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Abstract: Psoriasis is a chronic autoimmune skin disorder characterized by the rapid overproduction
of skin cells, resulting in the formation of red, inflamed, and scaly patches or plaques on the skin.
Dithranol, also known as anthralin, is a very effective topical medication used in the treatment of
psoriasis, with several shortcomings like photo-instability; staining skin, clothing, and bedding;
and causing skin irritation. Antiproliferative dithranol is frequently used in combination therapy
with keratolytic salicylic acid. We have therefore proposed a novel topical antipsoriatic prodrug
comprising dithranol and salicylic acid joined together with an ester bond, specifically 8-hydroxy-
9-oxo-9,10-dihydroanthracen-1-yl-2-hydroxybenzoate. An ester bond is cleavable by endogenous
esterase hydrolyzing this bond and releasing dithranol and salicylic acid in a 1:1 stoichiometric
ratio. We performed an exhaustive theoretical analysis of this molecule using the reliable compu-
tational methods of quantum chemistry and ADME in silico studies to investigate its biological
and pharmacokinetic activities. We found its molecular structure, vibrational spectra, molecular
orbitals, MEP (molecular electric potential), UV-VIS spectra, and TDOS (total density of states), and
we performed an RDG (reduced density gradient) analysis. The obtained results may be useful
for the understanding of its properties, which may assist in the synthesis and further experimental
study of this possible antipsoriatic dual-action prodrug with reduced adverse effects and enhanced
therapeutic efficacy.

Keywords: psoriasis; dithranol; salicylic acid; ester bond; prodrug; quantum chemistry;
molecular structure

1. Introduction

Psoriasis is a multifactorial immune-mediated systemic disease with a number of
comorbidities [1–8]. The exact cause of psoriasis, which affects about 150 million people
worldwide, is not fully understood. The genetic component plays an important role. Its
heredity component is polygenic or multifactorial. The disposition to the disease (psoriatic
diathesis, latent psoriasis) is inherited, not the disease itself.

Due to its relatively high prevalence in the population, its chronic course, and the sig-
nificant percentage of severe forms, it is one of the most pharmacoeconomically demanding
diseases.

The key features of psoriasis are

1. Red patches: the affected areas of the skin are red and inflamed.
2. Silvery scales: overlying the red patches, there are often silvery or white scales.
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3. Itching and discomfort: psoriasis plaques can be itchy, and the skin may feel sore
or painful.

4. Nail changes: psoriasis can also affect the nails, causing changes such as pitting,
discoloration, and separation from the nail bed.

Psoriasis therapeutic modes include:

1. Topical treatments: these include corticosteroid creams, vitamin D analogues, retinoids,
dithranol, coal tar, and moisturizers.

2. Phototherapy: exposure to ultraviolet light can be beneficial for some individuals
with psoriasis.

3. Systemic medications: In cases of moderate-to-severe psoriasis, oral or injectable
medications (e.g., methotrexate) can be used.

4. Biologics: these are a newer class of medications that target specific components of
the immune system involved in the development of psoriasis (e.g., IL 12/23 blocker–
ustekinumab and anti-IL-17–secukinumab).

The development of effective local treatments involves not only the discovery of new
therapeutic substances but also advancements in the formulation or preparation of these
substances [9–11].

One of the most successful drugs used in treatment of psoriasis is dithranol (Figure 1),
also called anthralin [12–19], routinely used since 1916 [18], but the antipsoriatic effect of
chrysarobin, the precursor of dithranol, a substance of plant origin, was described as early
as 1876 by Squire. Dithranol (DIT) inhibits the synthesis of DNA that hyperproliferates the
epidermis, adjusts the cycle of epidermal renewal, suppresses the production of products of
the arachidonic acid cascade, suppresses the penetration of neutrophils into the epidermis,
limits the activation of lymphocytes and the function of dendritic cells in target cells, acts
at the level of mitochondria, and thus has several desired effects precisely in the psoriatic
process [20]. The combination of dithranol with sub-erythemal doses of UVB (an amount
of UVB that is insufficient to cause erythema–skin reddening, which is a measure of the
amount of UVR that penetrates the skin without causing any visible damage) is the principle
of the so-called Ingram treatment. The manifestations are freed of scales, irradiated with
a UVB lamp, and then accurately treated with dithranol in a trap or ointment. Its initial
concentration is 0.1%, with a gradual increase in concentration to 4 percent if the skin’s
reaction allows. This procedure is repeated after 18 to 22 h. Most patients recover within
3 weeks [21,22].
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Unpleasant brown–violet coloration [23] and skin irritation due to the formation of 
dithranol metabolites such as danthron and bianthrone (Figure 2) at the application site 
formed upon the exposure of dithranol to atmospheric oxygen are the main reasons for 
its limited usage [24–28]. It cannot be applied to the area of the head and neck, the bends 
of large joints, or the external genitalia. 

  

Figure 1. Chemical structures of dithranol (1,8-dihydroxyanthracen-9(10H)-one) and chrysarobin
(1,8-dihydroxy-3-methylanthracen-9(10H)-one).

Unpleasant brown–violet coloration [23] and skin irritation due to the formation of
dithranol metabolites such as danthron and bianthrone (Figure 2) at the application site
formed upon the exposure of dithranol to atmospheric oxygen are the main reasons for its
limited usage [24–28]. It cannot be applied to the area of the head and neck, the bends of
large joints, or the external genitalia.
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Dithranol itself is derived from chrysarobin [29]; therefore, it is not surprising that 
some efforts have been directed towards the improvement of the therapeutic index of 
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effect of the drug would be at least theoretically reduced (Figure 3). 

  
10-Propionyl dithranol Amid-benzene-dithranol 

 

O

H
N

O

OH OH

NH2

 
Acetyl dithranol Amid-amino-dithranol 

Figure 3. Chemical modifications of dithranol, proposed as a possible new antipsoriatic drug. 

The ability of dithranol to induce keratinocyte differentiation was investigated and 
correlated with its potency to inhibit the proliferation of keratinocytes [34,35]. To deter-
mine the structural requirements for this effect, dithranol and 17 analogues or related an-
thracenones were examined for their ability to induce the formation of the cornified enve-
lope (a marker of terminal differentiation). Moreover, dithranol, dithranol dimer, and 
dithranol triacetate exhibited antiproliferative and antirespiratory activity at concentra-
tions required to induce keratinocyte differentiation, suggesting causality between these 
effects. In addition, cornified envelope formation was observed for several related anthra-
cenones at low concentrations. In general, compounds containing benzoyl substituents, 
independent of their position in the anthralin nucleus, were more potent than those with 
benzyl substituents. The basic principles include combined treatment. The idea is to in-
crease the efficiency and decrease the adverse effects of the treatment. This combination 
of drugs is not accidental but arises from pathogenesis diseases, where it is necessary to 

Figure 2. Chemical structures of main degradation products of dithranol: danthron
(1,8-dihydroxyanthracene-9,10-dione) and bianthrone (4,4′,5,5′-tetrahydroxy-[9,9′-bianthracene]-
10,10′(9H,9′H)-dione).

Dithranol itself is derived from chrysarobin [29]; therefore, it is not surprising that
some efforts have been directed towards the improvement of the therapeutic index of
dithranol by attempting to separate the beneficial effects from the side effects of the drug.
This has been realized by the development of new derivates [30–33], where the staining
effect of the drug would be at least theoretically reduced (Figure 3).
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The ability of dithranol to induce keratinocyte differentiation was investigated and
correlated with its potency to inhibit the proliferation of keratinocytes [34,35]. To deter-
mine the structural requirements for this effect, dithranol and 17 analogues or related
anthracenones were examined for their ability to induce the formation of the cornified
envelope (a marker of terminal differentiation). Moreover, dithranol, dithranol dimer, and
dithranol triacetate exhibited antiproliferative and antirespiratory activity at concentra-
tions required to induce keratinocyte differentiation, suggesting causality between these
effects. In addition, cornified envelope formation was observed for several related anthra-
cenones at low concentrations. In general, compounds containing benzoyl substituents,
independent of their position in the anthralin nucleus, were more potent than those with
benzyl substituents. The basic principles include combined treatment. The idea is to
increase the efficiency and decrease the adverse effects of the treatment. This combination
of drugs is not accidental but arises from pathogenesis diseases, where it is necessary to
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suppress both immunopathological inflammation and, on the other hand, a disorder of
differentiation and apoptosis. In most therapeutic regimes, dithranol is combined with
salicylic acid [17,28]. Salicylic acid is an important ingredient in many skin products that
treat acne, psoriasis, corns, keratosis pilaris, and warts, utilizing its keratolytic, analgesic,
antibacterial, and anti-inflammatory properties [36]. It is advantageous if combination
therapy can be administered in the form of a prodrug, where two drugs working against
the same condition are joined by a cleavable covalent bond. Examples of prodrugs based
on the enzymatic hydrolysis of ester bond-activated drug release are rather common, e.g.,
procaine, simvastatin, and enalapril [37,38].

The dithranol hydroxyl –OH moiety and the complementary carboxylic group –COOH
group of salicylic acid (SAL) are optimal sites of ester bonds for synthesizing the prodrug
DIT-SAL, comprising dithranol and salicylic acid in a 1:1 stoichiometric ratio (Figure 4).
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Figure 4. Proposed structure of a novel antipsoriatic prodrug DIT-SAL (8-hydroxy-9-oxo-
9,10-dihydroanthracen-1-yl-2-hydroxybenzoate) formed by ester bond between dithranol and
salicylic acid.

Such a conjugation of DIT and SAL can lead to better skin absorption than for
original drugs, as has been demonstrated, e.g., for a naproxen–dithranol antipsoriatic
prodrug [39,40], as well as for a hydroquinone–salicylic acid prodrug [41] for the treatment
of melasma.

The aim of this work is to find the molecular structure, vibrational spectra, molecular
orbitals, MEP (molecular electric potential), UV-VIS spectra, TDOS (total density of states),
RDG (reduced density gradient) analysis, and ADME in silico modelling of the DIT-SAL
molecule by using reliable computational methods of quantum chemistry.

2. Computational Methods

The calculations in this study were performed using the following theoretical methods
or programs:

Density functional theory (DFT) is a quantum mechanical modelling method used to
study the electronic structure of molecules and solids. It provides a way to calculate the
properties of a system based on the electron density distribution.

Time-dependent DFT (TDDFT) extends DFT to study electronic excitations, such
as those involved in optical and UV-VIS spectroscopy. It is particularly useful for the
calculation of UV-VIS spectra, providing information about electronic transitions between
molecular orbitals.

B3LYP Functional: Becke’s three-parameter hybrid exchange functional [42], combined
with the Lee–Yang–Parr gradient-corrected correlation, is a specific functional used in DFT
calculations. B3LYP is known for its good performance in predicting a wide range of
molecular properties.

The 6-311++G(d,p) basis set is a set of mathematical functions used to approximate
the wavefunctions of electrons in a molecule. In this case, the 6-311++G(d,p) basis set is
employed, which is relatively large and versatile.
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The Gaussian 09 [43] program is a widely used computational chemistry software suite.
In this study, this program was employed to perform the DFT and TDDFT calculations.
The results were visualized using the GaussView 3 molecular visualization package [44].

Calculating vibrational frequencies helps confirm the stability of the molecular ge-
ometries. Imaginary frequencies indicate unstable structures. The absence of imaginary
frequencies suggests that the computed geometries correspond to energy minima.

Multiwfn ver. 3.7 [45] is a program designed for analyzing wavefunction properties.
In this study, the characteristics of the calculated wavefunction were studied with tools like
the reduced density gradient (RDG) and total density of states (TDOS) methods.

The in silico modelling of the drug’s pharmacokinetic profile, including toxicity
(ADME), was performed using the SwissADME [46] and ADMETlab 2.0 [47] free online
web platforms.

As has already been shown for many molecules [48–54], these theoretical methods are
very reliable, giving theoretical results which are in harmony with experiments.

3. Results and Discussion
3.1. Molecular Structure of DIT-SAL

The optimized molecular geometry of DIT-SAL is displayed in Figure 5. The optimized
bond lengths were determined using the DFT/B3LYP method with the 6-311++G(d,p) basis
set. Naturally, for this new compound, there are no existing data on its structure. We
have therefore been restricted to comparing it with dithranol and salicylic acid, which are
structurally similar to the two parts of DIT-SAL joined by an ester bond and for which
there are data available both from experiments [55] as well as from quantum chemistry
computation [56–62] (Figures 6 and 7); for example, the calculated length of the two
hydrogen bonds in dithranol is in very good agreement with the experimental value
(1.69 Å versus experimental 1.60 Å). Also, the experimental length of the C=O bond
(1.26 Å) is almost identical to the theoretical value (1.25 Å). Good agreement between
theoretical and experimental values has also been obtained for salicylic acid, and it can
therefore be expected that the theoretical values of the structural parameters for DIT-SAL
are also reliable and would be useful for further research and the synthesis of this proposed
antipsoriatic drug.
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Figure 7. Molecular structure of salicylic acid optimized with B3LYP/6-311++G(d,p).

The values of some of the calculated properties of SAL-DIT’s structure (dipole moment
value, entropy, SCF energy, etc.) are shown in Table 1. The orientation of the dipole moment
is shown in Figure 8.

Table 1. Properties of SAL-DIT’s structure obtained using the DFT method.

Dipole Moment = (3.2541, 3.1276, −1.6948) 4.8211 D
Entropy = 148.643 cal/mol.K
Heat Capacity = 79.744 cal/mol.K
Molecular Mass = 346.08412
SCF Energy = −743680.78 kcal/mol
Thermodynamic Energy = 202.013 kcal/mol
Zero-Point Energy = 189.608733 kcal/mol
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All the proposed optimized geometries were confirmed to correspond to equilib-
rium structures through a vibrational analysis, without imaginary normal modes. These
frequency calculations also provided us with the predicted IR vibrational spectra (Figure 9).
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3.2. Frontier Molecular Orbitals

The quantum chemical calculation results in a set of molecular orbitals for the molecule
under consideration. These orbitals represent the spatial distribution of electrons within
the molecule. Frontier molecular orbitals (FMOs) are of particular interest from a chemical
perspective because they play a crucial role in various chemical reactions and the properties
of the molecules [63].

The HOMO (Highest Occupied Molecular Orbital) is the molecular orbital with the
highest energy level that is occupied by electrons. It represents the outermost electrons in a
molecule and is involved in electron donation during chemical reactions.

The LUMO (Lowest Unoccupied Molecular Orbital) is the molecular orbital with
the lowest energy level that is unoccupied. It represents an area where electrons can be
accepted during chemical reactions.

The HOMO and LUMO are often considered the most important molecular orbitals
because they influence the reactivity and properties of a molecule. For example: The
HOMO influences electron-donating abilities, nucleophilic reactions, and interactions with
electron acceptors. The LUMO influences electron-accepting abilities, electrophilic reac-
tions, and interactions with electron donors. Understanding the FMOs helps predict and
interpret various chemical phenomena, such as reaction mechanisms, molecular stability,
and electronic transitions.

In summary, the quantum chemical calculation of molecules provides information
about their molecular orbitals. A decrease in the HOMO–LUMO energy gap (Equation (1))
signifies a possible charge transfer interaction taking place within a molecule because of the
strong electron-accepting ability of the electron acceptor groups. Approximate ionization
energy (IE) and electron affinity (EA) calculations (Equations (2) and (3)) based on these
ideas are known as the so-called Koopmans theorem. The HOMO and LUMO energies are
used to define the global chemical reactivity descriptors [64], where η denotes the global
chemical hardness (Equation (4)), ζ denotes the global chemical softness (Equation (5)), and
µ represents the electronic chemical potential (Equation (6)), which describes the charge
transfer within a system in its ground state. Compounds with greater values of chemical
potential are more reactive than those with small electronic chemical potentials. The global
electrophilicity index, ω (Equation (7)), is a concept used in theoretical chemistry to assess
the electrophilic character of a molecule or a chemical species. A higher electrophilicity
index indicates a higher tendency of a system to accept electrons and, therefore, a higher
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electrophilic character. This index is often used in the context of the Parr function [65],
which is part of the conceptual density functional theory (CDFT).

Eg = ELUMO − EHOMO (1)

EA = −ELUMO (2)

IP = −EHOMO (3)

η =
IP − EA

2
(4)

ζ =
2

IP − EA
(5)

µ = − IP + EA
2

(6)

ω =
µ2

2η
(7)

The HOMO and LUMO isosurface maps of DIT-SAL, and, for comparison, also
two constituent molecules, are presented in Figures 10–12. As can be seen from Figure 10,
the HOMO of DIT-SAL is distributed mostly on the salicylic acid part of the molecule, and
on the other hand, the LUMO is localized mostly on the dithranol fragment of DIT-SAL.
Interestingly, for HOMO-1, as well as for LUMO+1, this localization of the orbitals is
exchanged. The first FMO delocalized across the whole DIT-SAL molecule is HOMO-2.
The energy gap of DIT-SAL (Table 2) is 3.915 eV, almost the same as for dithranol (4.062 eV),
indicating that the SAL-DIT molecule is chemically stable and may be considered a strong
electrophile because its ω (4.772 eV) is substantially greater than 1.5 eV [66]. This finding is
also supported by its rather high chemical hardness, which was found to be 1.958 eV. Its
ionization potential value (6.280 eV) is higher than its electron affinity, which suggests the
higher electron donor than lower electron acceptor capabilities (2.365 eV) of DIT-SAL.

Table 2. FMO energies and global chemical reactivity descriptors.

Molecule Orbital Energy
(eV)

Energy
Gap
(Eg)
(eV)

Electron
Affinity

(EA)
(eV)

Ionization
Potential

(IP)
(eV)

Chemical
Hardness

(η)
(eV)

Chemical
Softness

(ζ)
(eV−1)

Chemical
Potential

(µ)
(eV)

Electrophile
(ω)

(eV)

SAL-DIT
EHOMO −6.280

3.915 2.365 6.280 1.958 0.511 −4.323 4.772
ELUMO −2.365

Dithranol
EHOMO −6.368

4.062 2.306 6.368 2.031 0.492 −4.337 4.631
ELUMO −2.306

Salicylic acid EHOMO −6.576
5.153 1.423 6.576 2.568 0.389 −4.000 3.115

ELUMO −1.423
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3.3. TDOS (Total Density of States) Calculation

The TDOS was simulated by convoluting molecular orbitals with Gaussian curves.
Convolution is a mathematical operation that combines two functions to produce a third one,
often representing some property of interest. Gaussian functions are often used in com-
putational chemistry and physics to represent distributions. In this context, it seems like
Gaussian curves are being used to smooth or broaden the individual molecular orbitals.
Gaussian curves with unit height typically mean that the area under each Gaussian curve
is normalized to one. This is a common practice to ensure that the convolution operation
does not alter the overall intensity or scale of the original molecular orbitals. Each discrete
vertical line in the simulated spectrum likely corresponds to a specific molecular orbital.
The position of these lines reflects the energy levels associated with each orbital. The
dashed line highlights the position of the HOMO (Figure 13). This is a key parameter
in understanding the electronic structure of the system [67]. The UV-VIS spectra for all
the studied molecules are shown in Figure 14. For the calculations, we used the TDDFT
method with the B3LYP/6-311++G(d,p) basis set. The most intensive peak in the DIT-SA
UV-VIS spectrum corresponds to a transition from HOMO-1 to LUMO+1.
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3.4. The Molecular Electrostatic Potential (MEP)

The MEP can be calculated using the following formula [66]:

V(r) = ∑
A

(
ZA

|RA − r| −
∫

ρ(r)dr′

r′ − r

)
where ZA denotes the charge of the nucleus A located in RA and ρ(r) is the density of electric
charge. It displays probable regions for the electrophilic interaction of charged reagents
with a given molecule [68,69]. The total electron density as well as the charge density of
DIT-SAL are shown in Figure 15.
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molecule. Positive and negative values are depicted in red and blue, respectively.

For the DIT-SAL molecule, the negative charges are mainly localized on the oxygen
atoms, which have a higher electronegativity value and consequently have a higher electron
density around them. The molecular electrostatic potential surface shows that the negative
potential site is around the electronegative oxygen atoms and the positive potential sites are
around the hydrogen and carbon atoms, as can also be seen from the distribution of charge.
A pronounced area with negative values of potential and charge density is around the ester
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bond, which may allow for the attack of polarized water (OH−. . .H+) on carbonyl oxygen,
leading to esterase-catalyzed DIT-SAL hydrolysis. Carboxyl esterases, acetylcholinesterases,
butyrylcholinesterases, paraoxonases, arylesterases, and biphenyl hydrolase-like protein
(BPHL) are examples of enzymes that are responsible for the hydrolytic bioactivation of
ester prodrugs.

3.5. Non-Covalent Interaction-Reduced Density Gradient (NCI-RDG)

We characterized the types of interactions occurring in the system using the non-
covalent interaction-reduced density gradient (NCI-RDG) approach. The NCI method
utilizes an RDG to visualize spatial interactions, where the RDG is a dimensionless quantity
derived from the electron density and its first derivative. The method was developed by
Johnson et al. [70], and the RDG is defined as follows:

RDG(r) =
1

2 3√3π2

|∇ρ(r)|
ρ(r)

4
3

(8)

The RDG was plotted against (sign λ2)ρ to generate an NCI-RDG scattered diagram.
The nature of the interaction can be predicted by the (sign λ2)ρ values (where λ2 is the
second eigenvalue of the Hessian electronic density matrix) as follows:

1. (sign λ2)ρ > 0: repulsive/steric effects;
2. (sign λ2)ρ < 0: attractive interactions (hydrogen bonding);
3. (sign λ2)ρ ≃ 0: van der Waals forces, which arise from overlapping electron clouds

and occur over larger distances. The colored RDG scatter plots in Figure 16 were
prepared using Multiwfn 3.7 software and plotted using Gnuplot version 5.4.
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From Figure 16, the importance of two strong intra-molecular hydrogen bonds for both
DIT-SAL and dithranol is clearly seen, which stabilize these molecules. What is interesting
is that salicylic acid is not stabilized by hydrogen bonding (as can also be seen from the
RDG plot), but when it is part of the DIT-SAL molecule, it participates in the formation of a
form of hydrogen-bond-mediated stabilization of the proposed drug.

3.6. UV-VIS Spectra of DIT-SAL Degradation Products

We also found that the possible degradation products of DIT-SAL (in analogy with
dithranol oxidation products [59], namely danthron-SAL (Figure 17)) have modified chro-
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mophores with a molar absorption coefficient of 4863 L mol−1 c−1 at 417 nm, as compared
with danthron’s molar absorption coefficient of 8200 L mol−1 c−1 at 425 nm (Figure 18),
which indicates that DIT-SAL’s degradation products would have reduced staining proper-
ties, which would possibly be another beneficiary effect of DIT-SAL.
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3.7. Structure of DIT-SAL in Dichloromethane

The polarized continuum model (PCM) is a theoretical approach used in computational
chemistry to include the effects of a solvent in the calculation of molecular properties. It is
particularly useful in studying the behavior of molecules in a solution. The PCM assumes
that the solvent can be treated as a continuous medium with a defined dielectric constant,
and it provides a way to incorporate the solvent environment into quantum mechanical
calculations. In Figure 19, we have, as an illustration, the calculated structure of DIT-SAL
in dichloromethane solvent. Comparing it with the in vacuo structure obtained at the same
computational level shown in Figure 5, we can see only small changes in the bond length;
nevertheless, in the future, it would be interesting to use the density functional developed
for the study of weak molecular interactions [71].
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Figure 19. Molecular structure of DIT-SAL in dichloromethane optimized with B3LYP/6-311++G(d,p)
using the PCM model.

3.8. ADME In Silico Modelling of DIT-SAL

ADME (absorption, distribution, metabolism, and excretion) properties play a crucial
role in determining the pharmacokinetics and bioavailability of a drug, using, e.g., Lip-
inski’s rule of five, which states a guideline to assess the drug-likeness of a compound
based on its physicochemical properties [72]. The bioavailability radar obtained using Swis-
sADME (Figure 20) is a picture of six physicochemical parameters, such as size, lipophilicity,
polarity, solubility, saturation, and flexibility. The middle pink hexagon shows the optimal
bioavailability zone for oral administration. Based on these calculations, the molecule of
interest, SAL-DIT, has good qualities, as shown in Supplementary Table S1, similar to those
of dithranol (Supplementary Table S2), obtained using ADMETLab 2.0.
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Figure 20. ADME radar structure (ideal values lie in pink area) for all three molecules stud-
ied (lipophilicity—LIPO; size as molecular weight—SIZE; polarity—POLAR (topological polar
surface area); insolubility in water—INSOLU; insaturation—INSATU; flexibility as per rotatable
bonds—FLEX).

For effective permeability, the optimal molecular weight is between 200 and 500 Da.
The total molecular weight of the DIT-SAL molecule is 346 Da, which is in the range needed
for optimal transport to the skin. The octanol–water partition coefficient (log P) found
for DIT-SAL is 4.58, as compared with 3.56 for dithranol. The conjugates with higher log
P values than the parent drugs indicate increased lipophilicity, while reduced aqueous
solubility is observed. The hydroxyl moiety in dithranol and salicylic acid molecules plays
a crucial role in aqueous solubility through hydrogen bonding. Esterification hinders this
hydrogen bonding process. This interference in hydrogen bonding is likely responsible
for the decreased solubility of prodrugs. Essentially, when esterification occurs, it disrupts
the ability of the drug molecules to form hydrogen bonds with water molecules, leading
to lower solubility in aqueous environments. This information can be valuable in under-
standing the physicochemical properties of drugs and their derivatives, which can impact
factors like absorption and bioavailability in pharmaceutical applications. The lipophilic
nature of the stratum corneum means that it has an affinity for lipid-soluble (lipophilic)
substances. Permeants that are more lipophilic tend to partition more easily from the
vehicle (the formulation applied to the skin) into the stratum corneum. This process is
crucial for enhanced skin absorption because lipophilic substances can penetrate the lipids
of the stratum corneum more readily. Once these lipophilic substances have penetrated the
stratum corneum, they may further pass through into the underlying layers of the epider-
mis. This enhanced absorption can lead to the formation of a cutaneous reservoir within
the whole skin, allowing for a sustained release of the substance over time. Hydrophilic
substances may have difficulty penetrating the skin and may require specific formulation
strategies to enhance their absorption.

3.9. Further Molecular Alternatives to DIT-SAL for Therapy of Psoriasis

There is also the possibility that two salicylic acid molecules could be conjugated to
dithranol for the preparation of a diester prodrug in a 1:2 stoichiometric ratio (Figure 21).

Another interesting possibility would be to use acetylsalicylic acid (ASA, aspirin)
instead of SAL for the construction of the dithranol–acetylsalicylic acid (DIT-ASA) prodrug
(Figure 22).

Aspirin, or acetylsalicylic acid, is a medication commonly used for its analgesic,
antipyretic, and anti-inflammatory properties. The ester bond in aspirin is formed between
the acetyl group and the hydroxyl group of salicylic acid. The chemical reaction involves the
acetylation of salicylic acid, resulting in the formation of aspirin and acetic acid (Figure 23).
The reaction is as follows:
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The specific ester bond in aspirin is between the oxygen atom of the hydroxyl group
in salicylic acid and the carbon atom of the carbonyl group in acetic anhydride [73]. This
ester linkage is what gives aspirin its chemical structure. The ester bond in aspirin is
important for its pharmacological activity. Once ingested, aspirin is broken down in the
body into salicylic acid, which exerts its therapeutic effects by inhibiting the action of
enzymes involved in inflammation and pain (cyclooxygenases). The acetylation of salicylic
acid improves the drug’s properties and is one of the first examples of prodrug formation.
It was introduced in 1897 when Felix Hoffmann modified the structure of salicylic acid and
obtained acetylsalicylic acid, making it more stable and reducing its irritant effects on the
gastrointestinal tract compared to salicylic acid alone [74]. We have two possibilities here:
the first is the hydrolysis of the ester bond, directly producing dithranol and ASA, or a
two-step process: first, the hydrolysis of ASA, giving us acetic acid and DIT-SAL, and then
the hydrolysis of a second ester bond, which would produce DIT and SAL. Another option
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would even be to join two molecules of ASA to DIT, as we considered for SAL molecules.
All these possibilities are challenging tasks, both in terms of theory and experiment.

4. Conclusions

In the present work, both structural and electronic properties, harmonic vibrational
frequencies, the MEP (molecular electric potential), UV-VIS spectra, the TDOS (total density
of states), and a RDG (reduced density gradient) analysis were analyzed theoretically
using the DFT/B3LYP/6–311++G(d,p) method for a newly proposed antipsoriatic pro-
drug comprising dithranol and salicylic acid (DIT-SAL) joined together with an ester bond
(8-hydroxy-9-oxo-9,10-dihydroanthracen-1-yl-2-hydroxybenzoate), as well as for its con-
stituents and degradation products. Generally, it can be said that experimental (where
available) and theoretical spectroscopic data are in harmony, and it can therefore be ex-
pected that the theoretical values of the structural parameters for DIT-SAL are reliable
and would be useful for understanding this proposed antipsoriatic drug. The ester bond
is cleavable by endogenous esterase hydrolyzing this bond and releasing dithranol and
salicylic acid in a 1:1 stoichiometric ratio directly into psoriatic plaques for a prolonged
period of time. Furthermore, the DIT-SAL molecule was evaluated for drug-likeness by
employing in silico ADME experiments, further supporting DIT-SAL’s usefulness. From the
computed UV-Vis spectra, it is very probable that DIT-SAL’s degradation products would
have reduced staining properties, which would be another beneficiary effect of DIT-SAL.
Our computational study may therefore be useful for the understanding of its properties,
which may assist in the synthesis and further experimental study of this proposed antipso-
riatic dual-action prodrug with reduced adverse effects and enhanced therapeutic efficacy.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app14031094/s1: Table S1: ADMET results for SAL-DIT; Table S2:
ADMET results for dithranol.

Author Contributions: Conceptualization, validation, formal analysis, methodology, investigation,
and data curation N.A., J.M., P.B., M.B. and M.Š.; writing—original draft preparation, N.A. and
J.M.; writing—review and editing, M.B., J.M., P.B. and M.Š. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Slovak Grant Agency VEGA project No. 1/0639/22.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kocaaga, A.; Kocaaga, M. Psoriasis: An Immunogenetic Perspective. Glob. Med. Genet. 2022, 9, 82–89. [CrossRef]
2. Šimaljaková, M.; Buchvald, D. Dermatovenereology; Comenius University Press: Bratislava, Slovakia, 2019.
3. Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J.N.W.N. Psoriasis. Lancet 2021, 397, 1301–1315. [CrossRef] [PubMed]
4. Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA

2020, 323, 1945–1960. [CrossRef] [PubMed]
5. Šimaljaková, M. Psoriasis—Etiopathogenesis, clinical picture and current therapy options. Dermatol. Prax 2008, 2, 50–55.
6. Ali, Z.; Robert Zibert, J.; Dahiya, P.; Bachdal Johansen, C.B.; Grønlund Holm, J.; Ravn Jørgensen, A.H.; Manole, J.; Suru, A.;

Egeberg, A.; Francis Thomsen, S.; et al. Mild-to-moderate severity of psoriasis may be assessed remotely based on photographs
and self-reported extent of skin involvement. JAAD Int. 2023, 11, 129–136. [CrossRef] [PubMed]

7. Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [CrossRef] [PubMed]
8. Guo, L.; Jin, H. Research progress of metabolomics in psoriasis. Chin. Med. J. 2023, 136, 1805–1816. [CrossRef] [PubMed]
9. Ahmad, M.Z.; Mohammed, A.A.; Algahtani, M.S.; Mishra, A.; Ahmad, J. Nanoscale Topical Pharmacotherapy in Management of

Psoriasis: Contemporary Research and Scope. J. Funct. Biomater. 2022, 14, 19. [CrossRef]

https://www.mdpi.com/article/10.3390/app14031094/s1
https://www.mdpi.com/article/10.3390/app14031094/s1
https://doi.org/10.1055/s-0042-1743259
https://doi.org/10.1016/S0140-6736(20)32549-6
https://www.ncbi.nlm.nih.gov/pubmed/33812489
https://doi.org/10.1001/jama.2020.4006
https://www.ncbi.nlm.nih.gov/pubmed/32427307
https://doi.org/10.1016/j.jdin.2023.02.004
https://www.ncbi.nlm.nih.gov/pubmed/37128265
https://doi.org/10.1016/S0140-6736(14)61909-7
https://www.ncbi.nlm.nih.gov/pubmed/26025581
https://doi.org/10.1097/CM9.0000000000002504
https://www.ncbi.nlm.nih.gov/pubmed/37106557
https://doi.org/10.3390/jfb14010019


Appl. Sci. 2024, 14, 1094 22 of 24

10. Babincová, N.; Jirsák, O.; Babincová, M.; Babinec, P.; Šimaljaková, M. Remote magnetically controlled drug release from
electrospun composite nanofibers: Design of a smart platform for therapy of psoriasis. Z. Naturforsch. 2020, 75, 587–591.
[CrossRef]

11. Andrýsková, N.; Sourivong, P.; Babincová, M.; Šimaljaková, M. Controlled Release of Tazarotene from Magnetically Responsive
Nanofiber Patch: Towards More Efficient Topical Therapy of Psoriasis. Appl. Sci. 2021, 11, 11022. [CrossRef]

12. Sehgal, V.N.; Verma, P.; Khurana, A. Anthralin/dithranol in dermatology. Int. J. Dermatol. 2014, 53, 449–460. [CrossRef]
13. Ashton, R.E.; Andre, P.; Lowe, N.J.; Whitefield, M. Anthralin: Historical and current perspectives. J. Am. Acad. Dermatol.

1983, 9, 173–192. [CrossRef]
14. Seville, R.H. Advances in the use of anthralin. J. Am. Acad. Dermatol. 1981, 5, 319–321. [CrossRef]
15. Kadian, V.; Kumar, S.; Saini, K.; Kakkar, V.; Rao, R. Dithranol: An Insight into its Novel Delivery Cargos for Psoriasis Management.

Curr. Drug. Res. Rev. 2020, 12, 82–96. [CrossRef] [PubMed]
16. Andrýsková, N.; Sourivong, P.; Babincová, M.; Babinec, P.; Šimaljaková, M. Electrospun PCL/PVA Coaxial Nanofibers with

Embedded Titanium Dioxide and Magnetic Nanoparticles for Stabilization and Controlled Release of Dithranol for Therapy of
Psoriasis. Magnetochemistry 2023, 9, 187. [CrossRef]

17. de Mare, S.; Calis, N.; den Hartog, G.; van Erp, P.E.; van de Kerkhof, P.C. The relevance of salicylic acid in the treatment of plaque
psoriasis with dithranol creams. Skin Pharmacol. 1988, 1, 259–264. [CrossRef] [PubMed]

18. van de Kerkhof, P.C.; van der Valk, P.G.; Swinkels, O.Q.; Kucharekova, M.; de Rie, M.A.; de Vries, H.J.; Damstra, R.; Oranje, A.P.;
de Waard-van der Spek, F.B.; van Neer, P.; et al. A comparison of twice-daily calcipotriol ointment with once-daily short-contact
dithranol cream therapy: A randomized controlled trial of supervised treatment of psoriasis vulgaris in a day-care setting. Br. J.
Dermatol. 2006, 155, 800–807. [CrossRef] [PubMed]

19. Unna, P.G. Cignolin als Heilmittel der Psoriasis. Dermatol. Wochenschr. 1916, 7, 150–163.
20. Benezeder, T.; Gehad, A.; Patra, V.; Clark, R.; Wolf, P. Induction of IL-1β and antimicrobial peptides as a potential mechanism for

topical dithranol. Exp. Dermatol. 2021, 30, 841–846. [CrossRef] [PubMed]
21. Behrangi, E.; Roohaninasab, M.; Sadeghzadeh-Bazargan, A.; Najar Nobari, N.; Ghassemi, M.; Seirafianpour, F.; Goodarzi, A.;

Dodangeh, M. A systematic review on the treatment of pediatric severe alopecia areata by topical immunotherapy or anthralin
(contact sensitization) or low-level light/laser therapy (LLLT): Focus on efficacy, safety, treatment duration, recurrence, and
follow-up based on clinical studies. J. Cosmet. Dermatol. 2022, 21, 2727–2741. [CrossRef] [PubMed]

22. Hindson, C.; Diffey, B.; Lawlor, F.; Downey, A. Dithranol-UV-A phototherapy (DUVA) for psoriasis: A treatment without
dressings. Br. J. Dermatol. 1983, 108, 457–460. [CrossRef] [PubMed]

23. Kussini, J.; Charalambous, A.; Sachsenweger, F.; Steinert, M. Successful removal of anthralin staining from facial skin. Int. J.
Dermatol. 2023, 62, 21–22. [CrossRef] [PubMed]

24. Thoma, K.; Holzmann, C. Photostability of dithranol. Eur. J. Pharm. Biopharm. 1998, 46, 201–208. [CrossRef]
25. Savian, A.L.; Rodrigues, D.; Weber, J.; Ribeiro, R.F.; Motta, M.H.; Schaffazick, S.R.; Adams, A.I.; de Andrade, D.F.; Beck, R.C.; da

Silva, C.B. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this
drug. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 46, 69–76. [CrossRef]

26. Melo, T.S.; Dubertret, L.; Prognon, P.; Gond, A.; Mahuzier, G.; Santus, R. Physicochemical properties and stability of anthralin in
model systems and human skin. J. Investig. Dermatol. 1983, 80, 1–6. [CrossRef] [PubMed]

27. Mahrle, G.; Bonnekoh, B.; Ghyczy, M.; Wiegrebe, W. Stability of anthralin in liposomal phospholipids. Arch. Dermatol. Res.
1991, 283, 483–484. [CrossRef]

28. Herman, J.; Remon, J.P.; De Bersagues, J. Influence of storage conditions on the stability of anthralin in the presence of coal tar
and salicylic acid in a white soft paraffin base. J. Am. Acad. Dermatol. 1988, 18, 750–751. [CrossRef]

29. Kruszewski, F.H.; DiGiovanni, J. Alterations in epidermal polyamine levels and DNA synthesis following topical treatment with
chrysarobin in SENCAR mice. Cancer Res. 1988, 48, 6390–6395.

30. Müller, K. Antipsoriatic anthrones: Aspects of oxygen radical formation, challenges and prospects. Gen. Pharmacol.
1996, 27, 1325–1335. [CrossRef]

31. Müller, K.; Gawlik, I. Novel 10-substituted antipsoriatic anthrones as inhibitors of epidermal 12-lipoxygenase and lipid peroxida-
tion in membranes. Biochem. Pharmacol. 1995, 50, 2077–2083. [CrossRef]

32. Müller, K.; Gürster, D.; Piwek, S.; Wiegrebe, W. Antipsoriatic anthrones with modulated redox properties. 1. Novel 10-substituted
1,8-dihydroxy-9(10H)-anthracenones as inhibitors of 5-lipoxygenase. J. Med. Chem. 1993, 36, 4099–4107. [CrossRef]

33. Müller, K.; Leukel, P.; Ziereis, K.; Gawlik, I. Antipsoriatic anthrones with modulated redox properties. 2. Novel derivatives
of chrysarobin and isochrysarobin--antiproliferative activity and 5-lipoxygenase inhibition. J. Med. Chem. 1994, 37, 1660–1669.
[CrossRef]

34. Prinz, H.; Wiegrebe, W.; Müller, K. Syntheses of Anthracenones. 3. Revised Preparative Route to 10-Benzoyl-1,8-dihydroxy-
9(10H)-anthracenones. J. Org. Chem. 1996, 61, 2861–2864. [CrossRef]

35. Müller, K.; Reindl, H. Cornified envelope formation by anthralin, simple analogues, and related anthracenones. Arch. Pharm.
2001, 334, 86–92. [CrossRef]

36. Arif, T. Salicylic acid as a peeling agent: A comprehensive review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 455–461. [CrossRef]
[PubMed]

37. Lavis, L.D. Ester bonds in prodrugs. ACS. Chem. Biol. 2008, 3, 203–206. [CrossRef] [PubMed]

https://doi.org/10.1515/zna-2020-0087
https://doi.org/10.3390/app112211022
https://doi.org/10.1111/j.1365-4632.2012.05611.x
https://doi.org/10.1016/S0190-9622(83)70125-8
https://doi.org/10.1016/S0190-9622(81)70098-7
https://doi.org/10.2174/2589977512666200525154954
https://www.ncbi.nlm.nih.gov/pubmed/32484107
https://doi.org/10.3390/magnetochemistry9070187
https://doi.org/10.1159/000210784
https://www.ncbi.nlm.nih.gov/pubmed/2483115
https://doi.org/10.1111/j.1365-2133.2006.07393.x
https://www.ncbi.nlm.nih.gov/pubmed/16965431
https://doi.org/10.1111/exd.14310
https://www.ncbi.nlm.nih.gov/pubmed/33629779
https://doi.org/10.1111/jocd.14480
https://www.ncbi.nlm.nih.gov/pubmed/34606676
https://doi.org/10.1111/j.1365-2133.1983.tb04599.x
https://www.ncbi.nlm.nih.gov/pubmed/6838770
https://doi.org/10.1111/ijd.16405
https://www.ncbi.nlm.nih.gov/pubmed/36073242
https://doi.org/10.1016/S0939-6411(98)00024-1
https://doi.org/10.1016/j.msec.2014.10.011
https://doi.org/10.1111/1523-1747.ep12530811
https://www.ncbi.nlm.nih.gov/pubmed/6848605
https://doi.org/10.1007/BF00371789
https://doi.org/10.1016/S0190-9622(88)80185-3
https://doi.org/10.1016/S0306-3623(96)00075-4
https://doi.org/10.1016/0006-2952(95)02114-0
https://doi.org/10.1021/jm00077a015
https://doi.org/10.1021/jm00037a017
https://doi.org/10.1021/jo952037l
https://doi.org/10.1002/1521-4184(200103)334:3%3C86::AID-ARDP86%3E3.0.CO;2-N
https://doi.org/10.2147/CCID.S84765
https://www.ncbi.nlm.nih.gov/pubmed/26347269
https://doi.org/10.1021/cb800065s
https://www.ncbi.nlm.nih.gov/pubmed/18422301


Appl. Sci. 2024, 14, 1094 23 of 24

38. Liederer, B.M.; Borchardt, R.T. Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci. 2006, 95, 1177–1195.
[CrossRef]

39. Lau, W.M.; White, A.W.; Heard, C.M. Topical delivery of a naproxen-dithranol co-drug: In vitro skin penetration, permeation,
and staining. Pharm. Res. 2010, 27, 2734–2742. [CrossRef] [PubMed]

40. Lau, W.M.; Heard, C.M.; White, A.W. Design, synthesis and in vitro degradation of a novel co-drug for the treatment of psoriasis.
Pharmaceutics 2013, 5, 232–245. [CrossRef]

41. Hsieh, P.W.; Aljuffali, I.A.; Fang, C.L.; Chang, S.H.; Fang, J.Y. Hydroquinone-salicylic acid conjugates as novel anti-melasma
actives show superior skin targeting compared to the parent drugs. J. Dermatol. Sci. 2014, 76, 120–131. [CrossRef]

42. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [CrossRef]
43. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;

Petersson, G.A. Gaussian 09, Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013.
44. Frisch, A.E.; Keith, T.A.; Dennington, R.D. GaussView Reference; Semichem, Inc.: Irvine, CA, USA, 2003.
45. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [CrossRef] [PubMed]
46. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]
47. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online

Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [CrossRef]
[PubMed]

48. Rubab, S.L.; Raza, A.R.; Nisar, B.; Ashfaq, M.; Altaf, Y.; Hussain, R.; Sajjad, N.; Akram, M.S.; Tahir, M.N.; Shaheen, M.A.; et al.
Synthesis, Crystal Structure, DFT Calculations, Hirshfeld Surface Analysis and In Silico Drug-Target Profiling of (R)-2-(2-(1,3-
Dioxoisoindolin-2-yl)propanamido)benzoic Acid Methyl Ester. Molecules 2023, 28, 4375. [CrossRef] [PubMed]

49. Assad, M.; Paracha, R.N.; Siddique, A.B.; Shaheen, M.A.; Ahmad, N.; Mustaqeem, M.; Kanwal, F.; Mustafa, M.Z.U.; Rehman,
M.F.U.; Fatima, S.; et al. In Silico and In Vitro Studies of 4-Hydroxycoumarin-Based Heterocyclic Enamines as Potential
Anti-Tumor Agents. Molecules 2023, 28, 5828. [CrossRef] [PubMed]

50. Akman, F.; Demirpolat, A.; Kazachenko, A.S.; Kazachenko, A.S.; Issaoui, N.; Al-Dossary, O. Molecular Structure, Electronic
Properties, Reactivity (ELF, LOL, and Fukui), and NCI-RDG Studies of the Binary Mixture of Water and Essential Oil of Phlomis
bruguieri. Molecules 2023, 28, 2684. [CrossRef] [PubMed]
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