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Abstract: Video anomaly detection has become a vital task for smart video surveillance systems
because of its significant potential to minimize the video data to be analyzed by choosing unusual
and critical patterns in the scenes. In this paper, we introduce three novel ensemble and knowledge
distillation-based adaptive training methods to handle robust detection of different abnormal patterns
in video scenes. Our approach leverages the adaptation process by providing information transfer
from multiple teacher models with different network structures and further alleviates the catastrophic
forgetting issue. The proposed ensemble knowledge distillation methods are implemented on two
state-of-the-art anomaly detection models. We extensively evaluate our methods on two public video
anomaly datasets and present a detailed analysis of our results. Finally, we show that not only does
our best version model achieve comparable performance with a frame-level AUC of 75.82 to other
state-of-the-art models on UCF-Crime as the target dataset, but more importantly our approaches
prevent catastrophic forgetting and dramatically improve our model’s performance.

Keywords: computer vision; ensemble-based methods; knowledge distillation; video anomaly
detection; weak supervision

1. Introduction

Recently, video surveillance systems have become the center of attention as they are
deployed and utilized in nearly every place of human settlements for critical tasks such as
public protection, crowd analysis and crime detection. However, these systems produce
a substantial rate of video data that cannot be analyzed solely by the human factor. That
is where the video anomaly detection task becomes prominent as it inherently helps to
alleviate the burden of processing many critical surveillance tasks by focusing on abnormal
scenes, consequently reducing the data to be analyzed by human operators.

Similar to the general anomaly detection task, the purpose of the video anomaly
detection is detecting anomaly patterns in the videos [1]. However, the implementation of
this detection process can be very problematic because there is no exact or fixed detection
pattern for generalizing all abnormal scenes in videos [1–4]. Different network structures
have been proposed for this task [2,3,5,6]. Newer deep learning-based approaches have
much more performance potential compared to their classical machine learning or statistical
counterpart approaches because of their superior structure for capturing more complex low
and high level details such as lighting, texture, background scenes, behavioral patterns [7]
or general appearance and motion-based features [8,9] in videos. But ultimately there is no
all-in-one model capable of detecting all different anomaly patterns [10,11].

Additionally, as the new video data are received, the models need to adapt to different
complex scenes and capture new anomaly patterns. Since the video anomaly concept
cannot be defined with specific patterns, the detection mechanism should be based on a
data-driven approach; it should adapt itself to new anomaly patterns in the scenes in time
by also remembering old patterns learned previously.

Appl. Sci. 2024, 14, 1032. https://doi.org/10.3390/app14031032 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031032
https://doi.org/10.3390/app14031032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-3729-8170
https://orcid.org/0000-0002-0101-6878
https://doi.org/10.3390/app14031032
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031032?type=check_update&version=1


Appl. Sci. 2024, 14, 1032 2 of 21

A possible solution can be constantly retraining the models with all video data (in-
cluding new video data), but this solution is not feasible as it brings a heavy computational
burden on systems. Another possible solution could be continuously fine-tuning the mod-
els with new video data, but this solution is prone to the potential problem of forgetting
old learned patterns in time, which is also called catastrophic forgetting. To alleviate this
problem, a knowledge distillation method has been proposed, in which a student model
can adapt itself to new video data by using a teacher model’s feedback and ground truth
annotations. In this way, the student model learns from new data while reducing the
catastrophic forgetting problem. Moreover, the student model might learn from multiple
networks such as in [12] and can combine different kinds of feedback from teacher models
having different network structures or trained on different datasets.

Consequently, we think that a separate adaptation mechanism is crucial for a model
in a specific scenario, where the model has to prepare itself to constantly learn the new
patterns (anomalous or normal) belonging to incoming video samples while the model
must also not forget its previously learned patterns on a continuously expanding dataset in
time. In this study, we build our motivation and novelty on developing such an adaptation
mechanism on weakly supervised video anomaly detection tasks. We also set our objectives
and our experiments for evaluating how feasible our proposed approaches are to integrate
such an adaptation mechanism.

Proposed Work and Contributions: With this motivation, we extend the knowledge
distillation concept into a promising adaption mechanism utilizing information transfer
from multiple teacher models having different network structures or trained on different
datasets, while alleviating catastrophic forgetting problems. In this paper, we propose
three ensemble-based knowledge distillation approaches for video anomaly detection. As
a baseline model, we deploy two state-of-the-art model structures, which are the AR-Net
model [13] and GCN model [14]. Both of these models are weak supervision-based models
utilizing only video level ground-truth information and they can make use of intermediate
features of pre-trained I3D action recognition model [15] to leverage the high-level ac-
tion/behavioral patterns of crowds/actors while classifying anomaly patterns. To gradually
adapt the model while forcing it to prevent catastrophic forgetting, we deploy a knowledge
distillation approach [16] as a backbone adaptation mechanism. By this approach, we
create an ensemble-based learning method based on two AR-Net and GCN-based teacher
models, where the AR-Net-based student model tries to optimize itself with respect to
ground-truth label information and respective teachers model’s own outputs by using a
combined loss function.

Our main contributions in the scope of this paper can be listed as follows:

• We introduce three novel ensemble-based knowledge distillation mechanisms for
video anomaly detection, where the student model focuses on adapting itself to new
incoming data while also focusing on not forgetting old patterns it learned before
completely. The student model is also provided with an information transfer including
different perspectives from multiple teacher models, during this adaptation process
for new information. Consequently, instead of training/fine-tuning a model on a
comprehensive-sized dataset growing continuously, the model can be updated with
our ensemble knowledge distillation methods more efficiently while preventing the
catastrophic forgetting problem. Although the focus of this paper is video anomaly
detection, the proposed knowledge distillation methods can also be used in other
computer vision tasks such as image classification, scene classification, etc.

• We adapt AR-Net and GCN models into our ensemble-based knowledge distillation
approach but other state-of-the-art methods can be easily adapted to our approach.
We extensively evaluate AR-Net and GCN models on two comprehensive datasets,
which are UCF-Crime [17] and RWF-2000 [18] to validate our proposed methods with
respect to quantitative results. Within experiments, firstly we use the UCF-Crime
dataset as the source dataset, which represents the baseline dataset including previous
patterns the model first learned and RWF-2000 represents the target dataset including
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new patterns to be learned by the model. In later stages, we also switch dataset roles,
meaning that we use RWF-2000 as the source dataset and UCF-Crime as the target
dataset. Consequently, we try to ensure that the model shows stable performance and
behavior in case the dataset roles are reversed.

• We present extensive experiments and analyze different parameters with respect to the
knowledge distillation mechanism and three different ensemble-based formulations.
Results show that our proposed approaches reduce the catastrophic forgetting problem
of the model on the source dataset while generally improving the performance of the
model on the target dataset. We also discuss limitations and possible future work
plans for our proposed approaches.

• We share our code for future research studies on this link: https://github.com/
BurcakAsal/AnomalyEnsembleKD (accessed on 19 January 2024).

Our study continues in Section 2; related studies with respect to our study are provided
in Section 3 and our proposed ensemble-based knowledge distillation approaches and
different formulations are introduced in detail; in Section 4 we provide and discuss the
quantitative results we obtained. Finally, in Section 5, the conclusion of our study and
discussion about possible improvements for future work are provided.

2. Related Works

Within the domain of our study, we focus on related literature about supervision
factors, weak supervision and knowledge distillation.

2.1. Supervision Factor

With respect to the supervision factor, generally, we can classify the anomaly detection
task into three main branches, which are unsupervised, weakly supervised, and supervised-
based models [19] :

1. Unsupervised Models: These models do not require any pre-annotated label or
ground-truth information. They focus on intrinsic feature patterns of video data
samples and the classification process is considered as outlier detection. An outlier
pattern is assumed as its intrinsic features are not similar enough to other normal
intrinsic features.

2. Supervised Models: In supervised models, frame level annotations or bounding box
level annotations are used in the training process as ground-truth information besides
video level annotations.

3. Weakly Supervised Model: These types of models use a weak supervision method,
where both normal and abnormal labels are provided as video-level annotations in
the training process. Frame-level labels or bounding box-level labels for localization
are not provided to these models in the training process.

Our proposed method uses a weak supervision model in the training process. There-
fore, the studies using weak supervision are focused on within the scope of this study.

2.2. Weak Supervision for Video Anomaly Detection

As a critical study for this domain, Ref. [17] represents a video anomaly detection
task as a regression problem and utilizes deep multiple instance learning (MIL) based
formulation. For providing ground-truth information in the training process, the study
only uses video-level labels; the labels represent whether a video sample contains an ab-
normal scene or not. Another study, Ref. [14] assumes the weak supervision concept as
a one-sided label noise problem and also deploys Graph Convolutional Network (GCN)
structures by proposing feature similarity and temporal consistency concepts in videos.
Ref. [20] proposes that normal scenes in videos contain predictable patterns, while anomaly
scenes do not include such patterns. With this assumption, the study uses a margin learn-
ing approach with convolutional LSTM and encoder network structures to determine the
boundaries between abnormal and normal patterns more precisely. Ref. [21] utilizes a

https://github.com/BurcakAsal/AnomalyEnsembleKD
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unique inner bag loss function taking into account the highest and lowest anomaly score
values in each bag within the MIL problem. By this formulation, the study’s approach tries
to make sure that a positive bag has a large difference between the lowest and highest score
and a negative bag has a small difference. The approach also makes use of the temporal
convolutional network (TCN) using pre-trained C3D features [22]. Ref. [23] deploys a
temporal MIL approach by using an attention mechanism to determine which segment of
the video is more crucial than another. The study also makes use of a temporal augmented
network to leverage motion patterns for the classification process. Ref. [24] develops a
Siamese neural network-based decision structure to fit a distance function between pairwise
video sub-sequences by a data-driven concept. Consequently, if a video sub-sequence is
not similar enough compared with another video sub-sequence by the decision network,
then the video sub-scene is supposed to be abnormal. Ref. [25] relies on a multimodal
approach that combines the visual and audio features of the video file. Then, these com-
bined features are input to three-sectioned sub-neural networks working concurrently with
each other and representing different aspects of relations between video sub-sequences.
Ref. [26] advances the network structure by a distance metric-based clustering loss function
to minimize the distance interval between clusters of normal videos and maximize the
distance interval between clusters of abnormal videos. Also, the study uses the normalcy
suppression approach to reduce the anomaly scores belonging to normal sections of the
video file. Finally, it also deploys a batch-based training process depending on random
selection to decrease inter-batch relations. Ref. [27] develops a multiple instance pseudo
label generator structure, which utilizes a sampling approach to generate proper clip-level
artificial annotations. The study also uses a self-attention-based encoder structure to focus
on abnormal regions of videos and a self-training process. Ref. [28] thinks of the MIL
concept as a Robust Temporal Feature Magnitude Learning (RTFM) concept, in which
a feature magnitude learning function is used for focusing especially on rare abnormal
patterns and preventing the model from having a large bias to normal events in videos. The
RTFM approach also deploys dilated convolutions and self-attention mechanisms to handle
variable-size temporal interval relations of patterns in videos. Ref. [29] proposes a weak su-
pervision MIL-based spatio-temporal classification mechanism to localize spatio-temporal
regions in consecutive frames. Within this mechanism, the study develops a dual-branched
structure model, in which each branched structure makes use of a relation module to
handle possible object and behavior relationships for anomaly detection by a self-attention
mechanism. The study also deploys a separate approach to pass learned representations
from one branch structure to another. Ref. [30] proposes a context encoder structure to
take into account temporal differentiations and high-level semantic representations for
weakly supervised anomaly detection tasks and utilizes a noise stimulation mechanism to
minimize false positive anomaly samples. Ref. [31] introduces an approach including four
model structures to obtain temporal relations between frames of videos and suitable feature
discrimination. Ref. [32] develops a transformer-based approach by also applying a Multi
Sequence Learning (MSL) based ranking loss function in the scope of weakly supervised
anomaly detection tasks. Lastly, Ref. [33] suggests a model composed of a specific amplifi-
cation mechanism to improve feature discrimination by the proposed model’s two glance
and focus modules. These modules also include video clip level transformer structures.
Finally, the study also integrates a unique loss function to maximize the distinction between
normal features and anomalous features.

2.3. Knowledge Distillation

Before introducing the Knowledge Distillation concept, we also introduce important
key rules about Incremental Learning and Continuous Learning concepts within the scope
of our study. Firstly according to Incremental Learning these three constraints should
be satisfied [34]:



Appl. Sci. 2024, 14, 1032 5 of 21

1. While the model is updating itself with respect to the stream data, it should not update
itself by using all of the previously collected data; therefore, it should focus on using
the new stream information/data.

2. While the model is updating itself with respect to the new data, it should also remem-
ber important data patterns, it should not forget important and fundamental patterns
within the total big data. Therefore, the proposed model should not be affected by the
Catastrophic Forgetting while adapting the new data.

3. In constant stream data, fixed-size data should be used for the updating process.

Also, in the process of adapting the model to new data, three main scenarios are
generally encountered [35]

1. Fine-Tuning Case for New Tasks: On two datasets, which do not intersect with
respect to the samples and classes they include. One dataset of these two is the dataset
for the new task and a pre-trained model trained on the latter dataset (used for the old
task) beforehand, is re-trained on the dataset for a new task. While in the retraining
process, parameters from the specific last layers or the parameters of all layers of the
pre-trained model can be updated/optimized for the new task.

2. Continuous Learning for Known Classes: In this situation, additional training data
are constantly (or in certain intervals) added from a streaming source to the baseline
data used before. The task has not changed and the new samples’ classes are exactly
the same as the samples’ classes from the old data. This concept can be also thought
as a standard online learning concept.

3. Continuous Learning of Known and New Classes: In addition to the second scenario,
now in this case, classes from new samples can also be different from old ones.

Our study is actually within the scope of the third scenario with an additional case.
Even though data samples from the new dataset compared to the baseline dataset we
experiment on have included new patterns and classes, our task especially focuses on the
binary (two classes) video anomaly detection task, which means our proposed approach
classifies the video data into two possible outputs in which videos include an anomaly
scene or not. While our anomaly detection task is binary, the new data samples still include
new class information and new pattern information intrinsically so our model has to adapt
itself. To satisfy the requirements of baseline rules and constraints mentioned above, we
use the Knowledge Distillation (KD) approach within the scope of our study.

Knowledge Distillation is an approach to transfer distilled learned pattern information
from a larger network to a smaller network. In this approach, there are two important
module structures, which are teacher and student models. During the training process, the
teacher model’s task is to transfer its intrinsic information from data patterns learned previ-
ously from the student model. The student model is trained by a weighted combined loss
of two functions, the first loss function is calculated with respect to the difference between
the student model’s end output logit values and ground-truth label values belonging to
new data. The second loss function is generally specified as a “distillation” function and
calculated between the student model’s end output logit values and the teacher model’s
end output logit values. Teacher model logit values are obtained by giving the same input
vector in the new data that are given to the student model as input. Thus, the teacher
model reinterprets the input vector with its own perspective and teaches this perspective
to the student model with its own end logit values. That way, while the student model
adapts itself to the patterns in the new data, this approach also forces the student model to
remember/keep previous data patterns distilled by the teacher model in its neural structure
to a certain extent [16].

Within the scope of [36–38] studies, the main focused branches with respect to knowl-
edge strategy are stated below:

1. Response-Based Knowledge: This knowledge strategy is the basic approach within
the scope of the KD approach. Distillation loss is obtained by calculating the difference
between the teacher model’s end output logit values and the student model’s end
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output logit values. Softmax function is generally utilized to obtain output logit
values for both of the models. An additional temperature constant is also utilized
within the formula to prevent focusing too much on one of the softmax outputs while
passing information, thus distributing information transfer uniformly with respect to
each softmax output.

2. Feature-Based Knowledge: Different from Response-Based Knowledge, the Feature-
Based Knowledge approach proposes to use intermediate-level layers of teacher and
student models for the knowledge distillation method.

3. Relation-Based Knowledge: Relation/correlation matrix representation of outputs
for both teacher and student models are focused on this type of knowledge strategy.
In the later stage, the distillation-based loss function is minimized by calculating the
difference between teacher and student model relation matrices. Additionally, the
relation matrices can be calculated by utilizing end-output logits or intermediate-level
output logits. Lastly, an inner product or a specialized distance/similarity-based
function can be utilized to create a relation matrix for the teacher/student models.

There are also ensemble-based approaches in which a multi-teacher structure is de-
ployed instead of a single-teacher module.

Ref. [39] introduces a multiple teacher-based distillation method by using the mean
operation of end outputs of teacher models and by using a voting approach on how
dissimilar an intermediate output of a teacher model is with another teacher model. Ref. [40]
proposes a sequence-based multiple-teacher distillation approach in which student and
teacher model structures are identical and for the specific size of iterations, each teacher
model is trained within the supervision of the previous generation teacher model. Finally,
an ensemble structured model is obtained by applying average operation on outputs of all
previous generation versions of teacher models. Ref. [41] develops an intermediate feature-
level-based distillation method on multiple teachers concurrently by utilizing additional
non-linear layers. The study also deploys a sequential version of its proposed method by
recursively distilling the previous teacher model from the student model and setting the
student model as the new teacher model for the next iteration. Ref. [42] follows a distillation
strategy in which both end soft output logits and intermediate outputs are used. The study
calculates a weighted combination of soft outputs of multiple teachers with respect to
data samples while it also utilizes intermediate feature outputs of multiple teachers with
its specific early-layer and random-based selection strategy. Ref. [43] makes use of a
weighted ensemble method by assignment with respect to the gradients of teacher models.
Lastly, Ref. [44] deploys a specific reinforcement learning method to dynamically weighting
teacher models to pass a weighted combination of different perspective information to
student models.

3. Proposed Approaches

In this paper, we propose three ensemble-based knowledge distillation methods and
use state-of-the-art AR-Net [13] and GCN [14] networks by combining these network
structures with an I3D action recognition network [15] as a feature extractor to realize our
approach (Figure 1).

AR-Net is a weakly supervised model that combines two specific loss functions within
its training process. The first loss function ensures that anomalous and normal class samples
are distant from each other in the representation space and the second loss function handles
the proximity level between normal class samples. Consequently, these two loss functions
provide the AR-Net model with an accurate representation of training samples to properly
accomplish the detection task.

GCN is another weakly supervised model utilizing two unique graph modules in
its inner structure. The first graph module provides the similarity information within
different sub-clips of video samples, while the second graph module adds additional
temporal information feedback by comparing temporal positions of the sub-clips with each
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other. Combined information from these two graph modules provides the GCN model to
effectively learn a proper representation of abnormal and normal samples in a dataset.

Figure 1. Visual overview of individual GCN and AR-Net teacher modules.

Both of these weakly supervised models require a pretrained network as a module for
the feature extraction process. For this purpose, we decided to use the I3D network as a
backbone mechanism for our baseline AR-Net and GCN models. I3D is a specific action
recognition network utilizing a double stream of three-dimensional inflated convolutional
modules. With these modules, the I3D network can produce a feature representation
for video samples, which includes a rich summary of a video sample with respect to
its behavioral patterns of actors, different level scene details and background details.
Consequently, the I3D network helps the AR-Net and GCN models to properly translate
a video sample to an accurate feature representation for further processing in their inner
network structure.

AR-Net and GCN models use weak supervision and these models are relatively
feasible for integrating our ensemble-based knowledge distillation approaches; we decided
to use these models as a baseline and I3D as a backbone feature extractor network within
our proposed approaches.

Firstly, for all three formulations, video samples are represented as clips, where ti
is the ith clip for a specific video sample. Also, each video includes N video clips and
padding operation is applied in case of a video is shorter than N clips. Then, a feature
vector (size of F) is obtained for each video clip by utilizing a video action network, we used
an I3D pretrained video action network but it is also suitable to deploy other video feature
extraction models in this process. After obtaining a mini-batch of clip features from b video
samples, we give clip-level features in each video sample of the batch as input to both GCN
and AR-Net networks. Within the scope of the three approaches, GCN and AR-Net teacher
models are trained on the same source dataset in which different information perspectives
from different network structures are planned to pass to the student model.

All of our proposed approaches adopt the knowledge distillation concept to handle the
catastrophic forgetting problem. Within our approaches, the student model concurrently
obtains feedback signals from both the ground-truth labels of the target dataset and the
end output logits of the teacher models which are pre-trained on the source dataset during
the training process. Therefore, we try to ensure that while the student model effectively
learns the new patterns on the target dataset, it also keeps the previously learned patterns
from the source dataset provided indirectly by the teacher models’ supervision. Moreover,
our proposed approaches accomplish this adaptation process by combining (selecting or
merging depending on the approach) the supervision signals from two different teacher
networks (AR-Net and GCN) during the information transfer on the AR-Net student model.

In the following three sections, we show how we integrate these three ensemble-based
distillation approaches on AR-Net and GCN models.
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3.1. Equally Weighted Combination (EWC) Approach

In the EWC approach, the distillation process is formulated as below to provide the
AR-Net student model with an equal-weighted distillation signal from both AR-Net and
GCN teacher models (Figure 2):

LTotal = (1 − α) ∗ LGT + LEWC (1)

LEWC =
α

2
∗ H(σ(Zt1 ; T = τ), σ(Zs; T = τ))+

α

2
∗ H(σ(Zt2 ; T = τ), σ(Zs; T = τ))

(2)

where Zt1 and Zt2 represent the end output logits of GCN and AR-Net teacher models,
respectively, and Zs represents the end output logit of the AR-Net student model. H
represents the cross entropy function and σ represents the sigmoid function. LGT represents
the specific cross-entropy-based ground-truth loss function used within the context of the
AR-Net student model. Finally, α is the balancing hyperparameter between LGT and LEWC
and T is the temperature constant.

Figure 2. Visual overview of Equally Weighted Combination approach.

The EWC approach uses equal weight values ( α
2 ) for merging the two feedback signals

from AR-Net and GCN teacher models in the training process. In this way, the student
model can use multiple information feedback from different teacher networks and utilize
different interpretations of a sample with respect to each teacher model’s respective output.
Within our first approach, we decided to especially observe how naively distributing the
α parameter value equally affects the student model’s performance in our task.

Compared to the standard response-based knowledge distillation strategy, this for-
mulation allows equally weighted different perspective-based information transfer from
multiple different model teacher models to student models by utilizing a combined distilla-
tion loss function.

3.2. Confidence Based Maximum Selection (CBMS) Approach

In this approach, a selection mechanism has been integrated within the loss function
compared to the EWC approach as shown in Figure 3:

LTotal = (1 − α) ∗ LGT + LCBMS (3)
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LCBMS = α ∗ argmax
CT1 ,CT2

(H(σ(Zt1 ; T = τ),

σ(Zs; T = τ)), H(σ(Zt2 ; T = τ), σ(Zs; T = τ)))

(4)

CTi =

{ 0.5−σTi
0.5 if σTi < 0.5

σTi
−0.5

0.5 if σTi ≥ 0.5
(5)

where CTi represents the confidence scores for the GCN and AR-Net teacher models
calculated from sigmoid outputs (σTi ) of the GCN and AR-Net teacher models. Because
directly using sigmoid outputs is inappropriate, this transformation method is designed.

Unlike our previous approach, CMBS deploys a selection process, in which the ap-
proach forces the student model to choose a single feedback signal from one of the teacher
models (GCN or AR-Net) for a specific input sample. We designed this selection mech-
anism by comparing confidence scores obtained from teacher models’ sigmoid outputs
and choosing the teacher model with a bigger confidence score for information transfer to
the student model. Since directly using the sigmoid output of a teacher model is not ap-
propriate for determining confidence level, we developed a special function (Equation (5))
that transforms the sigmoid output of each teacher model to a confidence score, which
represents how much each teacher trusts itself for determining the class (anomalous or
normal) of a specific sample. Please notice that the function naturally reaches its minimum
value on the “0.5” sigmoid function value, which represents the lowest level of confidence
and reaches its maximum values on “0” and “1” sigmoid function values, which represent
the highest level of confidence.

Compared to the EWC approach, this method provides a student model to select one
of the teacher models (GCN or AR-Net) with respect to their current confidence scores
calculated on their end outputs.

Figure 3. Visual overview of Confidence Based Maximum Selection approach.

3.3. Confidence Based Weighted Combination (CBWC) Approach

In this approach, a weighted combination mechanism based on confidence scores has
been integrated within the total loss function (Figure 4):

LTotal = (1 − α) ∗ LGT + LCBWC (6)

LCBWC = α ∗ (βT1 ∗ H(σ(Zt1 ; T = τ), σ(Zs; T = τ))+

βT2 ∗ H(σ(Zt2 ; T = τ), σ(Zs; T = τ)))
(7)

βT1 =
CT1

CT1 + CT2

βT2 =
CT2

CT1 + CT2

(8)
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where βT1 and βT2 are dynamic weight values recalculated from respective confidence
scores CT1 and CT2 .

Figure 4. Visual overview of Confidence Based Weighted Combination approach.

Different from EWC and CMBS, the CBWC approach follows a merging operation of
different feedback signals from teacher models by dynamically weighting each feedback
signal of a teacher model with respect to its confidence level. The confidence level of each
teacher model again is calculated by the same transformation function (Equation (5)) with
respect to the specific sample. Subsequently, βT1 and βT2 weight values are calculated for
each teacher model by applying a normalization operation (Equation (8)) on the confidence
scores CT1 and CT2 . Consequently, the CBWC approach provides the student model with
a mixture of information feedback comprised of different interpretations of samples by
AR-Net and GCN teacher models, but additionally with a dynamic weighting factor.

In summary, compared to the EWC and CBMS approach, this method provides a
student model to combine a weighted combination of teacher models (GCN or AR-Net)
with respect to their current confidence scores calculated on their end outputs.

4. Experimental Evaluation

In this section, we perform extensive experiments on UCF-Crime [17] and RWF-2000
datasets [18] for both AR-Net and GCN-based teacher and student models and show
quantitative results. In our knowledge distillation-based training and testing procedure,
we always train the teacher model on the source dataset’s training set, while training
the student model on the target dataset’s training set. A self-distillation mechanism is
deployed in the experiments, which means that the AR-Net teacher and AR-Net student
model networks are structurally identical and the AR-Net student model initially starts
with the same weight parameters as the AR-Net teacher model for all experiments.

We evaluate the performance of our models without knowledge distillation, with the
standard response-based knowledge distillation and with our ensemble-based knowledge
distillation methods. Also, within experiments, we reversed the source and target datasets
(by first using UCF-Crime as the source and RWF-2000 as the target, and then vice versa) to
ensure that our approaches show stable performance even if the dataset roles are reversed.

Video-level AUC (Area Under Curve) metric (V-AUC) is utilized to calculate the
quantitative performance of the models. All the quantitative results are extracted by testing
the student model on the source dataset’s test set, the target dataset’s test set, and ultimately
the source and target dataset’s combined test sets (UCF-Crime + RWF-2000). We also show
the student model’s performance on test sets with respect to variable Alpha (α) parameters.
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4.1. Datasets

In this study, we deploy UCF-Crime and RWF-2000 datasets for training and again
evaluate the performance of the proposed approaches on these datasets. The UCF-Crime
dataset includes 1900 videos from CCTV cameras, in which, 950 videos have anomaly
(Abnormal) patterns in 13 different anomaly classes and the remaining 950 videos con-
sist of only normal patterns. The training set of UCF-Crime includes 800 normal and
810 anomalous videos while the test set of UCF-Crime includes 150 normal and 140 anoma-
lous videos. The RWF-2000 dataset includes 2000 videos. Each video of the RWF-2000
dataset is annotated with a class label of “Violent” or “Non-Violent”; 1000 videos have
violent behavior patterns, while the other 1000 videos consist of solely non-violent behavior
patterns in which both violent and non-violent video sets consist of 800 videos for training
and 200 videos for testing.

With respect to the scope of our study, the main task is the binary classification of
video anomaly detection. Hence, we represent any video including an anomaly pattern
belonging to one of 13 different anomaly classes as the “Anomaly” class video and videos
belonging to the normal class as the “Normal” class video for UCF-Crime. Similarly again,
we reconsider violent behavior patterns as a subset of anomaly class patterns; consequently,
we set “Violent” class videos as videos containing anomaly patterns and “Non-Violent”
class videos as videos including purely normal patterns for RWF-2000.

4.2. Results Obtained without Knowledge Distillation

In order to demonstrate the performance contribution of our knowledge distillation
strategies, as a beginning, AR-Net and GCN models are trained on UCF-Crime and RWF-
2000 datasets without knowledge distillation. Firstly, we train the AR-Net teacher model
with the training set of the UCF-Crime dataset and the student model with the training
set of the RWF-2000 dataset. Then, we test these models on the test sets of the UCF-Crime
and RWF-2000 datasets. Table 1 shows that the teacher and student models have better
performance on their training datasets than the other datasets. Then, we repeat the same
experiment with the GCN teacher and student models, and we obtain similar results
(Table 2). We can also observe that while the teacher model shows poor performance on
the test of the RWF-2000 dataset and again the student model shows poor performance
on the test set of the UCF-Crime dataset, the teacher model shows relatively much higher
performance on the test of UCF-Crime and the student model shows again much higher
performance on the test set of the RWF-2000 dataset. This is a consistent result we expected
when we do not deploy the knowledge distillation process. This means also that both
teacher and student models cannot exhibit high performance on their counterpart datasets.

Table 1. V-AUC values of AR-Net-based student and teacher models without knowledge distillation.

UCF-Crime RWF-2000 UCF-Crime + RWF-2000

Teacher 82.1 59.1 70.7

Student 60.8 77.3 68.9

Table 2. V-AUC values of GCN-based student and teacher models without knowledge distillation.

UCF-Crime RWF-2000 UCF-Crime + RWF-2000

Teacher 81.3 57.6 69.3

Student 59.2 75.2 67.2

4.3. Results Obtained with Response-Based Knowledge Distillation

For obtaining a baseline experiment for the performance comparison with our ensemble-
based knowledge distillation methods, additional experiments are carried out on UCF-Crime
and RWF-2000 datasets with standard response-based knowledge distillation method [16].
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Firstly, we train the AR-Net-based teacher and student models by using response-based
knowledge distillation on training sets of UCF-Crime and RWF-2000 datasets, respectively.
The results of these models on the test sets are demonstrated in Table 3 with respect to the
alpha parameter. As the alpha parameter increases, the student model’s V-AUC values
generally increase on the test set of the source dataset and decrease on the test set of the
target dataset. Thus, we can conclude that the teacher model has a gradual influence on the
student model with increasing alpha parameter values. The same experiment is replicated
with GCN-based teacher and student models and also concluded the similar pattern as
shown in Table 4.

If the results of Table 1 are compared with Table 3 and the results of Table 2 with
Table 4, we can observe that both AR-Net and GCN-based student models trained with the
knowledge distillation approach have better V-AUC performance on all test sets compared
to the student model without the distillation approach. Thus, it can be concluded that
the knowledge distillation process leverages the student model to remember and not to
forget completely the patterns of the source dataset, and hence catastrophic forgetting is
alleviated to a certain extent.

Table 3. V-AUC values of AR-Net-based student model with standard response-based knowledge
distillation. (Source: UCF-Crime, Target: RWF-2000).

Alpha (α) UCF-Crime RWF-2000 UCF-Crime + RWF-2000

0.1 68.4 77.5 73.5

0.2 68.9 77.1 73.2

0.3 70.3 74.8 72.4

0.4 72.1 74.0 73.0

0.5 73.0 70.2 71.6

Table 4. V-AUC values of GCN-based student model with standard response-based knowledge
distillation. (Source: UCF-Crime, Target: RWF-2000).

Alpha (α) UCF-Crime RWF-2000 UCF-Crime + RWF-2000

0.1 69.4 76.8 73.1

0.2 69.2 74.9 72.2

0.3 71.2 74.1 72.6

0.4 72.3 71.2 71.8

0.5 73.7 69.0 70.9

Within the experiments of Tables 3 and 4, the student model is initialized with the
teacher model’s weights before the training process. Also, as an alternative approach, the
training process of the student model is started with random weights instead of starting
with teacher model weights. With respect to this alternative approach, we observed that
initializing with the teacher model’s weights provides better performance of the student
model compared to initializing with random weights. In the following sections, we also
obtained the same observation for the proposed methods. Consequently, we decided to not
present the results with random weights in this section and the following sections.

4.4. Results of EWC Approach

In Tables 5 and 6, the V-AUC results are obtained by training the AR-Net student
model with the EWC Approach. The experiments are also replicated by changing the
datasets setting RWF-2000 as the source and UCF-Crime as the target dataset. Compared
to response-based knowledge distillation approaches in Tables 3 and 4, it can be observed
that the results are slightly improved. We also observed a similar pattern with respect to
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increasing alpha parameters, i.e., increased alpha values raise the teacher’s model influence
on the student model and lead up to gradually increased V-AUC values on the test set
of the source dataset and gradually decreased V-AUC values on the test set of the target
dataset. These results also show that, by the EWC approach, the AR-Net student model
leverages the equally combined feedback information from both GCN and AR-Net teacher
models to a certain extent.

Table 5. V-AUC values of AR-Net-based student model with EWC approach. (Source: UCF-Crime,
Target: RWF-2000).

Alpha (α) UCF-Crime RWF-2000 UCF-Crime + RWF-2000

0.1 70.8 78.1 74.1

0.2 69.7 76.5 73.0

0.3 69.9 75.3 72.2

0.4 71.6 73.9 72.7

0.5 72.8 69.6 71.4

Table 6. V-AUC values of AR-Net-based student model with EWC approach. (Source: RWF-2000,
Target: UCF-Crime).

Alpha (α) RWF-2000 UCF-Crime UCF-Crime + RWF-2000

0.1 69.1 75.2 72.2

0.2 71.4 75.7 73.7

0.3 71.0 73.3 72.1

0.4 73.8 72.6 73.4

0.5 74.3 70.4 72.3

4.5. Results of CBMS Approach

The experiments with the CBMS approach produce the results in Tables 7 and 8. These
results again show that the AR-Net student model follows a similar pattern compared
to the EWC formulation with respect to increasing alpha parameters. More importantly,
all the V-AUC results are again slightly improved, especially with specific parameters
compared to results of the EWC method in Tables 5 and 6. This shows that the CBMS
approach generally provides better information transfer by helping the student model to
select which individual teacher network (GCN or AR-Net) is better to pass information
by comparing and selecting the teacher model which has a bigger confidence score. Also,
when the source and target datasets are switched, we can observe that the approach shows
similar and consistent behavior compared to previous distillation approaches.

Table 7. V-AUC values of AR-Net-based student model CBMS approach. (Source: UCF-Crime,
Target: RWF-2000).

Alpha (α) UCF-Crime RWF-2000 UCF-Crime + RWF-2000

0.1 71.3 78.4 74.7

0.2 71.8 77.2 74.4

0.3 72.5 75.1 73.5

0.4 73.1 74.9 73.6

0.5 73.9 70.3 72.1
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Table 8. V-AUC values of AR-Net-based student model with CBMS approach. (Source: RWF-2000,
Target: UCF-Crime)

Alpha (α) RWF-2000 UCF-Crime UCF-Crime + RWF-2000

0.1 72.9 76.7 74.9

0.2 73.8 75.5 74.7

0.3 75.4 76.3 76.0

0.4 74.5 72.9 73.7

0.5 74.2 73.3 73.6

4.6. Results of CBWC Approach

The results of experiments with the CBWC approach are presented in the Tables 9 and 10.
The normal results and results with reversed source and target datasets show that the
student model again exhibits a similar behavioral pattern compared to EWC and CBMS
approaches with respect to increasing alpha parameters. Additionally, the general per-
formance of the student model is again slightly improved on specific alpha parameters
compared to Tables 5 and 6 with respect to the EWC method, but no drastic improvement is
observed compared to the CBMS method (Tables 7 and 8). We explain a possible reason for
this in Section 4.7. Compared to the CBMS, instead of selecting a feedback distillation signal
from one of the GCN or AR-Net teacher models in CBMS, the CBWC approach provides the
AR-Net student model with the weighted combined signal feedback synthesized from both
the GCN and AR-Net model teacher models and helps to alleviate catastrophic forgetting
by improving the performance on the test set of the source dataset.

Table 9. V-AUC values of AR-Net-based student model with CBWC approach. (Source: UCF-Crime,
Target: RWF-2000).

Alpha (α) UCF-Crime RWF-2000 UCF-Crime + RWF-2000

0.1 71.0 77.6 74.2

0.2 71.9 77.4 74.8

0.3 73.7 76.8 75.1

0.4 73.6 74.9 74.0

0.5 72.5 71.1 71.9

Table 10. V-AUC values of AR-Net-based student model with CBWC approach. (Source: RWF-2000,
Target: UCF-Crime).

Alpha (α) RWF-2000 UCF-Crime UCF-Crime + RWF-2000

0.1 73.8 77.0 75.3

0.2 73.4 76.9 75.2

0.3 74.4 76.1 75.4

0.4 75.0 76.2 75.7

0.5 75.6 73.2 74.2

4.7. An Additional Experiment

Besides the experiments mentioned above, an additional experiment is also carried
out on individual GCN and AR-Net-based teacher models and AR-Net-based student
model with EWC method by applying a specific sigmoid output threshold value “0.5” from
Tables 11–17.
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Table 11. Confusion matrix of GCN teacher model with 0.5 threshold value on test set of Source
Dataset. (UCF-Crime).

GCN Teacher (UCF-Crime) Actual Positive Actual Negative

Predicted Positive 109 27

Predicted Negative 31 123

Table 12. Confusion matrix of GCN teacher model with 0.5 threshold value on test set of Target
Dataset. (RWF-2000).

GCN Teacher (RWF-2000) Actual Positive Actual Negative

Predicted Positive 117 86

Predicted Negative 83 114

In Tables 11 and 12, two confusion matrices for individual GCN teacher models are
shown. These matrices are obtained by following a similar procedure as in Section 4.2. An
individual GCN Teacher model is firstly trained on a training set of the Source Dataset
(UCF-Crime) and then directly tested on a test set of the Source Dataset and Target Dataset
(RWF-2000). Tables 11 and 12 results show consistent behavior with respective Table 2
results in which the teacher model’s performance is better on the test set of Source Dataset
compared to the test set of the Target Dataset.

Table 13. Confusion matrix of AR-Net teacher model with 0.5 threshold value on test set of Source
Dataset. (UCF-Crime).

AR-Net Teacher (UCF-Crime) Actual Positive Actual Negative

Predicted Positive 114 22

Predicted Negative 26 128

Table 14. Confusion matrix of AR-Net teacher model with 0.5 threshold value on test set of Target
Dataset. (RWF-2000).

AR-Net Teacher (RWF-2000) Actual Positive Actual Negative

Predicted Positive 120 84

Predicted Negative 80 116

In Tables 13 and 14, again, two confusion matrices for individual AR-Net teacher
models are presented. These matrices are extracted again by following a similar procedure
as in Section 4.2. This time, the individual AR-Net Teacher model is again firstly trained on
a training set of Source Dataset (UCF-Crime) and then directly tested on a test set of the
Source Dataset and Target Dataset (RWF-2000). Tables 13 and 14 results also show consistent
behavior with respect to Table 1 results, in which the teacher model has drastically better
performance on the test set of Source Dataset compared to the test set of the Target Dataset.

Table 15. Confusion matrix of AR-Net student model with 0.5 threshold value on test set of Source
Dataset (UCF-Crime) with EWC approach.

AR-Net Student (UCF-Crime) Actual Positive Actual Negative

Predicted Positive 106 49

Predicted Negative 34 101
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Table 16. Confusion matrix of AR-Net student model with 0.5 threshold value on test set of Target
Dataset (RWF-2000) with EWC approach.

AR-Net Student (RWF-2000) Actual Positive Actual Negative

Predicted Positive 175 60

Predicted Negative 25 140

In Tables 15 and 16, two confusion matrices are calculated by training the AR-Net
student model with the EWC approach (Table 5) with the best overall alpha parameter
(0.1) and testing on a test set of UCF-Crime and RWF-2000 Dataset. Please notice, that
in Table 16, the student model’s performance is drastically improved on RWF-2000 test
set (Target Dataset) compared to the Tables 12 and 14 and more importantly, in Table 15,
the student model also shows comparable performance on the UCF-Crime test set (Source
Dataset) compared to Tables 11 and 13 and shows consistent behavior with respect to Table 5.

Table 17. Misclassified example statistics for both GCN and AR-Net-based teacher models for
UCF-Crime (Source Dataset) and RWF-2000 (Target Dataset).

Misclassification GCN Teacher AR-Net Teacher Common

UCF-Crime 58 48 45

RWF-2000 169 164 157

Finally in Table 17, different misclassification statistics are shown for both individual
GCN and AR-Net teacher models. The first column represents the total misclassified sample
count for the GCN teacher model with respect to Tables 11 and 12, while the second column
represents the total misclassified sample count for the AR-Net teacher model with respect
to Tables 13 and 14. More importantly, the third column (Common) represents the sample
count both misclassified by GCN and AR-Net teacher models. With respect to this table,
we concluded that very often, when the GCN teacher model mistakenly classifies a sample,
the AR-Net teacher model also shows the same behavior. We think that this behavior
explains, to a certain extent, the limited performance increase in our EWC and CBWC
ensemble-based distillation formulations in this study compared to the CBMS method.

4.8. Comparison with State-of-the-Art Studies

In this experiment, our best-performed model is quantitatively compared with other
state-of-the-art (SOTA) weakly supervised approaches on the UCF-Crime dataset (Table 18).
While for the previous experiments, the video-level AUC (V-AUC) metric is utilized to
measure the performance of our models because the RWF-2000 dataset does not have
frame-level annotations; the UCF-Crime dataset has frame-level annotations and other
weakly supervised methods previously experimented on this dataset also use frame-level
AUC (F-AUC) as a performance metric. Consequently, we repeat the testing process with
our best ensemble-based student model trained on the UCF-Crime dataset with respect to
frame-level AUC (F-AUC) metric for comparison with other SOTA studies. For this case,
we select the student model trained with the CBMS method with α = 0.3 which has the best
overall performance as shown in Table 8.

In Table 18, it can be concluded that the best ensemble-based student model (CBMS)
we proposed exhibits comparable performance compared to the other state-of-the-art ap-
proaches. Besides, our CBMS-based student model also shows reassuring performance in
the RWF-2000 dataset as shown in Table 8. Another important observation is that compared
to the standard response-based method (Tables 3 and 4), our ensemble-based methods
(Tables 5–10) have drastic performance increase regardless of the target dataset. This repre-
sents the increased generalization capability of our ensemble-based distillation methods.
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Table 18. Comparison with State-of-the-Art (SOTA) Studies on UCF-Crime Dataset.

Method F-AUC

(Sultani et al., 2018) [17] 75.41

(Zhong et al., 2019) [14] 82.12

(Zhang et al., 2019) [21] 78.66

(Zhu and Newsam, 2019) [23] 79.00

(Wu et al., 2020) [25] 82.44

(Zaheer et al., 2020) [26] 83.03

(Feng et al., 2021) [27] 82.30

(Tian et al., 2021) [28] 84.30

(Lv et al., 2021) [30] 85.38

(Wu and Liu, 2021) [31] 84.89

(Li et al., 2022) [32] 85.62

(Chen et al., 2023) [33] 86.98

Ours (CBMS) 75.82

In the case of the training case of AR-Net and GCN models on a specific dataset without
knowledge distillation, it is observed that results are dramatically worse on the other dataset
(RWF-2000, Tables 1 and 2 in Section 4.2). All SOTA models in Table 18 are trained without a
knowledge distillation approach on the UCF-Crime dataset. Because they are trained on the
UCF-Crime dataset without distillation, we conclude that while they have results better than
our models on this specific dataset, their generalization performance will be lower than our
models on another dataset, such as the RWF-2000 dataset as in Section 4.2.

4.9. Discussion on Results

Overall, we can conclude that within the scope of our ensemble-based knowledge
distillation-based experiments with our three formulation approaches, respectively, each
subsequent formulation generally shows a slight performance increase compared to the pre-
vious formulation except the CBWC model with potential reasons explained in Section 4.7.
Also, each of the three ensemble-based knowledge distillation methods shows a general
behavior with respect to preventing catastrophic forgetting issues. More specifically, we
also observe that the selection or combination mechanism within our approaches helps
the student model to integrate different supervision feedback from AR-Net and GCN
teacher models and passes this feedback information to the student model for keeping
the old learned patterns in the source dataset. Also, our approaches provide the student
model with stable performance on the target dataset and even increase the student model’s
baseline performance in specific configurations in the experiments. Ultimately we can
also conclude that selection operation or combination operation can have a different effect
on the student model’s performance depending on the structures of the utilized baseline
models. As we mentioned in Section 4.7, because of our baseline models’ rather high com-
mon misclassification rate, selection operation can have more contribution to the student
model’s performance compared to combination operation in specific cases.

In our experiments, generally, it can be observed that as the alpha parameter value
increases in the knowledge distillation loss function, and the student model’s performance
gradually increases on the test set of the source dataset, it has a gradual performance
decrease on the test set of the target dataset. This situation confirms that increased operation
of the alpha parameter also intensifies the teacher model’s influence on the student model
and brings about closer bias to the source dataset and further bias from the target dataset for
the student model. This observation is also crucial for handling the catastrophic forgetting
issue because we can also observe that as the teacher model’s influence increases on the
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student model, the student model performs gradually better on the source dataset, which
indicates that the student model gradually focuses on keeping previously learned patterns
from the source dataset with increasing alpha parameter values.

In order to also test the robustness of our ensemble-based distillation methods, we addi-
tionally have reversed the UCF-Crime and RWF-2000 datasets for source and target dataset
roles and replicated our experiments in this way. From experiments, it can be concluded
that our experimental results show similar patterns in the case where the source and target
datasets are reversed. Consequently, it can be also interpreted as our proposed approaches
showing robust and independent performance from the datasets used in our experiments.

Finally, we also prepared a table (Table 19) for the qualitative comparison of the other
recent three weakly supervised studies with our ensemble-based knowledge distillation
approaches with respect to their advantages and disadvantages. Study [30] utilizes an en-
hanced context encoding method for handling high-level semantic and temporal variations
and a unique noise simulation strategy based on weak supervision for handling noises in
video samples. Another study [32] deploys a transformer-based convolutional structure
to improve the encoding process of high-level features from video samples by using a
two-stage multi-sequence-based training method. Finally, the study [33] again makes use
of transformer-based glance and focus sub-modules to effectively capture global and local
level information details from video samples by using a special amplification mechanism
for obtaining an improved feature representation.

The crucial point can be noticed when we examine the disadvantages of these recent
studies compared to our approaches. Firstly, the models in these studies are trained and
tested in fixed-size datasets. These studies do not include a scenario where there is a
dataset continuously growing in time and the model has to constantly adapt itself for
learning incoming samples while also preserving the old patterns learned from previous
samples. Secondly, depending on this scenario, these studies do not integrate an additional
adaptation mechanism designed to prepare the model for this scenario. With respect to this
case, even though these studies outperform the baseline model trained with our proposed
adaptation mechanism in Table 18, we conclude that their performance will be dramatically
reduced in the aforementioned scenario compared to our adaptation mechanism.

Table 19. Qualitative Comparison with State-of-the-Art (SOTA) Studies.

Method Advantages Disadvantages

(Lv et al., 2021) [30]
- More Advanced Temporal
and Semantic Context Encoding
- More Advanced Weak
Supervision Strategy

- Trained and Tested
on Fixed-Size Datasets
- No Separate Adaptation
Mechanism

(Li et al., 2022) [32]
- Transformer Based Convolutional
Network Structure
- Two Stage Self
Training Strategy

- Trained and Tested
on Fixed-Size Datasets
- No Separate Adaptation
Mechanism

(Chen et al., 2023) [33]
- Transformer Based Glance
and Focus Modules
- Feature Amplification Mechanism

- Trained and Tested
on Fixed-Size Datasets
- No Separate Adaptation
Mechanism

Another possible explanation for the performance limitation in Table 18 is that since
our proposed mechanisms require baseline teacher and student models for the adaptation
process, the structures of baseline networks utilized for our proposed mechanisms (in our
case, GCN and AR-Net networks) can inherently limit the performance of the student
model, because of the specific baseline network’s individual restricted performance related
to its designed structure.
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5. Conclusions and Future Work

In this study, we have presented three novel ensemble-based knowledge distillation
approaches for video anomaly detection. Our approaches provide a model to adapt itself
to incoming new video data, while also preventing the model from completely forgetting
learned patterns from previous data by alleviating catastrophic forgetting problems. Addi-
tionally, the proposed formulations improve the performance of the student model on the
source dataset and help the student model to obtain consistent performance on the target
dataset by using the ensemble of multiple different network structures as a teacher model.

As a future work, because our proposed ensemble-based knowledge distillation ap-
proaches can be adapted into other baseline networks independently, we plan to integrate
our proposed approaches for other newer model structures in the literature, especially for
transformer-based networks. We think that this will alleviate the performance limitation
issue we mentioned in the previous section.

Another potential limitation is the explainability of our proposed approaches. We
also plan to integrate a specific interpretable layer for our adaptation mechanisms for
taking different interactions between objects and actors into account in videos such as in
study [45]. This will provide additional interpretability for further analyzing the details of
the information transfer related to our adaptation mechanisms. We think Large Language
Models (LLMs) can have a dramatic contribution to the interpretability issue, because of
their inherent ability to capture complex patterns and relationships in data samples and
produce human-interpretable text. Furthermore, we think integrating our approaches with
Visual Language Models (VLMs) has great potential for adding the explainability concept
into our approaches by utilizing Signature Transform-based techniques [46,47].

Finally, we plan to further utilize feature-based knowledge distillation techniques with
our ensemble-based approaches for providing richer information transfer for the student
model. Additionally, classical ensemble techniques such as Bagging and Boosting can
contribute to our study for further analysis.
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