
Citation: Feichter, C.; Schlippe, T.

Investigating Models for the

Transcription of Mathematical

Formulas in Images. Appl. Sci. 2024,

14, 1140. https://doi.org/10.3390/

app14031140

Academic Editors: Yolanda Blanco

Fernández and Alberto Gil Solla

Received: 15 December 2023

Revised: 22 January 2024

Accepted: 25 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Investigating Models for the Transcription of Mathematical
Formulas in Images
Christian Feichter and Tim Schlippe *

IU International University of Applied Sciences, 99084 Erfurt, Germany
* Correspondence: tim.schlippe@iu.org

Abstract: The automated transcription of mathematical formulas represents a complex challenge
that is of great importance for digital processing and comprehensibility of mathematical content.
Consequently, our goal was to analyze state-of-the-art approaches for the transcription of printed
mathematical formulas on images into spoken English text. We focused on two approaches: (1) The
combination of mathematical expression recognition (MER) models and natural language process-
ing (NLP) models to convert formula images first into LaTeX code and then into text, and (2) the direct
conversion of formula images into text using vision-language (VL) models. Since no dataset with
printed mathematical formulas and corresponding English transcriptions existed, we created a new
dataset, Formula2Text, for fine-tuning and evaluating our systems. Our best system for (1) combines
the MER model LaTeX-OCR and the NLP model BART-Base, achieving a translation error rate of
36.14% compared with our reference transcriptions. In the task of converting LaTeX code to text,
BART-Base, T5-Base, and FLAN-T5-Base even outperformed ChatGPT, GPT-3.5 Turbo, and GPT-4.
For (2), the best VL model, TrOCR, achieves a translation error rate of 42.09%. This demonstrates
that VL models, predominantly employed for classical image captioning tasks, possess significant
potential for the transcription of mathematical formulas in images.

Keywords: mathematical formula transcription; formula-to-text; LaTeX-to-text; image captioning;
computer vision; natural language processing; vision-language models

1. Introduction

Speech synthesis has advanced significantly in its ability to read textual content
accurately [1]. This progress relies on solid transcriptions to convert written text into
spoken language. However, a notable limitation arises when it comes to processing images.
While text within images can be transcribed using optical character recognition (OCR)
technology, the process of converting visual elements, such as mathematical formulas,
into spoken words is more difficult than textual content. This is particularly evident in
educational materials and scientific documents where formulas are still often expressed
as embedded images. A perfect transcription of formulas in images would not only help
make coursebooks with mathematical formulas more accessible for blind people, but also
help sighted people who want to familiarize themselves with the course content without
reading, e.g., during sporting activities or when driving.

However—to the best of our knowledge—there is no work that tackles the prob-
lem of transcribing mathematical formulas in images. Figure 1 illustrates the two possible
processes for transcribing mathematical formulas. In the first approach, the image of the for-
mula is converted into LaTeX code using mathematical expression recognition (MER) [2–6].
This LaTeX code then serves as input for a natural language processing (NLP) model, which
produces the transcription of the formula. In the second approach, the image of the formula
is converted into its transcription using a vision-language model (VL), which is able to
combine image analysis and text generation [7].
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Figure 1. Processes for transcribing mathematical formulas.

Since there was no existing dataset that covered the whole pipeline from the image of
the formula as input to the final transcription as output, we created a new dataset called
Formula2Text, which is publicly available in our GitHub repository (https://github.com/
ficht74/Formula2Text, accessed on 21 January 2024). Formula2Text is based on the ex-
isting dataset IM2LATEX-230K [8], which we reduced, cleaned, and augmented with
English transcriptions.

Consequently, our contributions are as follows:

• We are the first to tackle the problem of transcribing images of mathematical formulas.
• We created a benchmark dataset for this task: Formula2Text.
• We investigated state-of-the-art MER, NLP, and VL models for this task.
• We share our code and dataset with the research community in our GitHub repository.

In the next section, we will describe the challenges in the process of the transcription
of mathematical formulas. We will provide an overview of related work in Section 3.
In Section 4, we will present our experimental setup. Our experiments and results will be
described in Section 5. In Sections 6 and 7, we will conclude our work and indicate possible
future steps.

2. Challenges in Reading and Transcribing Mathematical Formulas

Ref. [9] explains that the challenges in reading mathematical formulas lie fundamentally
in the use of complex structures, symbols, numbers, relational signs, and different notations.

Figure 2 illustrates the five main challenges a human has to deal with when reading a
mathematical formula. These are the same challenges our machine learning models have to
deal with in order to retrieve the transcription of the formula. The challenges are as follows:

1. Retrieve the principal symbols (e.g., σ, =, √, —, ∑), even those that are not displayed
(e.g., multiplier ·).

2. For each principal symbol, find the corresponding sub-symbols that deliver additional
information (e.g., 1

n , ∑n
i=1, (xi − µ)2).

3. A symbol may have several semantics in different positions, resulting in various
possible transcriptions. For each symbol and its corresponding sub-symbol, find the
correct transcription (e.g., “one divided by n” vs. “one over n”, “sum of ”vs. “sum from”).

4. Find the correct order for the individual transcriptions (e.g., “the sum from i is one to
n of xi minus mu” vs. “the sum of xi minus mu from i is one to n”).

5. Retrieve a complete transcription that covers the whole formula, “sigma is equal to the
square root of one divided by n times the sum from i equals one to n of xi minus mu squared”).

https://github.com/ficht74/Formula2Text
https://github.com/ficht74/Formula2Text
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Figure 2. Challenges in reading and transcribing a mathematical formula.

In the automatic transcription of mathematical formulas, challenge 1 and challenge 2 are
usually handled using MER models, which convert the image of the formula into LaTeX
code [2–6]. As demonstrated in Figure 3, LaTeX code usually contains commands such as
\lim, \sum, and \frac. These commands still have to be converted into natural language.
NLP models have the potential to perform this conversion.

Figure 3. Example of a mathematical formula in LaTeX code.

Alternatively, VL models may be able to deal with challenge 1—5 as they connect
vision and language in a generative way. Therefore, these models support tasks such
as image captioning, which translates an input image into a textual description [10,11].
Consequently, we investigate VL models’ potential for the transcription of mathematical
formulas in images.

3. Related Work

In this section, we will first describe approaches to convert images of formulas into
LaTeX code with the help of MER. Then, we will present approaches of related work that
has the potential to transcribe LaTeX code automatically. Finally, we will present how other
researchers leverage VL models for different tasks.

3.1. Mathematical Expression Recognition

OCR, i.e., the transcription of normal printed texts in documents and videos, has
been extensively studied, e.g., [12,13]. However, conventional OCR systems are not able
to process mathematical expressions in documents or images due to the formulas’ spe-
cial structure, symbols and the position of the formulas’ elements [14]. Therefore, as
demonstrated in Figure 4, a specialized mathematical OCR system—called mathematical
expression recognition (MER) in literature—is required to convert mathematical content
into markup languages such as LaTeX [14].
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Figure 4. Mathematical expression recognition for LaTeX generation.

In recent years, these systems have evolved rapidly through deep learning. Usu-
ally, transformer-based approaches [2–4] have proven to outperform traditional statistical
models [15,16] and convolutional neural networks [5,6,17–19]. These neural networks are
able to learn and recognize intricate patterns and features within images automatically,
making them particularly well-suited for accurately extracting text with subscripts such as
mathematical formulas from scanned documents or images [20].

3.2. Natural Language Processing Models

To the best of our knowledge, there is no publication that specifically addresses the
creation of transcriptions from LaTeX code. Consequently, assuming that state-of-the-
art NLP models can create a transcription from LaTeX code, as shown in Figure 5, we
particularly explored approaches that tackle similar tasks, such as generative AI and
machine translation.

Figure 5. Transcription of LaTeX code.

According to the website of OpenAI [21,22], ChatGPT in version 3.5 is capable of
solving natural language math problems, known as math word problems, and processing
mathematical expressions in LaTeX code. Related models are GPT-2 [23], GPT-3.5 Turbo,
and GPT-4 [24]. Concerning machine translation, as mentioned, there is no related work
that deals with LaTeX code. But, for the general task of machine translation, transformer-
based models give high performances, e.g., BART [25], T5 [26], and FLAN-T5 [27]. Ref. [28]
presents the PolyMath Translator, but this system is only able to translate the words in LaTeX
code from one language to another language.

Consequently, we investigated the generative AI models GPT-2 [23], ChatGPT [21]
in version 3.5, GPT-3.5 Turbo, and GPT-4 [24] as well as the machine translation models
BART [25], T5 [26], and FLAN-T5 [27] for the task of creating transcriptions from LaTeX code.

3.3. Vision-Language Models

VL models, i.e., the combination of a computer vision model and language model,
receive more popularity since they improve pure computer vision tasks and help to deal
with tasks that require information from both vision data and language data [29]. As
shown in Figure 6, we investigated the potential of VL models for our task of creating
transcriptions from formula images.

Figure 6. Generation of transcriptions.

To the best of our knowledge, there is no publication that describes the direct tran-
scription of formulas in images with VL models. However, VL models are used to analyze
images and generate text that describes the images [30–32]. This specific task is referred
to as image captioning. There are also vision encoder–decoder models like SWIN-GPT-2
(https://huggingface.co/docs/transformers/main/en/model_doc/vision-encoder-decoder,
accessed on 21 January 2024), which consists of a vision transformer SWIN [33] as encoder
and GPT-2 [23] as decoder, but, in contrast to the VL models mentioned before, both

https://huggingface.co/docs/transformers/main/en/model_doc/vision-encoder-decoder
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parts work independently of each other. VL models that demonstrate the highest perfor-
mances in image captioning are BLIP [34] and GIT [35]. TrOCR [36] outperforms the best
state-of-the-art models in recognizing printed and handwritten text and supports image
captioning too. Consequently, we analyzed the VL models BLIP [34], GIT [35], TrOCR [36],
and SWIN-GTP-2 [33,37] for the task of creating transcriptions from LaTeX code.

4. Experimental Setup

In this section, we will first describe our dataset Formula2Text. Then, we will present
the MER, NLP, and VL models that we investigated for the transcription of mathematical
formulas in images.

4.1. Our Formula2Text Dataset

As there was no pre-existing dataset encompassing the entire pipeline from the input
image of the formula to the ultimate transcription output, we developed a new dataset
named Formula2Text, which is publicly accessible on our GitHub repository. The final
Formula2Text dataset contains 721 mathematical formula images, corresponding LaTeX
codes, and 5 transcriptions for each image, resulting in a total of 3605 transcriptions. Our
goal was to build a small, manageable, high-quality dataset. Consequently, we firstly ex-
tracted images and corresponding LaTeX codes from the IM2LATEX-230K dataset [8],
where the LaTeX code contains less than 70 characters, no matrices, no multiple lines,
and no systems of equations. Then, we generated the corresponding transcriptions in a
semi-automatic way. First, we had ChatGPT create initial transcriptions from the LaTeX
code. Then, we corrected, cleaned, and normalized the remaining transcriptions, based on
our education in higher mathematics. For our experiments, we used 80% of Formula2Text
for training, 10% for validation, and 10% for testing. Figures 7 and 8 show a Formula2Text
entry and the corresponding formula.

Figure 7. Formula2Text entry with image name, LaTeX code, and transcriptions.

Figure 8. Formula image corresponding to Figure 7.

Figure 7 demonstrates that the Formula2Text transcriptions may vary in terms of
prepositions (e.g., “negative one over two pi” vs. “negative of one over two pi.”), synonyms
(e.g., “times” vs. “multiplied by”), and verb choice (e.g., “equals” vs. “is” vs. “is equal to”). As
described in challenge 3 of Figure 2, the word order in transcribing mathematical formulas
may vary as well. Comparing the 5 reference transcriptions of each Formula2Text entry in
the whole dataset also confirms this variability. For example, in our test set, the average
TER of the 5 reference transcriptions for each formula is 45.34%, with a variance of 14.03%,
indicating strong differences in the valid transcriptions for each formula.

Looking into the LaTex codes of our dataset also reveals big differences. Figure 9
displays the distribution of the LaTeX code lengths in Formula2Text in terms of number of
characters. We see that most entries have LaTeX code between 40 and 70 characters, and
the average LaTeX code length consists of 53.2 characters.
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Figure 9. Distribution of the LaTeX code lengths (number of characters).

4.2. Mathematical Expression Recognition Models

To convert formula images into LaTeX code, we analyzed the MER model LaTeX-OCR [38],
as well as the OCR model TrOCR [36], which outperforms other state-of-the-art OCR models [36]
and thus has a high potential to be used for MER.

4.2.1. LaTeX-OCR

LaTeX-OCR (https://github.com/lukas-blecher/LaTeX-OCR, accessed on 21 January 2024),
also known as pix2tex, is a transformer-based model that generates LaTeX code from im-
ages of mathematical formulas [38]. The model uses a pre-trained vision transformer
encoder [39] with a ResNet backbone and a transformer decoder [40] trained on the
IM2LATEX-100K [5] and CROHME [41] datasets. [38] reported a BLEU score of 88%
on the corresponding test set. An important part of the model is an additional neural
network that predicts the optimal resolution for the input image as a pre-processing step.

4.2.2. TrOCR

Compared with LaTeX-OCR, transformer-based optical character recognition (TrOCR)
(https://huggingface.co/microsoft/trocr-base-printed, accessed on 21 January 2024) [36] is
not an exclusive MER model. TrOCR is a pure text recognizer based on the encoder–decoder
transformer technology of [40]. The architecture includes both a pre-trained image trans-
former, BEiT [42], for extracting visual features and a text transformer, robustly optimized
BERT pretraining approach (RoBERTa) [43], for language modeling. This model outperforms
the best state-of-the-art models in recognizing printed and handwritten text [36].

4.3. Natural Language Processing Models

As there is no model explicitly developed for the generation of transcriptions from
LaTeX code, we investigated NLP models that support the tasks of machine translation or
text generation.

4.3.1. T5

Text-to-text transfer transformer (T5) was developed by [26] and has a text-to-text archi-
tecture based on the standard encoder–decoder transformer framework from [40]. T5 allows
different NLP tasks such as question answering, machine translation, text classification
and summarization, to be handled with the same model, with the same hyperparameters
and the same loss function [26]. Therefore, the model requires the name of the NLP task,
e.g., “translate English to German”, as prefix in addition to the text to process. For our experi-

https://github.com/lukas-blecher/LaTeX-OCR
https://huggingface.co/microsoft/trocr-base-printed


Appl. Sci. 2024, 14, 1140 7 of 16

ments, we trained T5-Base (https://huggingface.co/t5-base, accessed on 21 January 2024)
to execute the new task “translate LaTeX to Text”.

4.3.2. FLAN-T5

Fine-tuning Language Net-T5 (FLAN-T5) [27] is a further development of T5 that
leverages more parameters and an enhanced fine-tuning method. The model shows bet-
ter performance on various benchmark tests compared with previous models [27]. For
our experiments, we trained FLAN-T5-Base (https://huggingface.co/google/flan-t5-base,
accessed on 21 January 2024) to execute the new task “translate LaTeX to Text” in the same
way we trained T5.

4.3.3. BART

Bidirectional and Auto-Regressive Transformer (BART) [25] achieves state-of-the-art re-
sults in natural language tasks such as text classification, machine translation, text gen-
eration, summarizing, and text reasoning. It combines a modified Bidirectional Encoder
Representations from Transformers (BERT) [44] as the bidirectional encoder and a modified
version of GPT [23] as the autoregressive decoder. For our experiments, we used BART-Base
(https://huggingface.co/facebook/bart-base, accessed on 21 January 2024).

4.3.4. GPT-2

GPT-2 [23] is a further development of the first generative pre-trained transformers (GPT)
language model. The model is able to generate new text from the initial text input. We
analyzed GPT-2, as it can be fine-tuned, which was not possible for newer GPT versions at
the time of our analyses between mid March and mid August 2023. For our experiments, we
used GPT-2-Medium (https://huggingface.co/GPT-2-medium, accessed on 21 January 2024).

4.3.5. ChatGPT

ChatGPT is also built on the GPT language model and was fine-tuned using reinforcement
learning with human feedback, enabling it to grasp the meaning and intention behind user
queries and provide relevant and helpful responses [21]. Although the exact amount of
training data for ChatGPT has not been published, the previous GPT-3 model had 175 billion
parameters and was trained with 499 billion crawled text tokens, which is substantially
larger than other language models [45] like BERT [44], RoBERTa [43], or T5 [26]. We experi-
mented with the ChatGPT versions text-davinci-003, GPT-3.5-turbo, and GPT-4 between mid
March and mid August 2023.

4.4. Vision-Language Models

To investigate the complete pipeline from formula images to the transcriptions, we
analyzed the VL models BLIP [33], GIT [35], and SWIN-GPT-2 [23,33], as they achieve high
performances in image captioning and cover different state-of-the-art vision encoders and
text decoders. TrOCR [36], which we described as the MER model in Section 3.1, can also
be categorized as a VL model. Consequently, for TrOCR, we analyzed the conversion of
formula images to the transcriptions in addition to the conversion of formula images to
LaTeX code.

4.4.1. BLIP

Bootstrapping Language-Image Pre-training for unified vision-language understanding and
generation (BLIP)’s [34] architecture consists of a multimodal mixture of encoder–decoder.
ViT (Vision Transformer) [39] is used as the image encoder and BERT [44] as the text de-
coder. BLIP supports downstream tasks such as image-text retrieval, image captioning,
visual question answering, natural language visual reasoning, visual dialog, and zero-
shot transfer to video language tasks. In these tasks, it shows outstanding performance
compared with other state-of-the-art approaches [34]. We experimented with BLIP-Base
(https://huggingface.co/Salesforce/blip-image-captioning-base, accessed on 21 January 2024).

https://huggingface.co/t5-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/GPT-2-medium
https://huggingface.co/Salesforce/blip-image-captioning-base
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4.4.2. GIT

Generative image-to-text transformer (GIT) [35] combines the image encoder CLIP/ViT-L/14 [46]
and the text decoder BERT [44] in its GIT-Large (https://huggingface.co/microsoft/git-large-
textcaps, accessed on 21 January 2024) version that we used for our experiments. GIT achieves
excellent performance in image/video captioning and question answering tasks on various
benchmarks, surpassing human performance on the TextCaps corpus [47] for the first time [35].

4.4.3. SWIN-GPT-2

Finally, we combined the state-of-art SWIN Transformer and GPT-2 [23] in a VL
model leveraging the Hugging Face Transformer library (https://huggingface.co/docs/
transformers/main/en/model_doc/vision-encoder-decoder, accessed on 21 January 2024).
For this, we used the SWIN-Base Transformer (https://huggingface.co/microsoft/swin-
base-patch4-window7-224-in22kr, accessed on 21 January 2024) [33] as a vision encoder
to analyze the formula image and generate the image embeddings. As a decoder, we em-
ployed GPT-2 (https://huggingface.co/GPT-2-medium, accessed on 21 January 2024) [23]
to generate the transcription of the formula image.

4.5. Evaluation Metric

As the translation error rate (TER) [48] (also named translation edit rate in literature) has
higher correlations with human judgments than BLEU [49], we used it for our evaluation.
The following equation shows the calculation of TER:

TER =
# of edits

average # of reference words
(1)

TER is characterized as the smallest number of edits required to transform a hypothesis
into an exact match with one of the references [48]. This value is then normalized by the
average length of the references. Potential edits encompass the insertion, deletion, and
substitution of individual words, along with rearrangements of word sequences. As
suggested by [48], for each hypothesis, we calculate the number of edits for all 5 references
and report the optimal (lowest) TER in Section 5.

4.6. Computational Environment for Our Experiments

To perform our experiments as quickly as possible, we ran them in a Google Colab
Pro environment (https://colab.research.google.com, accessed on 21 January 2024) with
Expanded Random Access Memory and A100 Nvidia GPU enabled.

5. Results

In this section, we will present and illustrate the results of the experiments on our
Formula2Text test set. The test set consists of 80 formula images with associated LaTeX
code and five English reference transcriptions. The figures in Section 5 show the average
TER (https://huggingface.co/spaces/evaluate-metric/ter, accessed on 21 January 2024)
score for the entire test set. This means that, in the following figures, the better systems are
represented by lower numbers.

Many pre-trained models are already good at several tasks. Consequently, in addition
to evaluating the performance of the models fine-tuned on our validation set, our goal was
to analyze the performance when no validation set was available for fine-tuning. Therefore,
in the figures and tables of this section, we will present the TERs of the pre-trained models
without fine-tuning, in addition to the TERs of the fine-tuned models, and report the impact
of fine-tuning.

5.1. Mathematical Expression Recognition Models

To convert formula images into LaTeX code, we evaluated the MER models LaTeX-OCR [38]
and TrOCR [36] by comparing their resulting LaTeX codes with the LaTeX codes in the references
of the Formula2Text test set.

https://huggingface.co/microsoft/git-large-textcaps
https://huggingface.co/microsoft/git-large-textcaps
https://huggingface.co/docs/transformers/main/en/model_doc/vision-encoder-decoder
https://huggingface.co/docs/transformers/main/en/model_doc/vision-encoder-decoder
https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22kr
https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22kr
https://huggingface.co/GPT-2-medium
https://colab.research.google.com
https://huggingface.co/spaces/evaluate-metric/ter
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Figure 10 visualizes the performances of the analyzed MER models in terms of TER.
The blue bars show the performances of the original pre-trained models. The green
bars represent the performances of the models that we fine-tuned using the Formula2Text
validation set. We observe that the fine-tuned LaTeX-OCR achieves, with 23.45%, a notably
lower TER compared with the fine-tuned TrOCR’s TER of 27.71%, which is 18.16% relative.

Figure 10. Results of the mathematical expression recognition models.

Table 1 shows the relative improvements with the fine-tuning. We see that the fine-
tuning had a significantly higher effect on TrOCR, which is explained by the fact that
LaTeX-OCR had already been trained with printed and handwritten formula images. The
fine-tuning process resulted in a substantial relative improvement of 202.24% for TrOCR
and only in a relative improvement of 5.97% for LaTeX-OCR.

Table 1. Impact of fine-tuning the mathematical expression recognition models.

Model TER [%] TER [%] ∆ Improvement [%]
Pre-Trained Fine-Tuned Relative

TrOCR-Base 83.75 27.71 +202.24
LaTeX-OCR 24.85 23.45 +5.97

5.2. Natural Language Processing Models

To create transcriptions from LaTeX codes, we evaluated seven NLP models plus the on-
line service MathJAX (https://mathjax.github.io/MathJax-demos-web/speech-generator/
convert-with-speech.html, accessed on 21 January 2024) by comparing their resulting tran-
scriptions with the transcriptions in the references of the Formula2Text test set. Figure 11
visualizes the performances of the analyzed NLP models in terms of TER. The blue bars
display again the performances of the original pre-trained models. The green bars show
the performances of the models that we fine-tuned using the Formula2Text validation set.
Fine-tuning was not possible for ChatGPT, GPT-3.5 Turbo, GPT-4, and MathJAX at the time
of our experiments from mid March to mid August 2023.

We see that the fine-tuned versions of T5-Base (34.95%), BART-Base (35.44%), and
FLAN-T5-Base (35.60%) outperform the other models by far. However, their original pre-
trained versions are significantly worse, in the range of 54.44–56.94%. ChatGPT achieves
39.95% TER, GPT-3.5 Turbo 43.28%, and GPT-4 46.01%. Worst performances are obtained by
MathJAX (56.59%) and GPT-2-Medium (76.69). The fine-tuned model of GPT-2-Medium has
a TER of 63.59%, while its original pre-trained version achieves a TER of 76.69%.

https://mathjax.github.io/MathJax-demos-web/speech-generator/convert-with-speech.html
https://mathjax.github.io/MathJax-demos-web/speech-generator/convert-with-speech.html
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Figure 11. Results of the NLP models.

Table 2 demonstrates the impact of fine-tuning the NLP models. We see that fine-
tuning with our validation set helps to achieve relatively lower TERs between 20.60% and
even 62.44%. We assume that these differences between the pre-trained and the fine-tuned
versions have to do with the fact that the training data of the pre-trained models contained
few or no data for the generation of transcriptions from LaTex code.

Table 2. Impact of fine-tuning the NLP models.

Model TER [%] TER [%] ∆ Improvement [%]
Pre-Trained Fine-Tuned Relative

T5-Base 54.44 34.95 +55.77
BART-Base 57.57 35.44 +62.44
FLAN-T5-Base 56.94 35.60 +59.94
ChatGPT 39.95 - -
GPT-3.5 Turbo 43.28 - -
GPT-4 46.01 - -
MathJAX 56.59 - -
GPT-2-Medium 76.69 63.59 +20.60

5.3. Vision-Language Models

To investigate the complete pipeline from formula images to the transcriptions, we
analyzed the VL models BLIP [34], GIT [35], SWIN-GPT-2 [23,33], and TrOCR [36] by
comparing their resulting transcriptions with the transcriptions in the references of the
Formula2Text test set.

Figure 12 displays the TERs of the analyzed VL models. The blue bars display again
the performances of the original pre-trained models. The green bars show the perfor-
mances of the models that we fine-tuned using the Formula2Text validation set. We observe
that the fine-tuned TrOCR-Base performs best with a TER of 42.09%, followed by the
fine-tuned BLIP-Base (52.18%). Our fine-tuned model SWIN-GPT only achieves a TER
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of 72.91%. GIT-Large shows the worst TERs, with 80.96% after fine-tuning and 82.29%
without fine-tuning.

Figure 12. Results of the VL models.

Table 3 gives an overview of the impact of fine-tuning the VL models. We see that
fine-tuning with our validation set results in relative improvements of between only 1.64%
(GIT-Large) and even 104.51% (TrOCR-Base). We assume that fine-tuning GIT-Large only had
such a small impact (+1.64%) since the VL model was pre-trained with datasets that had
a focus different from formula images [35] and the amount of samples in our validation
set was not sufficient to have a large impact on performance. In contrast, TrOCR-Base can
already perform the OCR task, i.e., was pre-trained with images containing text. Since the
difference between these training data and our formula images is not that big, TrOCR-Base
can easily learn the task and the impact of fine-tuning is very strong (+104.51%).

Table 3. Impact of fine-tuning the VL models.

Model TER [%] TER [%] ∆ Improvement [%]
Pre-Trained Fine-Tuned Relative

TrOCR-Base 86.08 42.09 +104.51
BLIP-Base 83.06 52.18 +59.18
SWIN-GPT-2 91.12 72.91 +24.98
GIT-Large 82.29 80.96 +1.64

5.4. Comparing the Combination of MER and NLP Models with Vision-Language Models

Figure 13 presents the TERs of the combinations of our MER models and our NLP
models in comparison with the TERs of our VL models. Our goal was to discover which
combination leads to the lowest TER for the complete pipeline of transcribing mathematical
formulas in images. In the case of the combination of MER and NLP models, an NLP
model receives as input the erroneous output of an MER model. The TER of the MER
model LaTex-OCR is 23.45% (Variant 1). The TER of the MER model TrOCR-Base is 27.71%
(Variant 2). The combinations of LaTex-OCR and the investigated NLP models are colored in
blue, while the combinations of TrOCR-Base and the investigated NLP models are colored
in purple. In the case of the VL models, there are no combinations with other models and
no intermediate steps that provide erroneous input.
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Figure 13. Comparing the combination of MER and NLP models with vision-language models.

We see in Figure 13 that the best six combinations of MER and NLP models achieve
TERs that are close to each other (36.14–40.97%). The combination of LaTeX-OCR and
BART-Base results in the lowest TER (36.14%), followed by the combination of LaTeX-OCR
and T5-Base (36.91%). However, our t-test demonstrates a non-statistically significant
performance difference between the combination of LaTeX-OCR and BART-Base (M = 36.14,
SD = 19.32) and the combination of LaTeX-OCR and T5-Base (M = 36.91, SD = 19.45), where
t(80) = 0.36 and p = 0.72 > 0.05. The third best system is the combination of LaTeX-OCR
and FLAN-T5-Base (38.10%). This is followed by the systems that combine BART-Base
(39.29%), T5-Base (40.06%), and FLAN-T5-Base (40.97%) with TrOCR. When combining the
MER models with the ChatGPT versions, the combination of LaTeX-OCR and ChatGPT
version text-davinci-003 (ChatGPT) performs best, with a TER of 44.40%.

The best VL model is TrOCR-Base, achieving a TER of 42.09%, which is 16.46% rela-
tively higher than the best system—the combination of LaTeX-OCR and BART-Base. Our
t-test demonstrates a statistically significant performance difference between the combi-
nation of LaTeX-OCR and BART-Base (M = 36.14, SD = 19.35) and TrOCR-Base (M = 42.09,
SD = 22.00), where t(80) = 2.10 and p = 0.04 < 0.05. However, TrOCR-Base outperforms
seven combinations of MER and NLP models. This demonstrates that a VL model is able
to achieve a decent result in the transcription of mathematical formulas in images. The
second best VL model is BLIP-Base, with a 52.18% TER. SWIN-GPT-2 achieves a TER of
72.91% and GIT-Large of 80.96%.

Comparing the runtimes of the best combination of MER model and NLP model to the
runtimes of the best VL model shows that the combination of LaTex-OCR (consisting of 25 M
parameters) and BART-Base (consisting of 239 M parameters) is on average almost four times
faster than TrOCR-Base (consisting of 385 M parameters): For transcribing one formula,
the combination of LaTex-OCR and BART-Base takes only 1.66 s in our Google Colab Pro
environment—LaTex-OCR takes 1.15 s and BART-Base 0.51 s. In contrast, TrOCR-Base needs
6.53 s. This shows that, to use our systems for real-time speech synthesis, the transcriptions
have to be generated in advance in order not to create a delay.

5.5. Quality of the Best System’s Transcriptions

To give the reader a better idea of the quality of the transcriptions, Table 4 shows the
transcriptions for three formulas with different TERs produced by the best system combi-
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nation of LaTex-OCR and BART-Base. The differences between the system combination’s
transcription and the closed reference are indicated in bold.

Table 4. Quality of the best system’s transcriptions.

Formula Image Closest Reference Transcription TER [%]

sigma is mapped to sigma
divided by the square root
of xi

sigma is equal to sigma
divided by the square root
of xi

8.33%

the absolute value of z
squared is much less than
l squared, which is much
less than tilde l squared

z squared is much less
than l squared, which is
much more than tilde l
squared

25.00%

two divided by t h is
equal to one divided by t l
plus one over t r

two divided by t to the h
power is equal to one
divided by the quotient
of t times l plus one over t
times r

44.44%

As shown in Table 4, the quality of the best resulting transcriptions demonstrates that
most principal symbols are correctly transcribed (e.g., —, =, √, +). However, principal sym-
bols that do not appear so frequently in formulas pose difficulties (e.g., →, |, ≪). In longer
formulas, simple sub-symbols are not always recognized correctly (e.g., TH , TL, TR). How-
ever, the order of the words is correct and the structure of the formula is correctly represented.

6. Conclusions

In this paper, we presented our investigation of state-of-the-art models for transcribing
printed mathematical formulas from images into spoken English text. This task holds
particular relevance for the digital processing and comprehensibility of mathematical
content. Our focus encompassed two approaches: (1) The integration of MER models and
NLP models to convert formula images initially into LaTeX code and then into text, and
(2) the direct conversion of formula images into text using VL models. Since no suitable
dataset could be identified that contained both printed mathematical formulas and the
corresponding transcriptions, we created the new dataset Formula2Text to fine-tune and
evaluate our systems. The best performance was achieved using the combination of the
MER model LaTeX-OCR and the NLP model BART-Base. This combination achieved a TER
of 36.14%. The best VL model TrOCR obtained a TER of 42.09%, resulting in a relative
difference of 16.46% compared with the best model combination. Our work shows that
decent results can be achieved even with a comparatively small dataset. It also demonstrates
that VL models, which are primarily used for common image captioning tasks, have great
potential for transcribing mathematical formulas in images—particularly since TrOCR was
able to outperform seven combinations of MER and NLP models, which represent 50% of
the tested systems.

7. Future Work

Our Formula2Text dataset could be expanded to include longer, more complex, and
handwritten formulas. Moreover, transcriptions in other languages may be included. Due
to our limited computational resources, we did not always analyze the model versions
with the highest number of parameters in our experiments. Consequently, future work
may include the evaluation of further models. But, since we have seen that the runtime
for generating transcriptions from formulas on images with deep learning models is
relatively long, it should also include applying methods that speed up the execution time
of the models, such as pruning, layer fusion, or knowledge distillation. Additionally, it
is interesting to combine our systems for the transcription of mathematical formulas in
images with speech synthesis and information extraction systems.
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