature pyramid network
(FPN) and the enhanced multi-scale attention (EMA) algorithm are introduced to improve accuracy.
ROI-Align is used instead of ROI-Pooling to enhance the generalization capability of the network.
Since training models require a large number of labeled screenshots of errors, there is currently no
publicly available dataset with GUI display problems. Therefore, a training data generation algorithm
has been developed, which can automatically generate screenshots with GUI display problems based
on the Rico dataset. Experimental results show that the improved Faster R-CNN achieves a detection
accuracy of 87.3% in the generated GUI problem dataset, which is a 7% improvement compared to
the previous version.

Keywords: automated testing; object detection; Faster R-CNN

1. Introduction

With the rapid development of the industrial internet, industrial software has become
an integral component of industrial production. However, due to the complexity and
diversity of industrial software, its testing process often necessitates significant manpower
and resources. In order to enhance testing efficiency and accuracy, automated testing
technology has emerged. Automated testing allows for continuous testing throughout
the software development process, facilitating prompt identification and resolution of
issues, thus mitigating software development costs and risks. Utilitarian tools such as
Monkey [1,2] and Dynodroid [3] have gained widespread industrial application as practical
automated testing instruments. Yet, these automated testing tools primarily concentrate on
detecting crash issues rather than UI display problems. As an automated testing approach,
GUI automation testing has been extensively implemented in software testing to boost
efficiency, reduce costs, and improve quality. Central to GUI automation testing is the
object recognition technology for target objects, which includes various controls within
the GUI interface, such as buttons, text fields, and drop-down menus. Consequently, the
accuracy and stability of object recognition technology bear the utmost significance for the
effectiveness and reliability of automated testing.

In recent years, the rapid progress in artificial intelligence technology has given rise
to innovative ideas and methodologies aimed at improving GUI testing. This involves
leveraging deep learning for the automatic recognition of GUI elements in screen captures.
The recognition of GUI elements within images, based on pixels, can be viewed as a
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specialized object detection task within the domain of GUI testing. Object detection, a
computer vision technology, facilitates the identification of specific semantic objects within
digital images and videos.

This paper presents a target detection algorithm based on an improved Faster R-CNN.
Initially, ResNet-50 is adopted as the feature extraction network, with the incorporation
of enhanced multi-scale attention (EMA) within ResNet-50 to bolster attention to relevant
channel information across both channel and spatial dimensions, thereby augmenting
performance. Feature pyramid network (FPN) is introduced to bolster the algorithm’s capa-
bility of handling small targets, resulting in improved robustness and efficiency during the
learning process. ROI-Align supersedes ROI-Pooling for target feature mapping, effectively
addressing false alarms and missed detections caused by limited model generalization and
ultimately enhancing detection accuracy. Additionally, a training data generation algorithm
has been devised, which automatically generates datasets with GUI display problems based
on the Rico dataset.

The structure of this paper is as follows. Section 2 explores the existing research in the
field of GUI-related studies. Section 3 provides a comprehensive exposition of the training
data generation algorithm based on the Rico dataset, the improved Faster R-CNN, and
their respective components. Section 4 describes the experimental setup and preparation,
as well as the analysis of experimental results. Finally, in Section 5, this paper presents the
conclusion and discusses future work.

2. Related Work

Graphical user interfaces (GUIs) serve as visual conduits between applications and
users, warranting substantial attention to UI design quality. Developers craft UIs that
not only interact effectively with users but also uphold visual aesthetics. Researchers
strive to enhance UI quality by aiding software developers and UI designers in GUI search
through image features. Reiss et al. introduced a method of generating complete and
functional interactive user interfaces by employing code search to locate requisite interface
sketches [4]. Behrang et al. proposed a code search technique leveraging the growing pool
of open-source applications in public repositories to offer users foundational code for their
desired applications [5]. Yang et al. devised a tool for automated detection of UI design
issues, capable of statistically and concretely exemplifying consistency and violations for
diverse design criteria [6]. Yeh et al. introduced a system utilizing GUI screenshots for
visual search and automated graphical user interfaces [7]. Qian et al. harnessed computer
vision techniques for robotically operating applications through a touch screen, automating
GUI testing [8]. Chen et al. introduced a deep learning-based method encoding visual and
text information to recover missing labels for the current UI, simplifying their retrieval via
text queries [9]. They also examined the limitations and effective design of deep learning-
based object detection methods for UI components, incorporating a new top-down strategy
combined with a deep learning-based GUI text model [10]. Moran et al. scrutinized
post-implementation GUI by comparing image similarity and employing computer vision
techniques to ensure alignment with the original design [11]. In their subsequent work,
they investigated and summarized GUI changes in constantly evolving applications [12].

Display error detection in Android apps, specifically component occlusion, is a chal-
lenging task. One approach is to use deep learning techniques to model the visual infor-
mation of GUI screenshots and detect display issues [13]. Another approach is to utilize
machine learning to automatically detect GUI errors, including widget errors, and ana-
lyze the positional relationship between widgets to detect more complex errors [14,15].
Regarding image loss issues, Li et al. conducted an empirical study on real-world Android
apps and developed a static issue detection tool called TAPIR, which successfully detected
previously unknown image-displaying issues [16]. Additionally, Guo et al. presented
iFixDataloss, a tool that automatically detects and fixes data loss issues in Android apps,
including those caused by screen rotation. iFixDataloss outperformed existing techniques
in terms of the number of detected issues and the quality of generated patches [17]. Display
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errors such as text overlap and empty values can negatively impact app usability and user
experience. Nighthawk is a fully automated approach that uses deep learning to detect
GUIs with display issues and locate the specific region of the issue in the GUI [18].

For effective GUI display, automation testing dynamically detects GUI elements.
Mirzaei et al. proposed a fully automatic method utilizing a novel composition technique
to generate GUI system tests for Android applications [19]. Baek et al. introduced an
automated testing framework with a multi-level GUI comparison criterion (multi-level
GUICC) for Android applications [20]. Su et al. presented a novel automated model-based
testing approach to enhance GUI testing [21]. Gao et al. and Li et al. scrutinized potential
GUI rendering issues and devised automatic detection methods. Gao et al. introduced a
mobile application for GUI rendering analysis tools [22]. In recent years, deep learning
techniques have gained prominence in GUI automation testing. White et al. proposed a
GUI testing improvement by automatically identifying GUI widgets in screen screenshots
using machine learning techniques [23]. Degott et al. introduced a reinforcement learning-
based approach that autonomously learns interactions suitable for elements, guiding test
generation [24]. Diverging from traditional GUI testing methods, deep learning techniques
employ computer vision to detect GUI components on the screen and determine subsequent
steps by identifying anomalies. Thomas et al. suggested employing machine learning to
automatically identify GUI widgets in screen screenshots and using this information to
guide testing [23].

There are several approaches for data generation in machine learning. One approach
is synthetic data generation, which involves generating artificial data that is similar to
real-world data. This can be done using techniques such as combinatorial testing and
variational autoencoder [25]. Another approach is constraint-based generation, where a
dataset is generated to satisfy given support constraints on itemsets [26]. Probabilistic
generative modeling is another approach that models data generation as a sampling process
from a parametric distribution, often encoded as a neural network [27].

3. Preliminaries
3.1. Faster R-CNN

The Faster R-CNN represents a two-stage object detection algorithm [28,29], an en-
hancement derived from the R-CNN and Fast RCNN frameworks. In contrast to single-
stage object detection algorithms like YOLO [29,30] and SSD [31], Faster R-CNN divides
the object detection process into two stages: candidate box generation and subsequent
object recognition within those candidate boxes. Consequently, while this two-stage ap-
proach yields higher accuracy, it exhibits a relatively slower detection speed compared to
single-stage counterparts. Following feature extraction, the data undergo initial processing
through the region proposal network (RPN) to generate candidate regions. The content of
these regions is then categorized as foreground or background. If considered foreground,
it undergoes further processing via ROI pooling for subsequent object classification and
position regression; otherwise, the candidate box is discarded. Concurrently, if determined
as foreground, the alternate branch of the RPN network adjusts the size and geometric
coordinates of the candidate box. The Faster R-CNN employs ResNet-50 as the backbone
feature extraction network [32] and integrates the feature pyramid network (FPN) struc-
ture [33]. Utilizing three feature maps at distinct scales for multi-scale feature fusion, the
model outputs prediction results aimed at enhancing accuracy.

3.2. ResNet-50

The residual network (ResNet) primarily consists of residual blocks. Prior to the
advent of ResNet, deep learning training encountered limitations in achieving considerable
depth, as the number of layers led to network degradation. ResNet emerged to address
this degradation phenomenon. Various ResNet model variants exist, including ResNet34,
ResNet-50, and ResNet101, among others. The model structure of ResNet-50 is illustrated in
Figure 1. ResNet-50 is segmented into 5 stages, where Stage 0 involves input preprocessing,
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and the subsequent 4 stages comprise residual blocks with a similar structure. Comprising
a total of 50 layers, ResNet-50 includes 48 convolutional layers, 1 max pooling layer, and
1 average pooling layer. The input UI image undergoes initial feature extraction via the
ResNet-50 backbone feature extraction network. Subsequently, the outputs from stage 1 to
stage 4 within the backbone network serve as features at distinct scales for feature fusion in
the feature pyramid network, as depicted in Figure 1.

Figure 1. Network structure of ResNet-50.

3.3. Feature Pyramid Networks

The feature pyramid network (FPN) extracts feature maps at diverse scales and sup-
plies them to subsequent networks for prediction tasks. As depicted in Figure 2, FPN
is primarily composed of a bottom-up path and a top-down path. The bottom-up path
encompasses the forward feature extraction process within the deep convolutional net-
work, while the top-down path involves the upsampling of feature maps from the final
convolutional layer. Lateral connections play a crucial role in amalgamating features from
deep and shallow convolutional layers. This integration accounts for its commendable
detection performance, particularly for small objects. In the FPN, an ROI with width (w)
and height (h) is assigned to level the Pk of the feature pyramid in Equation (1). Here, value
224 represents the standard ImageNet pre-training size, where k0 is the target width and
height (w× h = 2242) to which the ROI should be mapped horizontally.

k =
⌊

k0 + log2(
√

wh/224)
⌋

(1)

Figure 2. Network structure of ResNet-50 and feature pyramid networks.
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4. Research Method
4.1. Motivation

To ensure the accurate rendering of graphical user interfaces (GUIs), software com-
panies must utilize a considerable workforce of testers who are dedicated to the compre-
hensive evaluation of their applications. While these testers play a crucial role in detecting
display anomalies within GUIs, various limitations persist. Firstly, the verification of correct
GUI presentation necessitates a substantial number of testers who must manually navigate
through numerous pages using diverse interaction methods. Additionally, they are required
to scrutinize the UI display across devices with distinct operating system versions, resolu-
tions, and screen dimensions. Secondly, testers often inadvertently neglect minor errors in
GUI presentation, such as text overlapping and component occlusion. Addressing these
challenges calls for the imperative development of automated GUI testing methodologies.

4.2. Automatic Training Data Generation

Object detection algorithms necessitate an extensive dataset for training models, mak-
ing the collection of numerous screen captures depicting GUI display issues labor-intensive.
Currently, there is a dearth of publicly available datasets explicitly tailored for addressing
GUI display problems. This paper introduces a methodology for the automatic generation
of training data. Our approach relies on the Rico dataset [34], comprising design data from
93,000 Android applications and offering over 66,000 UI screen captures, each paired with
its corresponding JSON file.

Algorithm 1 presents a heuristic-based approach for the automatic generation of
training data. Initially, it accepts input parameters, including error-free screen captures,
their associated JSON files, the specified category of UI display problems to be generated,
and pre-prepared image icons for the “image missing” class. The algorithm systematically
traverses the JSON file, extracting relevant component information, such as TextView and
ImageView. Utilizing this component information, Algorithm 1 duplicates and adjusts
positions and sizes according to predefined rules, thereby generating UI screen captures
with the associated issues, as illustrated in Figures 3–6.

In the event of a component occlusion error, the text or image becomes obscured by
other components. To induce such errors, Algorithm 1 initiates the process by generating a
color block matching the background of the current component, possessing the same width
but differing in height. Subsequently, this generated color block is repositioned to partially
cover the component.

Figure 3. Example of an algorithm generating a component occlusion problem.
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Algorithm 1: Heuristic-based training data auto-generation.
Input : category
Output : image

1 if category is ‘component occlusion’ then
2 rand← randomUniform(0, 1);
3 if rand > 0.5 then
4 range← randomUniform(0.5, 0.7);
5 end
6 else
7 range← randomUniform(−0.7, −0.5);
8 end
9 Generate block image with [width, height × range] and background;

10 if range ≥ 0 then
11 pasteBlockOn(image, x1, y1);
12 end
13 else
14 pasteBlockOn(image, x1, y2 + height × range);
15 end
16 end
17 if category is ‘missing image’ then
18 generateAndPasteBlock(image, x1, y1, genericWidth, genericHeight);
19 resizeIconTo(image, x1, y1, genericWidth, genericHeight);
20 end
21 if category is ‘null value’ then
22 generateAndPasteBlock(image, x1, y1, genericWidth, genericHeight);
23 drawNullStringOn(image, x1, y1, font, background);
24 end
25 if category is ‘text overlap’ then
26 range← randomUniform(0.8 × genericWidth, 0.85 × genericWidth);
27 rand← randomUniform(0, 1);
28 cropped→ cropImageBy(image, x1, y1, x2, y2);
29 if rand > 0.5 then
30 pasteCroppedOn(image, cropped, x2 − range, y1);
31 end
32 else
33 pasteCroppedOn(image, cropped, x1 − genericWidth + range, y1);
34 end
35 end
36 return image;

In the case of an image missing error, where the original image fails to display correctly
and is represented by an image icon, Algorithm 1 employs four common image icons to
emulate situations where the image is not properly rendered. Initially, a color block,
identical in size to the current image and with a background color corresponding to the
predetermined color of the image, is created. The display area of the original image is
then covered.

In instances of a null value error, manifested as the display of “null” in the text area,
Algorithm 1 first determines the height of text in a TextView and converts it into a font of the
same height. Subsequently, a “null” text with an identical background color is generated
and superimposed onto the original TextView.

When confronted with a text overlap error, characterized by the overlapping of text
content, thereby impairing readability, Algorithm 1 initially acquires the position and size
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of the TextView. Subsequently, it duplicates an identical TextView and, through image
cropping to render it transparent, achieves the effect of text overlap by repositioning it.

Figure 4. Example of the algorithm generation of the missing image problem.

Figure 5. Example of the algorithmic generation of the null problem.

Figure 6. Examples of the generation of the text overlap problem example.
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4.3. Improved Faster R-CNN with Multi-Scale Attention Mechanism
4.3.1. Overall Framework

This paper presents an enhanced Faster R-CNN algorithm shown in Figure 7, featuring
targeted improvements. Notably, the conventional VGG-16 feature extraction network
in the traditional Faster R-CNN is substituted with ResNet-50. Furthermore, ResNet-50
incorporates enhanced multi-scale attention (EMA) and a feature pyramid network (FPN).
The enhanced multi-scale attention (EMA) mechanism is integrated after the bn3 out-
put of each residual network in ResNet-50, positioned before the ReLU function. The
introduced feature pyramid network (FPN) facilitates the retrieval of more pertinent infor-
mation pertaining to smaller objects. Ultimately, the conventional ROI-Pooling in Faster
R-CNN undergoes replacement with a more precise ROI-Align, augmenting the network’s
generalization capabilities.

Figure 7. Network structure of the improved Faster R-CNN.

4.3.2. Multi-Scale Attention Mechanism

Enhanced multi-scale attention (EMA) represents an innovative and efficient non-
dimensional reduction attention model based on the grouping structure [35]. This model
departs from the sequential processing method of coordinated attention (coordinate atten-
tion, CA) [36].

As illustrated in Figure 8, coordinate attention (CA) employs an approach akin to the
SE attention module, utilizing a global average pooling operation to model inter-channel
information. However, in contrast to SE, CA integrates spatial positional information into
the channel attention map to enhance feature aggregation. The 1D global average pooling
representation, capturing global information along the horizontal dimension in the parallel
pathway, is expressed as Equation (2).

zH
c (H) =

1
W ∑

0≤i≤W
xc(H, i) (2)

Here, C denotes the number of input channels, and H and W represent the spatial
dimensions of the input features. Another pathway emerges directly from the 1D global
average pooling along the horizontal direction, resembling a collection of positional in-
formation along the vertical direction. Therefore, the formula for the pooling output is
articulated in Equation (3).

zW
c (W) =

1
H ∑

0≤j≤H
xc(j, W) (3)

In summary, CA transforms partial channels into batch dimensions and organizes
channel dimensions into multiple sub-features, ensuring a robust spatial semantic distribu-
tion within each feature group. This strategy circumvents dimension reduction through
conventional convolution, facilitating both strong generalization and computational capa-
bilities. Moreover, it offers the advantages of flexibility and lightweight design, rendering
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it suitable for diverse computer vision tasks aimed at enhancing overall performance. The
configuration of the EMA module is elucidated in Figure 8.

Figure 8. Network structure of coordinate attention (left) and multi-scale attention (right).

Specifically, EMA proposes a cross-space information aggregation method with dif-
ferent spatial dimension directions. First, EMA uses three parallel pathways to extract
attention-weight descriptors of grouped feature maps, with two parallel pathways in the
1× 1 branch and the third pathway in the 3× 3 branch. In the 1× 1 branch, there are
two average pooling layers to encode channels along the X and Y spatial directions. After
factorized convolutions in the 1× 1 branch, the output is decomposed into two tensors,
which are fitted with two Sigmoid functions to model the 2D binomial distribution of
the linear convolutions. In the 3× 3 branch, only a 3× 3 convolution is used to capture
multi-scale features. Then, the two tensors outputted by the Sigmoid functions are merged
into one tensor through Re-weighting. The 2D global average pooling is applied to encode
global spatial information in the output of the branches, and the output of the smallest
branch is directly transformed into the corresponding dimension shape before the joint
activation mechanism of channel features. The formula for the 2D global pooling operation
is shown in Equation (4).

zc =
1

H ×W

H

∑
j

W

∑
i

xc(i, j) (4)

In the mathematical expressions, c denotes the number of input channels, H and W
signify the spatial dimensions of the input features, and xc represents the input feature
at the c-th channel. Following the application of the softmax fitting transformation, the
output feature maps within each group are computed by aggregating two spatial attention
weight values. Subsequently, these maps are output as tensors of equivalent size to the
input through the Sigmoid function.

4.3.3. Improved ROI-Alignment

The ROI-Pooling layer was originally introduced in Fast R-CNN and has since found
widespread application in Faster R-CNN. In the Faster R-CNN framework, the RPN
network generates candidate boxes of diverse sizes. Subsequently, in the ROI-Pooling
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layer, feature pooling is executed to map candidate boxes of various sizes onto fixed-size
feature maps. ROI-Pooling incorporates two rounding quantizations. The first quantization
converts the floating-point coordinates of candidate boxes into integers, while the second
quantization further divides the quantized candidate regions into N × N equally-sized
sub-regions, rounding the edges of each sub-region, as illustrated in Figure 9. However,
ROI-Pooling suffers from a drawback where the two rounding operations lead to an
approximation of the region’s value and varying sizes of each region. This issue can result
in position errors when measuring boxes, consequently diminishing detection accuracy,
especially for smaller targets. Given the focus of this paper on detecting errors in GUI
interface display, some of which entail small geometric areas and occupy fewer image pixels,
we address this limitation by employing ROI-Align as an enhancement. This improves the
network’s generalization capability and detection accuracy, as depicted in Figure 9.

Figure 9. Example of ROI-Pooling (left) and ROI-Align (right).

ROI-Align, introduced in Mask RCNN [37], addresses the quantization errors inherent
in ROI-Pooling. In contrast to ROI-Pooling, ROI-Align retains the original floating-point
values, eliminating the need for quantization. Bilinear interpolation is employed to calculate
pixel values based on floating-point image coordinates, ensuring precise alignment between
the pixels of the original image and the feature map (Figure 10).

Figure 10. Example of bilinear interpolation.

The bilinear interpolation algorithm, as shown in Figure 7, first performs linear inter-
polation between A11 and A21 to obtain Q1. Similarly, Q2 can be obtained by performing
linear interpolation between A12 and A22. Q1 and Q2 can be calculated using Equation (5).

f (Q1) ≈
x2 − x
x2 − x1

f (A11) +
x− x1

x2 − x1
f (A21) Where Q1 = (x, y1)

f (Q2) ≈
x2 − x
x2 − x1

f (A12) +
x− x1

x2 − x1
f (A22) Where Q1 = (x, y2)

(5)
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Then, linear interpolation is performed between Q1 and Q2 in the y direction with
Equation (6).

f (P) ≈ y2 − y
y2 − y1

f (Q1) +
y− y1

y2 − y1
f (Q2) (6)

Finally, the final position is obtained through Equation (7).

f (x, y) ≈ (x2 − x)(y2 − y)
(x2 − x1)(y2 − y1)

f (A11) +
(x2 − x)(y− y1)

(x2 − x1)(y2 − y1)
f (A12)

+
(x− x1)(y2 − y)
(x2 − x1)(y2 − y1)

f (A21) +
(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
f (A22)

(7)

As illustrated in Figure 9, the dashed box represents the feature map, while the solid
box signifies an ROI feature (with a size of 2× 2) featuring four sampling points per sub-
region. ROI-Align utilizes bilinear interpolation to estimate pixel values corresponding
to these grid points and subsequently employs max pooling or average pooling for each
sub-region to yield a 2× 2 output result.

4.3.4. Evaluation Metrics

All quantitative analysis experiments in this paper are evaluated using the AP50 metric,
a standard evaluation metric in the COCO dataset, to measure the detection performance
of the network on test images. To explain the meaning of the aforementioned metric, the
concepts of precision and recall are introduced. The formulas for precision and recall are
shown in Equation (8).

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(8)

Here, TP represents true positives, FP represents false positives, FN represents false
negatives, and TN represents true negatives. Precision indicates the proportion of correctly
detected objects (when the intersection over union, IOU, between the predicted bounding
box and the ground truth box exceeds a certain threshold) among all detected objects.
Recall represents the proportion of detected objects by the model among the total number
of true objects. Normally, precision and recall are mutually exclusive, meaning that high
recall tends to have lower precision and vice versa. Therefore, using these two metrics
alone cannot intuitively compare the performance of different networks. Hence, this paper
uses the AP metric to quantitatively analyze the algorithm’s performance. The formula is
seen in Equation (9).

AP =
∫ 1

0
Psmooth (r)dr

mAP =
N

∑
i=1

AP(i)/N
(9)

In the equation, Psmooth (r) represents the PR curve after applying smoothing, where
the curve is plotted with recall on the x-axis and precision on the y-axis within the range of
0 to 1. N represents the number of validation sets.

5. Experiments
5.1. Experiment Settings

The experimental hardware configuration for this study comprises an Intel Xeon Cas-
cade Lake 8255C (2.5 GHz) processor, 16 GB + 16 GB dual-channel memory, and an NVIDIA
Tesla V100 graphics card. Software conditions involve a deep learning environment run-
ning on Ubuntu 20.04 with the PyTorch 1.31 framework. In this experiment, we employ
the transfer learning approach within the realm of deep learning. Initially, pre-training
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is executed on the COCO2017 dataset, followed by training the enhanced Faster R-CNN
algorithm using the pre-trained parameters. The objective is to identify four types of GUI
display issues: image missing, component occlusion, text overlap, and empty values.

This experiment is dedicated to investigating four prevalent GUI display issues:
component occlusion, image missing, text overlap, and empty values. Leveraging the
Rico dataset, an algorithm is employed to autonomously produce images representative
of these aforementioned GUI issues. As shown in Table 1, the resulting training dataset
comprises a total of 40,000 images, evenly distributed with 10,000 images for each issue type,
accompanied by corresponding annotation files. To facilitate model training and evaluation,
the dataset is partitioned into training, validation, and test sets with an 8:1:1 ratio.

Table 1. GUI displays a problematic dataset.

Text Overlap Image Missing Component Occlusion Empty Values

Training Set 8000 8000 8000 8000
Validation Set 1000 1000 1000 1000
Test Set 1000 1000 1000 1000
Sum 10,000 10,000 10,000 10,000

5.2. Experiment Result Analysis

To ensure a fair experimental comparison, we adopt the method of controlling vari-
ables. All aspects, aside from the variation in networks, encompassing the dataset, training
steps, and parameter configurations, remain consistent. Throughout the experimental
process, the datasets containing GUI display issues are partitioned into proportions of 8:1:1,
as previously described. Models undergo training utilizing pre-trained models from the
COCO2017 dataset, with 20 training iterations, an initial learning rate of 0.005, and a batch
size of 8; the optimal weight parameters are selected based on the training results.

In Experiment 1, improvements are sequentially implemented in the original Faster
R-CNN network. Specifically, VGG16 is replaced with ResNet-50 as the feature extraction
network. A feature pyramid network (FPN) and multi-scale attention (EMA mechanism are
incorporated, and the more accurate ROI-Align replaces ROI-Pooling. Figure 11 illustrates
a bar chart depicting the iterative enhancements in Faster R-CNN. Experiment names are
abbreviated using capital letters, where R represents ResNet-50, F represents the feature
pyramid network (FPN), E represents the enhanced multi-scale attention (EMA) mecha-
nism, and A represents ROI-Align. Notably, each improvement experiment demonstrates
advancements. Compared to the original Faster R-CNN algorithm, the final improved
algorithm achieves notable enhancements in text overlap (0.094), image missing (0.028),
component occlusion (0.126), and empty value (0.031). The final detection effectiveness
reaches 0.784 (text overlap), 0.964 (image missing), 0.812 (component occlusion), and
0.930 (empty value).

As observed in Table 2, the Faster R-CNN algorithm, incorporating all the enhance-
ments, demonstrates a 7% increase in mAP compared to the original Faster R-CNN algo-
rithm. Moreover, there is a notable surge in the AP value for the detection of each GUI
display problem.

In Experiment 2, the enhanced Faster R-CNN algorithm undergoes a comparative
analysis with alternative CNN-based object detection algorithms. These algorithms are
trained and evaluated using the identical dataset, and the ensuing comparison results
are depicted in Table 3. Notably, the improved Faster R-CNN algorithm attains superior
detection accuracy when juxtaposed with other CNN-based object detection algorithms.
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Figure 11. Comparison of different algorithms.

Table 2. Comparison of accuracy between original and improved algorithms.

Algorithm
Average Accuracy AP/%

mAP/%
Text Overlap Image Missing Component Occlusion Empty Values

Faster R-CNN 0.69 0.936 0.686 0.899 0.803
Faster R-CNN(R) 0.703 0.94 0.714 0.907 0.816
Faster R-CNN(RF) 0.741 0.959 0.753 0.917 0.843
Faster R-CNN(RFA) 0.766 0.966 0.771 0.922 0.856
Faster R-CNN(REFA) 0.784 0.964 0.812 0.93 0.873

Table 3. Comparison of accuracy between YOLOv3 and Faster R-CNN.

Algorithm mAP/%

Faster R-CNN 0.803
YOLOv3 0.792

Improved Faster R-CNN 0.873

Discussions

The experimental approach in this research leveraged the enhanced multi-scale atten-
tion (EMA) mechanism to enhance the Faster R-CNN object detection algorithm. Specifi-
cally, the EMA was incorporated into each convolutional layer of the residual networks
within the feature extraction network, ResNet-50. This addition occurred after the output of
the bn3 layer and before the application of the ReLU function. This strategic placement en-
sured that the structure of each residual block in ResNet-50 remained unchanged, enabling
the use of pre-trained models.

The motivation behind employing EMA lies in its strong generalization and computa-
tional capabilities, coupled with its flexibility and lightweight nature. The experimental
results presented in Table 2 clearly demonstrate a significant improvement in mean average
precision (mAP) for the Faster R-CNN algorithm with the inclusion of EMA. Specifically,
there is a 7% enhancement compared to the original Faster R-CNN algorithm. When com-
pared to a variant of Faster R-CNN that only replaces ROI-Align, the version incorporating
EMA exhibits a 1.7% mAP increase, showcasing a distinct advantage in accuracy.

Furthermore, the improved Faster R-CNN algorithm exhibits enhanced detection
performance across four GUI error types. Notably, the detection performance for image
absence and null values achieved high precision scores of 0.964 and 0.930, respectively.
The detection of text overlap and component occlusion also demonstrated improvements,
reaching precision scores of 0.784 and 0.812, respectively.

However, some areas warrant further improvement. The generation of a realistic
dataset, crucial for training the algorithm, is based on automatically generating screenshots
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with real GUI display issues from the Rico dataset. The quality of this generated dataset
significantly influences the experimental results. Therefore, there is a need for optimization
in aspects related to the algorithm for training data generation.

In the experiment, screenshots are employed to detect GUI display issues. Due to
the minimal differences observed in screenshots from various platforms, the methodology
can be transferred and extended to detect GUI display problems on other platforms. For
instance, we identified similar display issues on the Windows platform, affirming the
universality of these problems. Further, more in-depth experiments will be conducted in
the future.

Regarding the computation complexity, the enhanced Faster R-CNN algorithm is
expected to have a higher computational complexity compared to the traditional Faster
R-CNN due to the use of ResNet-50, EMA, FPN, and ROI-Align. While these enhancements
contribute to improved performance, they come at the cost of increased computational re-
quirements.

6. Conclusions and Future Work

This paper introduces a framework designed to automatically identify GUI display is-
sues in software screenshots through an enhanced Faster R-CNN object detection algorithm.
In this modification, the conventional VGG-16 network is replaced with ResNet-50 as the
feature extraction network, while the inclusion of a feature pyramid network (FPN) and
enhanced multi-scale attention (EMA) enhances detection accuracy. Additionally, to im-
prove the network’s generalization ability, ROI-Align is employed in place of ROI-Pooling.
Experimental results demonstrate that the improved Faster R-CNN algorithm achieves an
average accuracy of 87.3%, marking a notable 7% enhancement over the original algorithm.
This signifies the effectiveness of the improved algorithm in enhancing the accuracy of
GUI display issues. Given the absence of a publicly available dataset for GUI display
issues, a training data generation algorithm, based on the Rico dataset, is developed to
automatically generate realistic screenshots featuring GUI display issues, mitigating the
need for extensive manual collection.

In summary, this research approach offers valuable insights for software automation
testing with broad applications, not only in the industrial sector but also for various
terminal devices employing GUI displays. However, it is essential to note that this research
is at an early stage. Future work includes expanding the focus from four to a more extensive
range of GUI display issue categories, refining the current algorithm for generating training
data, and optimizing it further. Additionally, while the Faster R-CNN algorithm has been
improved in this study, there is a need for further research to enhance other types of object
detection algorithms and identify the most optimal solution.
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