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Abstract: The integration of large-scale wind power into the power grid threatens the stable operation
of the power system. Traditional wind power prediction is based on time series without considering
the variability between wind turbines in different locations. This paper proposes a wind power
probability density prediction method based on a time-variant deep feed-forward neural network
(ForecastNet) considering a spatio-temporal distribution. First, the outliers in the wind turbine data
are detected based on the isolated forest algorithm and repaired through Lagrange interpolation.
Then, based on the graph attention mechanism, the features of the proximity node information
of the individual wind turbines in the wind farm are extracted and the input feature matrix is
constructed. Finally, the wind power probability density prediction results are obtained using the
ForecastNet model based on three different hidden layer variants. The experimental results show that
the ForecastNet model with a hidden layer as a dense network based on the attention mechanism
(ADFN) predicts better. The average width of the prediction intervals at achieved confidence levels
for all interval coverage is reduced by 34.19%, 35.41%, and 35.17%, respectively, when compared
to the model with the hidden layer as a multilayer perceptron. For different categories of wind
turbines, ADFN also achieves relatively narrow interval average widths of 368.37 kW, 315.87 kW, and
299.13 kW, respectively.

Keywords: time-variant deep feed-forward neural network; probability density prediction; spatio-
temporal distribution

1. Introduction

With energy and environmental issues becoming more and more prominent [1], global
energy is moving towards low-carbon, clean, safe, and efficient development [2]. In recent
years, the wind energy industry has been developing rapidly around the world. According
to statistics, the global newly installed capacity of wind power reached 93.6 GW in 2021.
However, wind power generation is random and fluctuating due to climate conditions.
Therefore, when large-scale wind power is integrated into the grid, it can jeopardize the
safe and stable operation of the grid [3,4]. Wind power prediction helps to optimize the
grid integration of wind power, reduce operating costs, and promote the development of
energy systems.

Existing wind power prediction methods are categorized into ultra-short-term
prediction [5,6], short-term prediction [7,8] and mid-to-long-term prediction [9,10], with
multiple prediction time dimensions. Commonly used wind power prediction models
include physical [11–14] and statistical [15–18] methods. Physical methods utilize weather
forecast data and related geographic information, and the models are generally more com-
plex. Moreover, the weather forecast data will affect the prediction accuracy to a certain
extent. They are often used for the mid-to-long-term prediction of new wind farms or
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wind farms with incomplete data. Statistical methods use learning algorithms to analyze
historical data and establish the intrinsic connections between historical data. They are
commonly used in short-term and ultra-short-term prediction.

Of the many forecasting methods, deep learning [19] algorithms are the most widely
used, mainly including time series methods [20] and artificial intelligence algorithms [21].
Common artificial intelligence algorithms include random forests [22], support vector
machines [23], extreme learning machines [24], and artificial neural networks [25]. Long-
and short-term memory neural networks [26,27] are widely used in wind power predic-
tion due to their excellent properties in analyzing time-series data. Convolutional neural
networks (CNN) [28], which have achieved good performance in image processing, have
also been applied to wind power prediction. Zhou et al. [29] proposed a combination of
RANSAC (random sample consensus) noise screening and the Seq2Seq-Attention-BiGRU
model to enhance prediction accuracy. Zhang et al. [30] proposed a novel hybrid predic-
tion method involving individual prediction model training, model ensemble, and error
correction considering temporal correlation. Chen et al. [31] proposed a variational mode
decomposition-gate recurrent unit network prediction mode to enhance the accuracy of
ultra-short wind power forecasting. Although these studies have achieved more accurate
wind power prediction results, they lacked research on the spatial characteristics of the
wind power data.

Most wind power prediction studies predict the sum of the power of all turbines in
the region, taking into account the temporal characteristics. However, the location and
contextual information of wind turbines are neglected, and consideration of the variability
of turbine power output at different spatial locations is lacking. The studies show that
considering both temporal and spatial characteristics of wind turbine data can help improve
the accuracy of wind power prediction. Yu et al. [32] proposed a spatiotemporal wind power
forecasting model, which utilized a GAT (graph attention network), GRU (gated recursion
unit), and GAT-TCN (temporal convolutional network) as the main prediction methods.
Zhang et al. [33] proposed a wind power prediction method based on spatiotemporal
correlations considering the influences of wind speed, wind direction, and temperature.
Wang et al. [34] proposed a short-term wind power forecasting method based on feature
clustering and correlation analysis, improving forecasting accuracy through data feature
clustering, variable correlation analysis, and building forecasting models.

Comprehensively analyzing existing studies, this paper analyzes the spatial distribu-
tion and dynamic contextual information of wind turbines. In order to facilitate the study of
the spatial characteristics of wind power data and better analyze the location information,
this paper predicts wind power from the perspective of wind turbines rather than wind
farms. The dataset used in this paper includes data such as the angle of the wind received
by each turbine, the environmental temperatures around the different wind turbines, the
internal temperatures of the turbine nacelles, and the orientation of each turbine nacelle.
These data are used to model the spatial correlation between the wind turbines. Predictions
for each wind turbine are obtained considering the spatial and temporal distribution of the
turbines, and then the predictions for the different turbines are summed to obtain the final
prediction. Specifically, this paper makes the following contributions:

• We detect outliers based on the isolated forest algorithm and repair them using the
Lagrange interpolation method.

• We extract the information about the neighboring nodes of individual turbines in
a wind farm based on the graph attention mechanism and construct the input
feature matrix.

• We use a time-variant deep feed-forward neural network (ForecastNet) model to
obtain the wind power probability density prediction results based on three different
hidden layer variants.

The rest of the paper is structured as follows: Section 2 presents the theoretical
knowledge of the method proposed in this paper. Section 3 presents the experiments
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using the method proposed in this paper and analyzes the experimental results. Section 4
provides the conclusions of this paper.

2. Materials and Methods
2.1. Analysis and Processing of Wind Power Data
2.1.1. Wind Power Anomaly Data Processing

Wind farm data mainly includes the spatial distribution of wind turbines, as well
as dynamic background factors such as the temperature, weather, and internal state of
turbines. Wind power data will inevitably have anomalies and missing information in
the process of collection, transmission, processing, and storage. The existence of these
anomalous data can reduce the efficiency of the model training and the accuracy of the
prediction [35]. The anomalous data need to be handled without interfering too much with
the original data.

The isolated forest algorithm quickly separates the outliers and vacancies in the data
from the normal data. Based on the length of the data path to score the data to determine
the degree of abnormality, the higher the score, the higher the degree of abnormality of
the data. By setting a certain proportion of abnormal data, the algorithm can quickly
distinguish between abnormal and normal data, and the abnormal score of the isolated
forest algorithm is calculated as shown in Equation (1).

S(x) = 2−
E(h(x))

c(x) , (1)

where S(x) is the outlier score of samples x, with a value range of [0,1]. The larger the
value, the more likely the sample is to be labeled as an outlier. h(x) is the path length of the
sample in the tree, h(x) = ln(x) + ζ, and ζ is Euler’s constant. E(h(x)) is the mean value
of the path length of the sample x in the tree. c(x) is the average search path length of the
binary tree constituted by a dataset containing x samples.

The Lagrange interpolation method is used to repair the abnormal data detected by
the isolated forest, as shown in Equation (2).

L(x) =
n

∑
i=0

yi ∏
j=0,j ̸=i

x − xi
xi − xj

, (2)

where xj corresponds to wind speed and yj corresponds to wind power. Figure 1 shows the
wind speed–power plot for the detection of anomalous data. Figure 1a shows the results
before detection and repair, and Figure 1b shows the results after detection and repair. The
orange dots are the anomalous and repaired data, respectively, and the blue dots are the
normal data.
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Figure 1. Detection and repair of wind power outliers.

2.1.2. Feature Clustering of Wind Power Data

Wind power output is closely related to factors in the weather environment. Generally,
the feature with the strongest correlation with wind power is wind speed. Figure 2 shows
the Pearson correlation heat map of wind power data features. From Figure 2, it can be
seen that the features that have the greatest degree of influence on wind turbine power
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output are wind speed (Wspd), the angle between the wind direction and the position of
the turbine nacelle (Wdir), and the pitch angle of blades 1–3 (Pab1–Pab3).
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In order to improve the intrinsic connection between wind power data and better
explore the spatial and temporal distribution state of wind power, the K-sums algorithm
is used to segmentally cluster wind turbines at different locations [36]. Based on the
features related to wind speed, wind turbines distributed in different spatial locations
are differentiated. In this paper, the wind direction factor is added on the basis of wind
speed. The wind speed and direction of the natural wind in the duration of time is
constantly changing, and the atmosphere has a certain inertia and incompressible mobility
in a small-time scale range, which leads to periodic changes in wind speed and direction
within a certain range. This is manifested by the direction of the wind force and the angle
between the wind turbine oscillating back and forth within a certain range [37].

The wind turbines are clustered into two classes based on wind speed characteristics,
defined as the class that receives higher wind speeds and the class that receives lower wind
speeds. In fact, due to geographic location and environmental factors, low output units
still exist in the high wind speed range. For this reason, the high wind speed category will
be clustered for the second time using wind direction characteristics such as Wdir and Pab
as input variables, and finally, three types of wind turbines will be obtained. Type 0 is for
high wind speeds and high output units, type 1 is for high wind speeds and low output
units, and type 2 is for low wind speeds and low output units. The results of the K-sums
algorithm clustering for visualizing the location of the wind farm are shown in Figure 3.

The spatial categorization of the three types of turbines is more concentrated, and
the existence of some outliers is due to the different topography and ground roughness
at different turbine locations. The gap between the turbines in the upper right corner of
Figure 3 is exactly a railroad.
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2.2. Wind Power Prediction Model
2.2.1. Euclidean Distance and Differential Distance

In order to obtain the spatio-temporal distribution characteristics of wind turbines,
the spatial distance perception function Gd is constructed based on the Euclidean distance,
and the differential distance perception function Gs is constructed based on the differential
similarity. Gd can reflect the explicit neighboring relationship between wind turbines, and
Gs can reflect the invisible neighboring relationship. We calculate the Euclidean distance
between two nodes, take the K nodes with the closest distance as neighboring nodes, and
form the set Nd(i) to obtain the spatial matrix A(i, j). The expression of A(i, j) is shown in
Equation (3). We calculate the differential similarity Sim(i, j) between two nodes, which is
calculated as in Equation (4), and the closest K nodes are taken as the differential proximity
nodes to form the set Ns(i).

A(i, j) =
{

1, j ∈ Nd(i)
0, j /∈ Nd(i)

, (3)

Sim(i, j) =
T

∑
t=1

((xt
i,w − xt−1

i,w ) · (xt
j,w − xt−1

j,w )), (4)

where xi,w ∈ RT×1 denotes the wind speed sequence of the i-th wind turbine.
For wind turbines, both Nd(i) and Ns(i) are combined to aggregate wind speed

information from two neighboring turbines and merged as input features to improve the
performance of the wind power prediction.

2.2.2. Graph Attention

In order to establish spatial and temporal correlations between wind turbines in
different geographic locations, an attention-based spatio-temporal graph network [38] is
introduced into the time series prediction model. In order to improve the training efficiency
and prediction accuracy of the model, the feature information needs to be filtered, and the
information with low importance is ignored [39].

Graph attention networks process information by calculating the weights of the in-
formation and weighting the information according to certain weights to aggregate the
information. Specifically, the attention score of the information is calculated using query
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vector (Query), key-value vector (Key), and value vector (Value) [40]. The formula is shown
in Equation (5):

Attention(Q, K, V) =
L

∑
i
< Q, Ki > Vi, (5)

where Q is the feature vector of the current node, K is the feature vector of the neighboring
node, and V is the feature vector of the neighboring node after mapping the weight value
W. An attention score is obtained by performing an inner product calculation on the feature
vector of a node itself and the feature vectors of the neighboring nodes, and the score is
weighted with the node’s feature vectors after a normalization operation. Specifically:

1. The central target node and neighbor node attention scores are calculated.

The formula for calculating the value of attention on node i based on the features of
node j is shown in Equation (6), where eij is the attention score between node i and node j,
a represents the correlation calculation function between nodes, hj is the output vector of
node i, and W is the weight.

eij = a(Whi, Whj). (6)

2. The weight scores are activated using the activation function.

ei,j = LeakyReLU(aT [Whi||Whj]). (7)

The calculation formula is shown in Equation (7), where || is the vector vertical splicing
operation, which splices mapped column vectors; LeakyReLU is the activation function; a
is the vector to be learnt; and aT is the transpose of vector a.

3. Weight normalization

The sum of all the weights should be 1; therefore, the attention score is normalized.
The weights are normalized for all neighboring node attention values of node i using the
softmax function. The calculation formula is shown in Equation (8).

aij =
exp(LeakyReLU(eij))

∑
k∈Ni

exp(LeakyReLU(eik))
. (8)

4. Information aggregation

The graph attention layer adds the node’s feature information and neighbor node’s
feature information according to a certain weight coefficient, performs feature extraction
to form a new node to represent the feature, and outputs the new node feature as a result.
The calculation formula is shown in Equation (9):

hi
′ = σ( ∑

j∈Ni

aijWhj), (9)

where hi
′ is the new node features, σ(·) is the activation function, and aij is the effect of

node i features on the node j attention score.
The features of the new node obtained according to the parameter W will be different

in dimension from the features of the original node, and the parameter W will map the
information of the original node to the new space.

5. Multi-head attention mechanisms

The multi-head attention mechanism introduces multiple attention mechanisms to
aggregate information, and each attention mechanism is able to focus on different features
to enhance the expression ability of the attention layer [41]. The multi-head attention
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mechanism splices the outputs of multiple nodes into column vectors to obtain the final
new node features, and the new node features are calculated using the Equation (10):

hi
′ = ||Kk=1σ( ∑

j=Ni

ak
ijW

khj), (10)

where || denotes the vector splicing operation, ak
ij represents the normalized value of the

attention score calculated by the k-th attention mechanism, and Wk is the weight matrix of
the linear transformation.

Using the graph attention mechanism to deal with the pair of spatial feature informa-
tion, combined with the multi-head attention mechanism, different attention score weights
are calculated for the target node and its neighboring nodes [42]. It is beneficial to improve
the model’s representation of spatial dimensions and reduce the risk of overfitting.

2.2.3. ForecastNet Model

ForecastNet [43] is a multi-layer feed-forward neural network model that is commonly
used to perform multi-step time series forecasting. Its network structure is shown in Fig-
ure 4, where each neuron can receive signals from the previous layer of neurons, resulting
in a multilayer structure. This neural network structure is commonly used for processing
time series data because it captures trends and periodicities in time series, as well as other
complex dynamic features.
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ForecastNet has time-varying and interleaved output properties among model neurons.
The former improves the problem of gradient vanishing during the training process of
recurrent neural network (RNN) and CNN models. The latter improves the problem of
gradient explosion and gradient vanishing that occurs during neural network training. The
root cause of gradient explosion and gradient vanishing is the reuse of chaining laws in
neural network gradient computation. The interleaved output properties of ForecastNet
are shown in Figure 5, where the upper row represents the hidden layer network, the lower
row represents the output layer, a[l] is the output vector of the l-th layer, z[l] = W [l]Ta[l−1]b[l],
W [l] is the weight matrix of the l-th layer, and b[l] is the bias parameter matrix. It breaks
down the chain multiplication chain in the chain rule into the sum of multiple terms. The
factor accumulation process is more stable than the multiplication process, which can
significantly reduce the depth of the network while alleviating the gradient explosion and
gradient vanishing problems.
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The input layer of ForecastNet is univariate or a set of multivariate inputs; the hidden
layers are different forms of feed-forward neural networks, such as common back propa-
gation (BP) networks, radial basis function (RBF) networks, etc. The architecture of each
hidden layer can be heterogeneous or identical, and the parameters of each hidden layer
are independent of each other, which are used to simulate the dynamic characteristics of the
time series. Different variants of the ForecastNet model can be obtained by using different
feed-forward networks in the hidden layer:

6. ForecastNet model with a multilayer perceptron (MLP) as the hidden layer (MLPFN)

A multilayer perceptron is a special form of a fully connected neural network. Its
main difference from a fully connected network is its hidden layer. The hidden layer can
improve the MLP’s expressive ability for the network, thus improving its ability to solve
complex prediction or classification problems. Figure 6 shows a schematic diagram of the
ForecastNet hidden layer using an MLP structure, where dense is the fully connected layer
and h represents the number of neuron nodes in each hidden layer. The hidden layer and
the output layer of the MLP network are fully connected layers. Each layer has 24 ReLU
neuron units, where the neuron nodes are fully connected.
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7. ForecastNet model with CNN as the hidden layer (CNNFN)

CNN is a kind of artificial neural network. Its structure is mainly composed of three
parts: the convolution layer, pooling layer, and dense layer, as shown in Figure 7. The main
role of the convolution layer is to extract the features, where f is the number of convolution
kernels and k is the size of the convolution kernel. The pooling layer is used for down
sampling, where s is the filling of the pooling layer and p is the step size of the pooling
layer. The dense layer is mainly used for feature classification, where h is the number of
hidden layers of the dense layer, which is composed of 24 ReLU neurons.
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8. ForecastNet model with the hidden layer as a dense network based on the attention
mechanism (ADFN)

The model is shown in Figure 8.
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In this paper, the ForecastNet model is used as the basis for wind power spatio-
temporal distribution prediction research by using a MLP, CNN, and the dense network
based on the attention mechanism in its hidden layer. Each output in the output layer is
a prediction result, and a linear output can be used to obtain a deterministic prediction
result, or a Gaussian mixture density can be used to establish a probability density output.

2.2.4. ForecastNet Methodology

There is a certain difference in the output power of each wind turbine, and it is not
only a large amount of work to build a model for each wind turbine, but also a tedious and
complicated model training process. Therefore, the prediction is based on the average wind
power. Specifically, the higher the active power (Patv) data of the wind turbines, the closer
the output of the turbines to the theoretical output, which means that it is more appropriate
to select the turbines with high wind speeds in the k-sums clustering. The data from the N
wind turbines with the highest output and high spatio-temporal correlation are selected as
the historical data for training the model. Predictions were made using these data as the
output of other turbines, and the average of the predictions was used as the prediction for
the other turbines in the wind plant.

The new node data obtained from the data processed by the graph attention network
mentioned in Section 2.2.2 contains not only the wind turbine feature data and historical
wind power data of its own node but also the feature data of the neighboring nodes. These
new node data are used as inputs to the ForecastNet model to build a prediction model
and perform multi-step predictions. Each step predicts the data for the next 12 time points,
and the prediction results obtained from the previous step are merged with the historical
features before the next moment prediction. Together, they are used as inputs to the next
model. This allows for more accurate learning of wind power trends over time while also
fully considering the correlation of wind power data between inputs and outputs and
between outputs at different moments. Following the multi-step prediction steps shown
in Figure 9, a multi-step prediction of wind power is performed to obtain the prediction
results at multiple future points in time. Adding a linear output model to the ForecastNet
output layer allows for obtaining deterministic prediction results, and adding a Gaussian
mixture density module [44] allows for obtaining probability density prediction results.
The specific process framework diagram is shown in Figure 10.

2.2.5. Evaluation Metrics

Common error evaluation metrics such as root mean squared error (RMSE), mean
absolute error (MAE), etc., are only applicable to deterministic prediction results and
cannot be applied to probabilistic prediction results. In interval probabilistic prediction,
the prediction interval coverage is a major metric for evaluating uncertain predictions. The
formula is shown in Equation (11):

Rcover =
c
v
× 100%, (11)

where Rcover is the interval coverage, c is the number of true values in the test set that fall
within the prediction interval, and v is the total number of true values in the test set.
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Interval coverage indicates the proportion of real values included in the prediction
interval. A higher coverage indicates a more accurate prediction. Under a given confidence
level, the coverage of the prediction interval cannot be lower than the requirement of the
confidence level; otherwise, the prediction result is unreliable. In wind power prediction,
interval coverage is one of the important metrics used to assess the prediction accuracy.
However, relying solely on the interval coverage is insufficient to evaluate quality of the
interval predictions; the interval width metric is also essential. The interval average width
metric describes the average width of the prediction interval, which is usually used to
assess the accuracy and effectiveness of interval prediction. When the interval coverage is
higher, the average width of the interval should be smaller, indicating that the model can
provide a more accurate range of intervals in the prediction process. Relatively speaking,
the model prediction results of the interval coverage are high-quality, but the average width
of the interval is too large may have certain defects. The calculation of the average width of
the interval metric is shown in Equation (12):

δmean =
1
v

v

∑
t=1

(Ut − Lt)

(Ymax − Ymin)
, (12)
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where Ymax is the maximum value of wind power in the test set at the prediction time t, Ymin
is the minimum value of wind power in the test set at the prediction time t, Ut is the upper
boundary of the prediction interval, and Lt is the lower boundary of the prediction interval.

The larger the average interval width indicator, the larger the power interval obtained
from the prediction, and the more valid the information it can provide. Combining the
two metrics, interval average width and interval coverage, to jointly judge the uncertain
prediction results is of practical significance.

3. Results and Discussion

In this paper, we utilize the data from the open-source dataset 2022 Long yuan Power
Group Co., Beijing, China wind farm to verify the effectiveness of the proposed method.

The proximity nodes are identified based on the spatial perception function and
differential distance perception function. The data of the neighboring turbine nodes are
aggregated based on the graph attention model to improve the model effect. Predictions
are made using the ForecastNet model with different implicit layers, predicting data at
12 time points in the future at a time. Rolling predictions are used to determine the power
generation from wind turbines in the next two days. The deterministic prediction results
are obtained using linear output at the output layer, and the interval prediction results of
wind power are obtained using a Gaussian mixture density network for the probability
density output.

Wind energy fluctuates over time, and there are differences in the variability at dif-
ferent locations in the same wind farm. A spatio-temporal graph is constructed based
on the physical spatial location of individual wind turbines, and the data of the model
are reconstructed based on the established relationships between nodes and edges. The
strong temporal correlation of the time series model is taken into account while also fully
considering the characteristics of the wind turbines in terms of their physical location
in space.

3.1. Analysis of Deterministic Prediction Results

Deterministic prediction values can be obtained by using linear output in the output
layer of ForecastNet. The RMSE and MAE metric values are calculated separately for the
ForecastNet model and the other three prediction models: support vector regression (SVR),
K-nearest neighbor (KNN), and light gradient-boosting machine (LightGBM). Tables 1
and 2 show the RMSE and MAE metrics for selecting the top 1–5 proximate wind turbine
prediction results with the highest power outputs.

Table 1. RMSE metrics for wind turbine prediction results.

Models Top = 1 Top = 2 Top = 3 Top = 4 Top = 5

ForecastNet 55.930 59.595 62.336 53.447 65.332
SVR 114.660 109.169 120.044 100.730 106.931
KNN 121.807 120.008 137.426 106.321 121.102

LightGBM 82.583 95.353 106.340 92.396 96.301

Table 2. MAE metrics for wind turbine prediction results.

Models Wind Turbine 1 Wind Turbine 2 Wind Turbine 3 Wind Turbine 4 Wind Turbine 5

ForecastNet 48.828 43.145 53.664 44.771 62.602
SVR 96.914 93.318 103.126 92.814 110.663
KNN 105.121 100.702 112.003 113.630 129.361

LightGBM 69.743 73.088 80.355 75.230 90.505
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Figure 11 demonstrates the trend in RMSE evaluation metrics for selecting differ-
ent numbers of wind turbines with the highest power output (THPO) in the multi-step
prediction process.
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From Figure 11, it can be concluded that ForecastNet obtains similar error distributions
when predicting proximity wind turbines. It indicates that the ForecastNet model achieves
relative feature aggregation in dealing with the proximity of wind turbines, obtaining simi-
lar error outputs. The RMSE within the short-term prediction is controlled to be less than
60, and its prediction trend is relatively good and stable. However, after 200 predictions,
a large error fluctuation occurs, and then the error fluctuation tends to be more stable. The
reason for this may be that the wind speed and other characteristics have fluctuated more
during this prediction. Overall, most of the prediction steps have good error performance,
and from the data in the Figure 11 and Tables 1 and 2, it can be seen that better prediction
results can be achieved by selecting the four wind turbines with the highest power outputs
for prediction.

3.2. Analysis of Probability Density Prediction Results

In order to verify the prediction effect of ForecastNet on the uncertainty of the spatio-
temporal distribution of wind power, the hidden layer of ForecastNet is improved. Different
hidden layer connection methods such as MLP, CNN, and attention mechanism fully
connected network are chosen to analyze their effects on the prediction effect. The rolling
forecast is used to predict the wind power, and each time the data of the next 12 time
points are predicted, the multi-step prediction is performed to predict the distribution
of wind power in the next 2 days. The prediction results of different prediction steps in
the multi-step prediction process were randomly selected, and the prediction intervals at
different confidence levels (80%, 85%, and 90%) are shown in Figure 12.

As can be seen from the Figure 12, the prediction intervals of each probabilistic
prediction model cover most of the real values more accurately, and the trends in the upper
and lower limits of the prediction intervals are also consistent with the trend in the wind
power. The wind power prediction intervals obtained at different confidence levels are
different, and the larger the confidence level, the wider the given prediction interval. The
specific prediction evaluation indexes are shown in Table 3.

Different variants can be obtained by changing the hidden layer structure of Forecast-
Net. As can be seen from Table 3, the highest coverage of prediction intervals at different
confidence levels is achieved by the CNNFN model, with interval coverage of reliability
metrics at 90%, 85%, and 80%, and confidence levels of 100%, 98.95%, and 95.32%, respec-
tively. However, interval coverage that is too high may cause the average width of the
intervals to rise. The average width of the intervals of the CNNFN model is also the highest
among the three models, which is 72.11 kW, 67.75 kW, and 63.31 kW at 90%, 85%, and
80% confidence levels, respectively. The wider the average width of the intervals in the case
of certainty of the interval coverage, the less practical significance of the interval prediction.
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Both the ADFN model and the MLPFN model obtained relatively good prediction results,
and the predicted interval coverages obtained are up to the pre-specified confidence level.
At confidence levels of 90%, 85%, and 80%, the interval coverage of the MLPFN model is
higher than that of the ADFN model by 4.11%, 4.28%, and 3.59%, respectively. However,
the average width of the intervals of the ADFN is narrower, which is reduced by 34.19%,
35.41%, and 35.17% compared with that of the MLPFN model, respectively, achieving better
prediction results. Combining the above analyses, it can be concluded that the prediction
effects of the ADFN and MLPFN models are better than that of the CNNFN model. The
ADFN model achieves a narrower interval prediction width based on the attention mech-
anism at the confidence level of interval coverage, and it is able to better fit the trend in
wind power. The CNNFN model, on the other hand, obtained 100% interval coverage at
a higher confidence level, making the prediction intervals less meaningful in practice.
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Table 3. Comparison of evaluation indexes for the different models.

Confidence Levels % Models Interval Coverage/% Average Width of the Interval/kW

80
CNNFN 95.32 63.31
MLPFN 87.26 50.46
ADFN 83.67 32.71

85
CNNFN 98.95 67.75
MLPFN 90.89 54.36
ADFN 86.61 35.11

90
CNNFN 100.0 72.11
MLPFN 94.54 59.95
ADFN 90.43 39.45
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In addition, predictions are made for the three different classes of wind turbines ob-
tained from the previous clustering. Figures 13–15 demonstrate the probability density
predictions of the ADFN model over the next two days. The more common probabilistic
prediction models selected for comparison at the 90% confidence level are LSTM (combina-
tion of long short-term memory network and Gaussian mixture density model) and the
QRGBM model (gradient booster using quantile output). Table 4 shows the corresponding
prediction results.

As can be seen from Table 4, the turbines in the high wind speed and high output
units and the turbines in the high wind speed and low output units achieve the given
confidence level when uncertainty prediction is made for turbines in different clusters
at the 90% confidence level. The highest interval coverage is obtained by QRGBM in the
prediction results, with 99.50%, 88.13%, and 97.01%, respectively. However, the interval
width of QRGBM is wider than the other models, reaching 452.58 kW, 358.46 kW, and
329.57 kW, respectively. The overly wide interval width will lead to less valid information
available in the prediction results. The LSTM and ADFN models have similar interval
coverages. For type 0 (high wind speed and high output units), the ADFN model obtains
a slightly narrower average width of intervals, but it is wider for other types, and its
average width of intervals increases by 5.23% and 4.34% compared to LSTM model. ADFN,
based on the attention mechanism, with a small increase in interval coverage, also increases
the average width of intervals by a certain amount, with better prediction results. For type
2 (low wind speed and low output units), the interval coverages of all three models do not
reach the confidence level, and the prediction effects are not good.
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Table 4. Comparison of forecast indicators for different wind turbines.

Wind Turbine Serial Number Models Interval Coverage/% Average Width of the Interval/kW

#1 (Type 0)
LSTM 94.52 373.43
ADFN 95.36 368.37

QRGBM 99.50 452.58

#96 (Type 2)
LSTM 83.92 300.16
ADFN 84.13 315.87

QRGBM 88.13 358.46

#128 (Type 1)
LSTM 94.43 286.68
ADFN 95.06 299.13

QRGBM 97.01 329.57

Furthermore, this paper randomly selected the probability density function of the
ADFN prediction model at different wind turbines and different time prediction points
from the multi-step prediction, as shown in Figure 16.

The straight line perpendicular to the x-coordinate axis in Figure 16 is the true value
at that prediction moment, and the curve is the probability density distribution of the
corresponding model. From Figure 16, it can be seen that the probability density curve is
complete and smooth, and there is no missing, very high, or very low values. The curve is
also not too broad or too narrow, indicating that the prediction effect of the algorithm is
appropriate. Most of the real values in the prediction results of the ADFN model fall near
the highest probability points of the probability density curve, such as when t = 167, t = 110,
t = 100, and t = 0. This indicates that the algorithm predicts with a high accuracy. When the
actual wind power value is in the vicinity of the crest of the probability density curve, it
indicates that the real value of wind power falls in the high probability interval given by
the interval prediction, and the prediction error of these moments is small. When t = 20,
the real value of wind power deviates from the center of the probability curve, and when
t = 30, the deviation is even further away. This indicates that the prediction error at these
moments is large, and the prediction interval may not even cover the real value of wind
power. In the probability density curve results obtained from the test set, the prediction
results are reliable if most of the actual values are close to the center range of the curve
and only a small number of actual values deviate farther. If most of the actual values are
deviated or even far away from the position of the peak of the probability density curve,
the obtained probability density prediction results are unreliable. In summary, the ADFN
prediction model is reliable in predicting the probability density of different wind turbines.
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4. Conclusions

This paper focuses on predicting the spatio-temporal distribution of wind power from
different turbines in wind farms and proposes a ForecastNet prediction model based on
the spatio-temporal distribution. In order to simplify the prediction, the data of N wind
turbines with the highest output power in the wind farm are selected to train the model,
where the determination of the N value is based on the deterministic prediction results.
Then, the uncertainty prediction is performed on the wind power data. The prediction
results of ForecastNet variant models based on different hidden layers are compared with
those of common prediction models. The results show that the ADFN model has better
prediction results when considering the reliability index and acuity index. In addition, the
prediction model in this paper has the following features:

• The model uses Euclidean distance and difference distance combined with a graph
attention network to aggregate spatio-temporal information on input features.

• In order to avoid the gradient problem when the neural network model predicts
wind power in the short term, the time-varying characteristics and interleaved output
characteristics of ForecastNet are used to improve the prediction effect.

• The model can predict the probability density curve of wind power at future moments,
which can provide more effective information for grid decision makers.
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Abbreviations

ForecastNet Deep feed-forward neural network
Wspd Wind speed
Wdir The angle between the wind direction and the position of turbine nacelle
Etmp Environmental temperature
Itmp Turbine nacelle internal temperature
Ndir Nacelle direction
Pab 1 Pitch angle of blade 1
Pab 2 Pitch angle of blade 2
Pab 3 Pitch angle of blade 3
Prtv Reactive power
Patv Active power
CNN Convolutional neural network
MLP Multilayer perceptron
MLPFN ForecastNet model with multilayer perceptron as hidden layer
CNNFN ForecastNet model with CNN as hidden layer

ADFN
ForecastNet model with hidden layer as a dense network based on the
attention mechanism

RMSE Root mean squared error
MAE Mean absolute error
SVR Support vector regression
KNN K nearest neighbor
LightGBM Light gradient boosting machine
THPO Wind turbines with the highest power output
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