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Abstract: For traditional Fourier transform (FTS), its integral sampling usually meets the Spectral
Modulation Transfer Function (SMTF) criterion. However, for bandpass-sampling Fourier transform
spectroscopy (BPS-FTS), based on our analysis, the integral sampling condition derived from the
Spectral Modulation Transfer Function (SMTF) is excessively stringent. In other words, the interval
of the integral sampling time that fulfills the tolerance requirements for the reconstructed spectrum
is very narrow. There are numerous integration sampling time intervals outside this range that
still meet the tolerance requirements for the reconstructed spectrum. In this paper, through theo-
retical modeling, we propose a method based on average |SMTF| as the selection criterion for the
integration sampling time. Through simulation analysis, it is evident that the intervals and range
of the integral sampling time obtained via this method are more accurate, ensuring the tolerance
requirements of the reconstructed spectrum. Under these intervals, when conducting integral sam-
pling on the interferogram, the spectral deviation of the reconstructed spectrum is minimal, and the
Spectral Correlation Mapper (SCM) is nearly equal to one. This indicates that compared with the
SMTF criterion in traditional FTS, this method is more suitable for the characteristics of BPS-FTS.
The analysis in this paper can provide theoretical and simulation support for the implementation
of BPS-FTS.

Keywords: FTS; bandpass sampling; integral sampling time

1. Introduction

FTS has been widely applied in various fields, including scientific research, medicine
manufacturing, gas sensing, and material analysis [1–6]. In order to improve interferogram
modulation, post-dispersed Fourier transform spectroscopy has been proposed and compre-
hensively explored, finding successful applications in astronomical observations; however,
at this time, interferogram sampling is still based on the Nyquist sampling theorem. Subse-
quently, following the development of bandpass sampling theory, this method has been
applied for the analysis of post-dispersed FTS, known as BPS-FTS. According to bandpass
sampling theory, the interferogram from post-dispersed FTS has the characteristics of a
small number of sampling points and a large sampling interval along the optical path
difference. Due to its attractive advantages, BPS-FTS has been widely studied and different
types of BPS-FTS have been proposed [7–15]. Compared to post-dispersed FTS, BPS-FTS
has many theoretical issues and technical challenges that still need to be analyzed and
addressed, which arise from bandpass sampling and limit the implementation of BPS-FTS.
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However, whether FTS is conducted using post-dispersed FTS or BPS-FTS, in order to
ensure a high signal-to-noise ratio of the reconstructed spectrum, each sampling point of
the interferogram needs to reach a sufficient optical energy. As a result, each sampling point
is typically held for a certain integration time during interferogram sampling, leading to
the hypothetical impulse sampling becoming rectangular sampling when the optical path
difference (OPD) changes with time. Normally, a longer integration time in interferogram
sampling results in a higher signal-to-noise ratio in the reconstructed spectrum. For
traditional FTS, the integration time can be set arbitrarily as long as the interval between
two sampling points satisfies the Nyquist sampling theorem, ensuring that the restored
spectra fall within the acceptable error range of the spectrum. However, for BPS-FTS,
since it adheres to the bandpass sampling theorem, its sampling interval is considerably
larger than that mandated by the traditional Nyquist sampling theorem. While it offers the
potential for a longer integration time, it remains unclear whether this integration time can
be set arbitrarily, as in the case of Nyquist’s theorem. It is also unknown whether arbitrary
settings will cause distortion of the spectrum. On the other hand, the longer integration
sampling time may lead to the interferogram not satisfying the requirements of bandpass
sampling theory. Therefore, it is worth determining what kind of integration sampling time
is suitable for BPS-FTS. However, no studies in the existing literature have addressed this
issue. Therefore, integral sampling in the context of BPS-FTS has been studied through
theoretical modeling, analysis, and simulation in this paper. It is hoped that this work can
provide theoretical and simulation support for the implementation of BPS-FTS.

In this study, a BPS-FTS method based on Michelson moving mirror FTS [14] is used for
modeling and simulation. By employing bandpass sampling [16–18] instead of traditional
Nyquist sampling [19–24] for each narrowband spectrum, we can reduce the number of
sampling points across the entire optical path difference of the interferogram. We provide a
theoretical derivation of changes in the interference model caused via integral sampling
under bandpass sampling theory. Furthermore, using the SMTF criterion [25–27], we
discuss and analyze suitable integral sampling conditions that meet the distortion tolerance
for the reconstructed spectrum. Sampled interferograms with different integral sampling
times and the corresponding reconstructed spectra are also modeled and analyzed. How
the accuracy of the reconstructed spectrum varies with the integral sampling times of
the interferogram is investigated, and a new criterion for determining a suitable integral
interferogram sampling time for BPS-FTS is acquired. The simulation results demonstrate
that the proposed criterion is more universally applicable for integral time sampling
in BPS-FTS.

2. Principle of BPS-FTS

Figure 1 shows the BPS-FTS scheme based on Michelson moving mirror FTS [14],
which is commonly referred to as time-modulated FTS. In this spectrometer, a grating
is introduced into the interference path, dividing the broad spectrum into a sequence of
narrow spectra. This allows for bandpass sampling of each interferogram corresponding to
each narrowband spectrum, resulting in a substantial decrease in the number of sampling
points for each interferogram. Simultaneously, bandpass sampling can widen the OPD
sampling interval and reduce the sampling frequency.

While the moving mirror undergoes a uniform reciprocating motion, each pixel of the
linear array sensor produces a complete interference signal corresponding to a narrowband
spectrum during one-way linear motion. After applying Fourier transforms to the sampled
interference signals from each pixel, a series of reconstructed narrowband spectra can be
generated. These reconstructed narrowband spectra can be organized in wavenumber
order, following which their intensities can be summed to obtain the spectrum for the entire
range of the spectrum. Figure 2a illustrates the operating principle of BPS-FTS. Figure 2b
illustrates the calculation steps of the reconstructed spectrum for each pixel.



Appl. Sci. 2024, 14, 1009 3 of 16

Figure 1. Schematic diagram of the principle of BPS-FTS.

Figure 2. Cont.
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Figure 2. (a) Operating principle of BPS-FTS, the blue arrow represents that the OPD is constantly
changing. (b) The calculation steps of the reconstructed spectrum for each pixel.

Ideally, the diffraction effect of the grating disperses the entire spectrum detected by
the sensor into a continuous distribution of monochromatic light. This monochromatic light
is systematically sampled at uniform wavelength intervals by a linear array sensor, where
each pixel corresponds to a specific narrow segment of the spectrum. Assuming that the
range of the spectrum for pixel j, represented in wavenumbers, is denoted by ν

j
max ∼ ν

j
min,

we can apply the fundamental theory of FTS to express the interference signal received by
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pixel j, as indicated in Equation (1), with B(ν) representing the incident light intensity and
x representing OPD. As x continuously varies within a specified range, Equation (1) allows
us to generate the complete interferogram curve within a maximum OPD range.

I j(x) =
1
2

ν
j
max∫

ν
j
min

B(ν)[1 + cos(2πνx)]dν. (1)

In conventional FTS, the interferogram is typically sampled following the Nyquist
sampling theorem, where the minimum frequency of the measured signal is considered to
be zero. However, in practical applications, the measurable spectrum is usually limited
to a finite bandwidth. Bandpass sampling theory allows the interferogram to be sampled
beyond the constraints of the Nyquist sampling theorem, ensuring that the spectrum is
reconstructed without introducing aliasing. Assuming incident light with a spectrum range
of νmin to νmax (herein, νmin = 1/λmax and νmax = 1/λmin), the sampling interval ∆x for
the interferogram can be determined using Equation (2) [9,10,14], where m is any positive
integer less than or equal to νmax/(νmax − νmin). When m = 1, this condition corresponds to
the Nyquist sampling condition, which has been widely studied. Therefore, the theoretical
analysis in this paper is limited to positive integers for m within the range [2, mmax].

m − 1
2νmin

≤ ∆x ≤ m
2νmax

. (2)

Ideally, the sampled interferogram of a BPS-FTS system can be understood as the
convolution of an ideal interferogram with a one-dimensional comb function. However,
in practical BPS-FTS systems, in order to ensure that the sampled interferogram and the
reconstructed spectrum satisfy the SNR requirement, each sampling point of the interfero-
gram needs to be held for a short duration. Consequently, each point of the actual sampled
interferogram can be considered as the integral of the product of the ideal interferogram
and a rectangular function, where the width of the rectangular function corresponds to
the integration time. When the spectrum reconstruction accuracy is not a concern, the
rectangular sampling width can assume any value within the sampling interval ∆x, as
determined using Equation (1). However, when considering the spectrum reconstruction
accuracy, the sampling width is usually restricted to a reasonable range. Improperly setting
the sampling width can result in the distortion of the reconstructed spectrum. Therefore,
it is essential to conduct a theoretical analysis to determine an effective integral sampling
width that can satisfy the accuracy tolerance for spectrum reconstruction.

3. Analyzing Suitable Sampling Conditions for BPS-FTS

In the context of BPS-FTS, we consider that the spectrum corresponding to each pixel
(denoted by j) is monochromatic light. In an ideal scenario, the interferogram detected
by this pixel, which continuously evolves over time, takes the form of a series of cosine
curves. Sampling this interferogram at perfectly equidistant intervals across the entire OPD
range, assuming that the OPD corresponding to a sampling point (denoted by i) is xj

i , yields
an ideal sampling function comprising a series of impulse functions. However, practical
sampling necessitates maintaining each sampling point for a certain integration time (but
the OPD is still changing at this time), in order to accumulate sufficient energy and meet the
signal-to-noise ratio requirements. This leads to the utilization of a rectangular sampling
function. Figure 3 provides a schematic representation of monochromatic light sampling.
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Figure 3. Schematic diagram of monochromatic light interferogram sampling. The black curve
represents the ideal interference signal collected at pixel j. The red rays represent the ideal sampling
function under ideal conditions. The green curve represents the sampling function under integral
sampling conditions.

Assuming that the moving mirror moves at a constant speed s during the sampling
process and the integration time for each sampling is ∆t, the corresponding change in
OPD is 2s∆t. The interference intensity obtained at sampling point xj

i is represented in
Equation (3):

I
(

xj
i

)
= 1

2

xj
i+s∆t∫

xj
i−s∆t

B(ν) cos(2πνx)dx

= 1
2 B(ν) · 1

πν cos
(

2πνxj
i

)
sin(2πνs∆t)

= B(ν) · s∆t · cos
(

2πνxj
i

)
sinc(2πνs∆t)

. (3)

Following the definition of SMTF for FTS, the SMTF corresponding to Equation (3)
forms a sinc function. According to the SMTF criterion, it can be deduced that when
the value of the SMTF decreases to within 90% of its maximum value [28–30], the error
tolerance of the reconstructed spectrum derived from the interferogram is deemed to be
acceptable. In other words, the accuracy of the reconstructed spectrum can be considered
precise. In this scenario,

SMTF = sinc(2πνs∆t) ≥ 0.9. (4)

In practical operations, each pixel j in BPS-FTS typically corresponds to a range of the
spectrum, denoted by [νmin, νmax]. According to Equation (2), in this context, for any valid
m, the corresponding range of sampling interval ∆x is

[
m−1
2νmin

, m
2νmax

]
. We define d_∆x as the

range covered by this interval, which is defined as

d_∆x =
m

2νmax
− m − 1

2νmin
. (5)

In this case, for any m that satisfies this condition, the corresponding sampling interval
can be expressed as

∆x =
m

2νmax
− k · d_∆x =

(1 − k)m
2νmax

+
k(m − 1)

2νmin
, (6)

where 0 ≤ k ≤ 1.
If the integration sampling time is ∆t, then the sampling width of the rectangular

function is 2s∆t = r∆x(0 ≤ r ≤ 1). For any wavenumber ν within [νmin, νmax], the
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integrated sampling interferogram corresponding to Equation (3) can be updated using
Equation (7):

I
(

xj
i

)
= B(ν) · cos

(
2πνxj

i

) sin
{
πνr

[
(1−k)m
2νmax +

k(m−1)
2νmin

]}
2πν

= 1
2 B(ν) · cos

(
2πνxj

i

)
sinc

{
πνr

[
(1−k)m
2νmax

+ k(m−1)
2νmin

]}
· r
[
(1−k)m
2νmax

+ k(m−1)
2νmin

] . (7)

The SMTF at this point is

SMTF = sinc
{
πνr

[
(1 − k)m

2νmax
+

k(m − 1)
2νmin

]}
. (8)

From Equation (8), it is evident that, for any wavenumber ν within the range [νmin, νmax],
the SMTF associated with the integrated sampled interferogram is influenced by the val-
ues of m, k, and r. Different settings for these three parameters introduce variations
in the SMTF, resulting in differences in the interferogram, which in turn has an im-
pact on the reconstructed spectrum. It can be observed, from Equation (8), that when
r = p × 1

v
[
(1−k)m
2νmax +

k(m−1)
2νmin

] = p × 2νmaxνmin
v[(1−k)mνmin+k(m−1)νmax]

(where p is a non-negative integer),

then SMTF = 0. In this scenario, regardless of the variation in the OPD, a precise inter-
ferogram corresponding to the wavenumber spectrum cannot be obtained, rendering the
reconstruction of the spectrum infeasible. In other words, if interferograms are obtained
for different r values within 0 ≤ r ≤ 1 and used for spectrum reconstruction, the resulting
spectrum presents maximum distortion with a period of T, as shown in Equation (9).

T =
2νmaxνmin

v[(1 − k)mνmin + k(m − 1)νmax]
(9)

Within 0 ≤ r ≤ 1, there are N = 1
T cycles, and when m and k are fixed, the SMTF

range shifts away from its peak position and decreases rapidly as r increases. The range
that meets the error tolerance for spectrum reconstruction also significantly contracts. By
combining Equation (4) with Equation (8), we can determine the range of r, as described in
Equation (10):

r ≤ 1
2ν

· 1
(1−k)m

νmax
+ k(m−1)

νmin

. (10)

Considering that the wavenumber range ν is constrained within [νmin, νmax], we can
establish a further constraint on the values of r to ensure that interferograms corresponding
to all wavenumbers within the entire range of the spectrum can be accurately reconstructed
within the defined error tolerance. This constraint is expressed in Equation (11):

r ≤ 1
2νmax

· 1
(1−k)m

νmax
+ k(m−1)

νmin

=
1
2
· νmin

(1 − k)mνmin + k(m − 1)νmax
. (11)

Based on bandpass sampling theory, each positive integer m has an associated interval
that meets the SMTF criterion. For varying values of k and m, the corresponding values
of r will fall within distinct intervals that satisfy the SMTF criterion constraint. When we
set rlim = 1

2 · νmin
(1−k)mνmin+k(m−1)νmax

, accurate spectrum reconstruction becomes possible if
the rectangular sampling width remains within the range of 2s∆t ≤ rlim∆x, as shown in
Equation (12):

2s∆t ≤ 1
2
· νmin

(1 − k)mνmin + k(m − 1)νmax
∆x(0 ≤ k ≤ 1). (12)

However, exceeding this range with the rectangular sampling width might result
in the sampled interferogram failing to meet the SMTF constraint, leading to distorted
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reconstructed spectra. It is important to note that the aforementioned analysis explores suf-
ficient conditions for approximate and accurate spectrum reconstruction under rectangular
sampling conditions, but these cannot be considered as necessary conditions.

Further analysis revealed that, when the data are under-sampled, employing the
average SMTF instead of the maximum SMTF provides a more effective means of evalu-
ating sampling quality [31]. Given that bandpass sampling is a classic example of under-
sampling, in contrast to Nyquist sampling, the SMTF criterion should be adjusted to employ
the average SMTF value rather than the maximum SMTF value; specifically,

|SMTF| ≥ 0.9SMTF = 0.9sinc
{
πνr

[
(1 − k)m

2νmax
+

k(m − 1)
2νmin

]}
(13)

When the value of r satisfies Equation (13), the conditions for approximately accurate
restoration of the spectrum can be met. Combined with the above analysis, according to
the nature of the sinc function, since the sinc function has periodic zero-crossing points,
then the r value that meets the conditions for approximately accurate restoration of the
spectrum will appear periodically in the interval confirmed by two adjacent zero-crossing
points. When |SMTF| < 0.9SMTF in a certain interval, there is no r in that interval and
subsequent intervals that can accurately restore the spectrum.

To establish a more suitable understanding of the relationship between the sampling
integration time and the accuracy of the reconstruction of the spectrum, Chapter 4 delves
into the theoretical modeling and simulation of the interferogram integration sampling
process. The influence of rectangular sampling functions corresponding to various inte-
gration durations on the reconstructed spectrum is examined. A comparative analysis is
conducted, aligning these results with the theoretical insights obtained in this section. This
comparative analysis serves as a foundation to establish integration sampling parameters
for practical systems.

4. Simulation Analysis and Verification

To assess the influence of integration sampling time on the interferogram and the
resulting reconstructed spectrum, we performed the simulation using Matlab, its version
number is ‘9.8.0.1873465 (R2020a) Update 8’. We used the “MATLAB and Simulink Student
Suite” and “MATLAB and Simulink Student Suite” toolboxes.

In the simulation, we refer to the standard solar spectrum and randomly select a part
as the input spectrum of any pixel for analysis to ensure the randomness of the simulation
analysis. This particular spectrum spanned the wavenumber range from 4875.77 cm−1 to
4884.81 cm−1, and its spectral profile is presented in Figure 4. In this context, in accordance
with Equation (2), m can assume any positive integer value up to and including 540.
Without loss of generality, the simulation results of other pixels are similar to this pixel.

Figure 4. Input spectrum. The simulations in this paper are all based on this input spectrum.
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(1) SMTF analysis

Without loss of generality, we randomly selected m = 50 to investigate the connection
between integration sampling time and SMTF under the condition k = 0, resulting in the
adjusted SMTF expression given in Equation (14):

SMTF = sinc
{
πνr

[
(1 − k)m

2νmax
+

k(m − 1)
2νmin

]}
= sinc

(
πνr

50
2νmax

)
. (14)

SMTF curves were then generated for each wavenumber ν within the range 0 ≤ r ≤ 1,
which are shown in Figure 5.

Figure 5. The SMTF for each wavenumber at different integration times.

As the range of the spectrum was extremely narrow, the SMTF could be approximated
using Equation (15):

SMTF = sinc
(
πνr

50
2νmax

)
≈ sinc(25πr). (15)

According to the analysis in Section 3, it is apparent that, within the range of 0 ≤ r ≤ 1,
the SMTF is shown in Figure 6. When Equation (13) is satisfied, the spectrum can be
accurately restored. We marked the range of r that satisfy this criterion in Figure 6.
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Figure 6. SMTF values for different integration times. In this case, k = 0 and m = 50. This figure
shows the SMTF curve. The blue curve in the figure represents the values of SMTF within the range
where 0 ≤ r ≤ 1, while the red curve represents the values of SMTF within the blue curve that satisfy
Equation (13).
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From Equation (9) and Figures 5 and 6, it is evident that SMTF presented zero crossings
with a period of T ≈ 0.04. This implies that significant distortion occurs in the spectrum
when r is an integer multiple of 0.04. In the corresponding period, some values cover
the tolerance requirements of the restoration spectrum. However, as the integration time
increases, because the value range that satisfies the condition of Equation (13) becomes
smaller and smaller, the values of r that can meet the tolerance of the restoration spectrum
accuracy become smaller and smaller. Starting from the 18th interval, there will be no r
that can meet the restored spectrum tolerance requirements.

In order to verify the above conclusion, we conducted a simulation analysis of the
interferogram and the reconstructed spectrum with r = 0.8 = 20T. Figure 7 presents the
interferogram, with a maximum OPD of 2.5 cm and a sampling interval of 0.0051 cm. The
data in the figure indicate that, at this point, the interferogram error was at its maximum.
Figure 8 displays the reconstructed spectrum. During spectrum reconstruction, zero-
padding was applied to the interferogram to ensure the smooth display of the reconstructed
spectrum curve, facilitating accurate assessment of the similarity between the reconstructed
spectrum and the input spectrum. This zero-padding corresponded to data interpolation
in the dimension of the reconstructed spectrum and preserved the information of the
spectrum. The reconstructed spectrum clearly exhibited significant aliasing, leading to
substantial distortion when compared to the shape of the input spectrum.
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Figure 7. Comparison between the interferogram at r = 0.8 and an ideal interferogram. The black
curve represents the ideal interferogram after normalization, while the green curve represents the
interferogram normalized at r = 0.8.

To quantitatively analyze the accuracy of the reconstructed spectrum, we employed
the spectral relative deviation method to calculate the relative deviation between the
reconstructed spectrum and the input spectrum. Additionally, the SCM method was used
to assess the similarity between the reconstructed spectrum and the input spectrum, with
the aim of quantitatively evaluating the accuracy of the restored spectrum under different
sampling integration times [14]. Equation (16) provides the formula for calculating the
relative deviation:

Rerror =
1
N

N

∑
n=1

|S′
n − Sn|

Sn
× 100%, (16)

where S′
n is the reconstructed spectrum, Sn is the standard spectrum, and N is the number

of segments of the spectrum.
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Figure 8. Reconstructed spectrum at r = 0.8. The black curve represents the input spectrum, while
the green curve represents the normalized reconstructed spectrum at r = 0.8.

SCM is derived from the Pearson correlation coefficient, the definition of which is
given in Equation (17):

RS,S′ =

N
∑

n=1
(S′

n − µS′
n
)(Sn − µSn)√

N
∑

n=1
(S′

n − µS′
n
)2 N

∑
n=1

(Sn − µSn)
2

, (17)

where S′
n is the reconstructed spectrum, µS′

n
is the mean of the reconstructed spectrum, Sn

is the input spectrum, and µSn is the mean of the input spectrum.
To mitigate the impact of the Gibbs effect at both ends of the spectrum on the accuracy

of the reconstructed spectrum, we excluded a small portion of the data (those with relatively
minor amplitudes). Calculations using Equations (16) and (17) revealed that, when r = 0.8,
the spectral relative deviation reached 39.29%, while the SCM was only 63.76%. These
results demonstrate that the accuracy of the reconstructed spectrum is notably poor in
this instance.

Based on the earlier analysis, it was deduced that, within the range of 0 ≤ r ≤ 1,
the reconstructed spectrum exhibited significant distortion with a periodicity of T ≈ 0.04,
encompassing a total of N = 1

T = 25 cycles. This is corroborated by the simulation results
of spectral relative deviation and SCM, depicted in Figures 9 and 10. We also found that
under the r value marked in Figure 6, the relative spectral deviation and SCM of the
corresponding restored spectrum were within the tolerance range. This also proves that the
criterion of Equation (13) is more applicable to BPS-FTS than Equation (11). As r increased,
the spectral relative deviation generally increased, the SCM decreased, and the likelihood
of reconstructed spectra distortions also increased.

(2) Simulation Analysis of Interferograms and Reconstructed Spectra when Equation (13)
is Met.

To assess the error in the reconstructed spectra when Equation (13) is met, we arbi-
trarily selected two values of r; namely, r = 0.055 and r = 0.34. In these two instances, we
conducted simulations for interferogram sampling and the reconstruction of the spectrum
based on the input spectrum. The maximum OPD of the BPS-FTS, as well as the values of
m and k, remained consistent with the parameters mentioned earlier, ensuring the same
sampling interval as previously described. For these two distinct r values, we derived the
corresponding sampled interferograms and compared them with the ideal interferogram.
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The results are depicted in Figure 11. Notably, these figures reflect the r values, and the
normalized sampled interference data aligned closely with the ideal interference data.

Figure 9. Spectral relative deviation curve in the range of 0 ≤ r ≤ 1. The red curve represents the
range of values for r that satisfy the criterion of Equation (13).

Figure 10. SCM curve in the range of 0 ≤ r ≤ 1. The blue curve represents the range of values for r
that satisfy the criterion of Equation (13).

After performing reconstruction of the spectrum for the two cases of r = 0.055
and r = 0.34, as shown in Figure 12, we observed that under these integration sam-
pling conditions meeting Equation (13), the reconstructed spectra closely matched the
original spectrum.

Table 1 provides the calculation results for the spectral relative deviation and SCM.

Table 1. Calculation results of spectral accuracy evaluation criteria.

r=0.055 r=0.34

Spectral relative deviation 0.0556 0.0543
SCM 0.9938 0.9938
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Figure 11. (a) Interferogram before normalization. (b) Interferogram after normalization. The black
curve represents the ideal interferogram, the blue curve corresponds to the sampled interferogram
for r = 0.055, and the red curve corresponds to the sampled interferogram for r = 0.34.

From the calculation results, it is evident that, under the bandpass sampling conditions,
both r = 0.055 and r = 0.34 yielded relatively small relative deviations in the reconstructed
spectra, measuring 5.56% and 5.43%, respectively. Furthermore, the similarity between the
reconstructed spectrum and the input spectrum approached one. These simulation findings
indicate that, for BPS-FTS, satisfying Equation (13) allows for the reconstruction of the
spectrum within the specified error tolerance range when using sampled interferograms.
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Figure 12. Reconstructed spectra. The black curve represents the actual input spectrum, the blue curve
represents the reconstructed spectrum for r = 0.055, and the red curve represents the reconstructed
spectrum for r = 0.34.

5. Conclusions

The significant advantage of BPS-FTS is its ability to considerably increase the sam-
pling interval, thereby reducing the number of required sampling points. In this paper, we
conducted a comprehensive theoretical study and simulation analysis to investigate the
impact of the rectangular sampling step size on the reconstructed spectrum, thus further
leveraging this advantage. This research was conducted with the aim of offering valuable
theoretical and technical insights for the practical implementation of this technology. In the
future, we will conduct further experimental verification.

Both the theoretical analysis and simulation verification results revealed that the
actual interferogram under rectangular sampling is influenced by the SMTF of FTS. In the
reconstructed spectrum, this influence is evident as the product of the actual spectrum
and a sinc function, which varies with different values of m. The integration time has
varying effects on the reconstructed spectrum. It was observed that, when the condition
shown in Equation (12) is met, the rectangular sampling step allows for accurate spectrum
reconstruction within an acceptable error range. At this time, SMTF can reach 0.9. However,
outside of this range, there are also some values that can meet the accuracy requirements of
the constructed spectrum.

Our simulation analysis also revealed that, due to the inherent under-sampling char-
acteristics of bandpass sampling, using the average value SMTF as the MTF criterion
(specifically, Equation (13)) provides a more suitable range of integration sampling times
that meet the tolerance requirements of the reconstruction spectrum. Therefore, in the
practical implementation of systems, Equation (13) can be considered the fundamental
design and analysis criterion for integration sampling in BPS-FTS.

Our theoretical analysis further indicated that changes in integration time can cause
periodic and significant distortion in the reconstructed spectrum, with a period of T, which
is shown in Equation (9). This distortion is influenced by the values of m and k and becomes
more pronounced as the integration time increases. It can even make the relative spectral
deviation reach 39.29%, and the SCM is reduced to 63.67%. Consequently, in BPS-FTS,
while it is possible to extend the sampling interval, the integration time for sampling
cannot be arbitrarily increased based solely on the increased sampling interval; instead,
it must adhere to the constraints mentioned earlier. This also confirms the correctness of
Equation (13) from another aspect.
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