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Abstract: This article presents the case study of our research in the field of innovative methods of
pavement subgrade quality control using the CIST (Clegg Impact Soil Tester) device. The CIST device
developed by Dr Clegg from the University of Western Australia measures soil compaction indirectly
using the CBR value. The value is evaluated based on the deceleration rate of a falling 4.5 kg weight
moving in a vertical guide roller. In Europe, for the assessment of the mechanical efficiency (bearing
capacity) of cohesive soils in the pavement subgrade, priority is given to indirect assessment methods
especially using the laboratory determination of CBR (Californian Bearing Ratio) and directly through
the implementation of a static plate load test (SPLT). This article reports the long-term results of our
research in the field of verification and validation of an innovative CIST device, which minimizes the
time, space, and economic disadvantages of SPLT. This article presents the results of determining
the field of applicability of the CIST device for cohesive soils, the correlation dependencies (CD)
of the CBR values determined by the CIST device, and, according to STN 72 1016, the CD of the
impact dynamic deformation modulus Evd from the CIV (Clegg Impact Value). We consider the most
important results of our long-term research to be a recognition of the ability of CIST to assess the
quality of cohesive soils up to a compression value of 40 mm, corresponding to a CBR of 2.2% and a
modulus of subgrade deformation of 20 MPa. A very strong correlation dependence of CBRClegg [%]
on the moisture content of clayey soils in the interval from 5 to 19% was also observed. The presented
knowledge led to the creation of relevant documents for the credible implementation of the CIST
device in the system approach for assessing the quality of the pavement subgrade.

Keywords: subgrade; pavement; Clegg Impact Soil Tester; CIST; quality control; LDD 100

1. Introduction

The insights presented in this article are convergent with the objective of Horizon
Europe, approved by the European Parliament on 17 April 2019. Thus, it has become
the European Union’s framework program for research and innovation for 2021–2027. It
represents the EU’s major initiative to support research and innovation from conception to
market application. It complements the national and regional funding. The structure of the
proposed Horizon Europe program consists of three pillars: excellent science, global chal-
lenges, and competitiveness of the European industry and innovation. A complementary
cross-cutting part of the program would introduce measures to enable the EU to exploit its
full potential in research and innovation.

In the field of road engineering, Slovakia has significant potential for innovation in
a university environment. Consequently, in recent times, the employees of the Faculty of
Civil Engineering of UNIZA have published articles on the development of innovative
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building materials [1] and their quality control [2]. Their research activities were based on
the perception of innovation, for which credible insights are provided in [3].

Schumpeter, who can be considered the founder of the theory of innovation in eco-
nomics, defined innovation as the assertion (i.e., not just invention) of a new combination
of factors of production (by entrepreneurs) [4]. Innovation involves creating a new idea and
subsequently implementing it in a new product, service, or process. It leads to dynamic
economic growth and increased employment and generates a net profit for the innovative
enterprise. Innovation is never a one-off phenomenon. It is a long and cumulative process
involving many organizational decision-making processes, from the phase of generating a
new idea to the phase of its implementation. A new idea relates to the perception of a new
customer need or a new production method. It is developed in a cumulative process of
gathering information associated with a constantly challenging business vision. The new
idea is developed and commercialized into a new marketable product or process through
the implementation process, accompanied by cost reductions and productivity improve-
ments [5]. According to [6], innovation is a process that combines science, technology,
economics, and management. It is meant to achieve novelty and ranges from the origin of
an idea to its commercialization in the form of production, exchange, and consumption.

In this case study, the authors present the research results on innovative processes
for assessing the quality of compaction of unbound structures (earth structures) of trans-
portation structures. In Slovakia, decisive methods for quality control of earth structures
are carried out in terms of STN 73 6190 [7] and STN 73 6192 [8]. The normative process
of quality assessment by static plate load testing has significant methodological, spatial,
and time limits, and the resulting economic demands. In the case of small-scale traffic
structures, the innovative methods discussed in this article can be an effective tool in this
area. For assessing the compaction quality of fine-grained cohesive soils in the subgrade,
the Clegg Impact Soil Tester (CIST) is an alternative. The presented recommendations can
be applied from the aspect of the provisions of the Road Act [9]. The Act states that the
road design and construction are carried out in accordance with the applicable Slovak
technical standards, technical regulations, or objectively determined results of research and
development for road infrastructure, or similar technical specifications.

2. Infrastructure Used to Identify Interest Correlations

This article describes the results of the author’s research on the implementation of the
CIST device in a system approach for pavement subgrade quality assessment. Dr Baden
Clegg developed the concept of the CIST device [10] in the late 1960s while lecturing at the
University of Western Australia in Nedlands (Perth). The University of Western Australia
established a marketing division in 1976 to promote the device and make research results
available for the quality control of earth construction. In honor of Dr Clegg, the CIST
output parameter was named the Clegg Impact Value (CIV). In 1993, Dr. Clegg founded
the company bearing his name. The aim was to provide a worldwide information service
supporting research and development cooperation in the quality control of earth structures
through CIST [11]. Since 2005, the authors considered the possibility of using CIST type
WS 32830 (Figure 1) for quality control of fine-grained soils and bulk materials [12].
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This device measures the compaction of soils indirectly using the CBR value. The
value is evaluated based on the rate of deceleration of a falling 4.5 kg weight moving in a
vertical guide roller. After being released from a certain height, the weight falls in the roller
and hits the surface of the foundation slab. The rate of deceleration is determined by the
force dependent on the compaction of the material at the point of compaction. The device
provides practically immediate results for the rate of compaction of the soils under consid-
eration. This eliminates the major disadvantages of other methods of compaction quality
control (determination of bulk density, static load tests, and geodetic control methods). The
operation of the device is simple, and the handling of the device is physically easy due to
its weight.

All measurements with the CIST device were carried out strictly according to the
instructions for the use of the CIST device type WS 32830 (Figure 1). The CIV measurement
was always recorded after the fourth fall of the hammer when the fifth measurement met
the required deviation.

As part of the research activities, measurements were carried out primarily on the
following models:

• Homomorphic clay subgrade models (Figure 1);
• Isomorphic pavement model built within the Scientific Research Workplace of the

Faculty of Civil Engineering of the University of Žilina (Figure 2);
• Experimental field for research on unbonded pavement structures (Figure 3).

The next device was a lightweight dynamic plate LDD 100 representing a falling
weight deflectometer (FWD) with a light weight (Figure 4).

According to the Slovak technical standard STN 73 6192, the basic formula for calcu-
lating the modulus of dynamic deformation Evd is as follows:

Evd =
π

2
·
(

1 − v2
)
· a·σ
ym1

=
π·d·σ
4·ym1

·
(

1 − v2
)

(1)

The variables in Formula (1) are as follows: a radius of the loading plate [m], d diameter
of the loading plate [m], σ contact stress [MPa], ym1 amplitude of deflection at the center of
the loading plate [m], and ν Poisson’s ratio [-].
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3. Verification of the Suitability of CIST Device for Quality Control of Cohesive Soils

The CIST device, according to the original methodology [11], can be used to evaluate
the compaction of cohesive soils for penetrations of less than 20 mm. To verify this condition
and the hypothesis that the device measures CBR values identical to or correlated with
those determined according to STN 72 1016 [13], laboratory measurements were carried
out on the following soils: sandy clay and clayey gravel. Measurements were performed on
large-scale rings with clayey soils and on the soil samples used for the CBR test (Figure 1)
according to STN 72 1016. The moisture content of the clayey soil test samples ranged from
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4 to 19%. For the moisture range indicated, the clayey soil samples reached a bulk density
level of 1710 to 1960 kg·m−3. Measurements were taken for each sample on both the upper
and lower surfaces each time.

Figure 5 illustrates the correlation dependence of the Clegg hammer push yClegg [mm]
into the clay soil samples (Figure 1) measured after its fourth fall from the CIST device and
from the Clegg impact value (CIV) read from the device after the fourth fall. Figure 5 shows
that a compaction of 20 mm corresponds to a CIV value of 7. According to the equipment
manual, the fourth compaction value can be converted into a CBR equivalent using the
following formula:

CBRClegg = (0.24·CIV + 1)2 (2)

where CBRClegg is the CBR value [%] evaluated according to Formula (2). For the identified
threshold value of CIV = 7, we obtained the following value:

CBRClegg = (0.24·CIV + 1)2 = (0.24·7 + 1)2

CBRClegg
.
= 7.2%

The dependencies of the 14 values of the correlated variables were evaluated using
several forms of correlation dependencies (CD): linear, power, exponential, and polynomial.
The linear (R = 0.9819) and exponential (R = 0.9890) correlation coefficients demonstrated
the highest correlation coefficient value. Based on the logical premise that CIV values can
take only positive values, it was possible to consider the exponential correlation dependence
only. When assessing the quality of earth structures made of fine-grained soils (clays, sands,
loamy soils, etc.), we can use the measured CIV value [-] to calculate the compression yCIST
[mm] according to Formula (3).

yCIST = 53.717·e−0.148·CIV (3)

From Formula (3), we can determine the value of CIV from the measured value of
yCIST [mm] according to Formula (4).

CIV = − ln(yCIST/53.717)
0.148

(4)

Another verified premise was to validate the ability of the CIST to accurately detect
the effect of clay soil moisture on their CBR values. The laboratory-observed dependencies
of the Clegg values on the moisture content of the tested samples are presented in Figure 6.
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A credible assessment of objectified correlation dependencies necessitates an overview
of the most commonly utilized correlation characteristics. In a broader sense, correlation is
any statistical relationship between two random variables in bivariate data. It is crucial to
note that correlation does not always imply causation. The degree of causal dependency is
expressed through the coefficient of determination, which is a fundamental output in the
regression analysis.

The correlation coefficient is a statistical measure gauging the intensity of the relation-
ship between the relative movements of the two variables. Its values range from −1 to +1.
In practice, Pearson’s correlation coefficients and Spearman’s rank correlation coefficients
are the most commonly used.

Pearson’s correlation coefficient is a statistic that measures the linear relationship
between a pair of random variables (X,Y). The formula for the Pearson correlation coefficient
R(X,Y) involves the covariance cov(X,Y) and standard deviations σX and σY, which can be
expressed as follows:

R(X, Y) =
cov(X, Y)

σXσY
=

∑n
i=1 XiYi − nXY√(

∑n
i=1 X2

i − nX2
)(

∑n
i=1 Y2

i − nY2
) (5)

where n is the size of the sample, Xi; Yi represents the individual sample points; X and Y are the
sample means. An issue with the Pearson correlation lies in its sensitivity to outliers, potentially
resulting in erroneous conclusions depending on the data. Optimal application of the Pearson
correlation coefficient requires adherence to specific criteria: the variables are quantitative and
normally distributed, the data have no outliers, and the relationship is linear [14].

The coefficient of determination, symbolized as R2, stands as the square of the cor-
relation coefficient. Its range consistently falls between 0 and 1, frequently presented as
a percentage. It provides insights into how well the regression model fits the observed
data, with a higher R2 indicating more variability. When dealing with small samples, the
coefficient of determination is often more reliable than the correlation coefficient [15].

The Spearman rank correlation coefficient is a nonparametric measure of rank correla-
tion, assessing the statistical dependence between the rankings of two variables. Unlike the
Pearson correlation, Spearman focuses on monotonic relationships, whether linear or not,
making it suitable for variables that are ordinal, not normally distributed, include outliers,
or exhibit a non-linear but monotonic relationship. A perfect Spearman correlation of +1 or
−1 materializes when each variable constitutes a purely monotonic function of the other;
the formula is as follows:

ρ = 1 −
6∑ d2

i
n(n2 − 1)

(6)
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where di is the difference between the X-variable rank and the Y-variable rank for each pair
of data, and n is the size of the sample [16]. The Spearman correlation coefficient proves to
be a superior option when at least one of the following conditions applies: the variables
are ordinal, do not adhere to a normal distribution, outliers are present in the data, or the
relationship between variables is not linear but exhibits monotonic patterns [14].

Table 1 shows the range of correlation coefficient values (rounded to two decimals)
proposed in the literature [17] for the level of correlation.

Table 1. Range of correlation coefficient values and the corresponding levels of correlation.

Range of Correlation Coefficient Values (R, ρ) Level of Correlation
(Positive or Negative)

0.80 to 1.00 −1.00 to −0.80 very strong correlation
0.60 to 0.79 −0.79 to −0.60 strong correlation
0.40 to 0.59 −0.59 to −0.40 moderate correlation
0.20 to 0.39 −0.39 to −0.20 weak correlation
0.01 to 0.19 −0.19 to −0.01 very weak correlation

0.00 no correlation

According to the presented facts, we can conclude that there is a very strong (R = 0.9625)
correlation dependence (Figure 6) of the CBRClegg values [%] on the moisture of fine-grained
soils w [%].

CBRClegg = −1.90·w + 39.13 (7)

Another hypothesis was to verify whether the CIST device provides a compatible
output with the determination of the CBR value according to STN 72 1016 [13]. Since
STN 72 1016 yields lower values than the Clegg device CBR determination, correlation
relationships of STN 72 1016 CBR values to Clegg CBR values were worked out (Figure 7).
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From Figure 7, it is evident that the CBRClegg values are significantly different from the
CBRSTN721016 values. On average, they are 1.8-fold higher. Therefore, the CBRClegg values
cannot be used directly in the pavement construction design.
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4. The Use of CIST Devise for Quality Control of Clay-Soil Pavement Subgrade
Construction

In Slovakia, according to the requirements of the Road Act [9], the process of design
and construction of asphalt pavements is codified in STN 73 6114 [18] and in the technical
conditions TP 033 [19]. According to STN 73 6114, the pavement should be designed to
resist, with the required level of reliability and the loads and impacts that can be expected
to occur during its operation. The design of the pavement is based on the traffic significance
of the road, the traffic load on the road and the climatic conditions, the technological
possibilities, the possibilities of utilizing local materials, and the protection of health and
the environment.

The asphalt pavement is the paved part of the road intended for vehicle traffic and is
composed of the following (Figure 8):

• Asphalt surface;
• Pavement subbase;
• Capping layer.
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According to the provisions of these regulations, it is necessary to use Figure 9 to
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the pavement.
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Since the direct equipollence of the CBRClegg and CBRSTN721016 values was not con-
firmed, it was necessary to consider the possibility of indirect implementation of the
CIST outputs into the dimensioning and quality control system for the construction of
the unbonded pavement structural layers. For this purpose, research on the correlation
dependencies of CBR values [%] from CIV values was carried out. The results are presented
in Figure 10.
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Figure 10 demonstrates that the calculation values of CBRClegg according to the original
1980 methodology (slightly modified in 2013) are 1.8-fold higher, on average, than the
findings of the other authors [20,21]. The article stated that this fold difference was also
objectified by our research.

Measurements of the mechanical characteristics on the surface of unbonded structural
layers of the isomorphic pavement model (Figure 11 were carried out within the dissertation
thesis of Ing. Katarina Hodasova and Ing. Juraj Musuta. The following devices were used
in the evaluation of the characteristics:

• Lightweight dynamic plate LDD 100 (Figure 11)—the device automatically evaluates
the dynamic modulus of deformation Evd (the value of the Poisson number is input);

• Clegg Impact Soil Tester–CIST (Figure 11, right)—the output is the CIV (Clegg Impact
Value) measured after the fourth fall of the impact hammer.
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5. Measurement Results of Clay Subgrade Characteristics Evd and CIV

The measurements were carried out on 17 October 2022, 21 October 2022, and 3
November 2022, and the soil moisture content was monitored during each measurement.
The results in the form of 3D plots of the measured Evd and CIV characteristics are shown
in Figures 12–14.
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Based on the measured data, linear correlations of the dependence of the impact
modulus of deformation on the CIV value were observed. From the set of data, the
following values were excluded by agreement:

• When the values were significantly affected by significant moisture (visual assessment);
• When the CIV value exceeded the Evd value, which is outside the scope of all correlations;
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• When the Evd value exceeded the CIV value by more than 2.5-fold, which is outside
the range of all correlations.

From the modified set of data, the correlations of interest were objectified. Figures 15–17
present them in graphical form.
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6. Discussion

We further consider the most important outcomes of this research to be the following:

• As part of the verification of the suitability of the CIST device, its ability to evaluate
the deformation modulus of fine-grained soils even at compressions greater than
20 mm, which is the recommended value according to the original 1980 manual for
the device, was identified. The high value of the correlation (Figure 5) of the CIST
hammer compression with the Clegg Impact Value (CIV) R = 0.9890 (very strong
correlation—Table 1) induces the assumption that the CIST can be used to assess the
quality of cohesive soils up to a compression value of 40 mm, which corresponds
to a CBR of 2.2% in the case of homogeneous cohesive soils. This fact allows its
applicability for subgrades with a bearing capacity characterized by a modulus of
deformation from 20 MPa, which is the lower value recommended by the authors for
non-motorized roads;

• Objectification of Formula (4), allowing for the back-calculation of CIV [-] from the
measured value of yCIST [mm];

CIV = − ln(yCIST/53.717)
0.148

• The dependence of CBRClegg [%] on the moisture of clay soils ranged from 5 to 19%
(Figure 6) according to the following relationship: the correlation showed a very strong
correlation (Table 1);

• Converting CBR values evaluated from CIST measurements to CBR values evaluated
according to STN 72 1016 [13];

CBRSTN72 1016 = 0.44·CBRClegg + 2.53 (8)

• In general, the Clegg methodology for CBR determination shows significantly higher val-
ues (Figure 10) than the authors’ observations and the results of foreign authors [12,20–23];

• The average CBRClegg/CBRSTN721016 ratio was found to be 1.8-fold.

The detailed measurements of the bearing capacity of the clay subsoil at the Scientific
Research Workplace were carried out using the LDD 100 and CIST devices. The detailed
results of the measurements are presented in the 3D plots in Figures 12–14. The figures
demonstrate that the isomorphic model of the natural bedrock with dimensions of 3.1 by
3.8 m was considerably inhomogeneous concerning the evaluated parameters. In total,
99 measurements were performed using the LDD 100 device and the CIST at the same
measurement points for each series of measurements. Based on the observed values
(Figures 15–17), the following correlations of the dynamic modulus of deformation Evd
with the Clegg Impact Value (CIV) were determined for different clay subsoil moisture w.

Evd,w=17.54 = 2.15·CIV − 0.97 (9)

Evd,w=18.63 = 1.97·CIV − 0.32 (10)

Evd,w=19.08 = 1.75·CIV + 0.64 (11)

All correlations from (8) to (11) demonstrated very strong correlations (Table 1). For the
credibility comparison of the linear correlation dependence directions, Formulas (9)–(11)
were transformed into a normalized form, i.e., the correlation dependencies passing through
the number 0 (Figure 18).

When assessing the quality of the pavement subbase, as with other construction compo-
nents of the transport infrastructure, it is necessary to apply a systematic approach consider-
ing legitimate economic and environmental aspects. It is also the requirements of the users,
the inhabitants of the road environment, and the economic level of society. The significant
output of the authors for the systematic approach of interest was the presentation of the
credibility correlation dependence of Edef,2 determined by the static plate load test according
to STN 73 6190 from the modulus of deformation Evd measured by LDD 100 (Figure 19) [24].
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7. Conclusions

This article represents the case study of the long-term research of the authors [12],
enabling the use of the innovative CIST (Clegg Impact Soil Tester) device for quality control
of fine-grained soils and bulk materials in Slovakia. This device can be mainly used
where the static plate load test of building constructions [7,24–26] or the plate bearing
test of pavements and subgrades by FWD [8,24] is not possible due to spatial, temporal,
or financial reasons. Homomorphic models of clay subgrades (Figure 1) and isomorphic
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models of pavements with clay and clay subgrades (Figures 2 and 3) have been constructed
in almost 20 years of research activities.

We consider the most important results of our long-term research to be as follows:

• Identification of the ability of CIST to assess the quality of cohesive soils up to a
compression value of 40 mm, corresponding to a CBR of 2.2% and a modulus of
subgrade deformation of 20 MPa;

• Objectification of Formula (4), which allows the back-calculation of CIV [-] from the
measured value of yCIST [mm];

• Finding a very strong correlation dependence of CBRClegg [%] on the moisture content
of clayey soils ranging from 5 to 19%.

Very detailed measurements of the bearing capacity of the clay subsoil in the Scientific
Research Workplace of the Faculty of Civil Engineering of the University of Zilina were car-
ried out using the LDD 100 and CIST instruments. The detailed results of 99 measurements
with LDD 100 and CIST at the same site for each series of measurements are presented
in 3D plots in Figures 12–14. Based on these in situ values, correlations of the dynamic
modulus of deformation Evd with the Clegg Impact Value (CIV) for the clay subgrade
moisture content w ranging from 17.54 to 19.08 were objectified in the laboratory results
(Figure 6).

Based on the objectified research results, the authors foresee the application of CIST
for the systematic quality control (Figure 20) of the subsoil, including its modeling [27].
These are mainly clay subsoils, consolidations of weak soils, geogrid-stabilized soils, the
performance of unsterilized and triaxially geogrid-stabilized sandy soils [28–30], and Blast-
Furnace Slag [31]. Generally, CIST can be used for the quality control of fine-grained soils
in the context of the current upgrading of the Slovak main railway lines, which are part of
the significant European corridors AGC, AGTC, and TEN-T [25,26].
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dynamic plate; FA—area factor; FT—time factor; PR—project requirements; Evd—dynamic deforma-
tion modulus; Cw—moisture coefficient (experimentally determined value as a function of moisture
content); CIV—Clegg Impact Value; Edef,2—modulus of deformation from the second loading cycle;
Ep,n—modulus of elasticity of the subgrade.

The decisive criteria for in situ measurements are the area factor FA (the possibility of
using larger measuring devices) and the time factor TF (the time required to carry out the
measurements).

Author Contributions: Conceptualization, M.D., J.M. and K.H.; methodology, M.D.; software, J.M.;
validation, M.K.; formal analysis, K.H.; investigation, J.M. and K.H.; resources, M.D. and M.K.; data
curation, J.M. and K.H.; writing—original draft preparation, M.D. and M.K.; writing—review and
editing, M.D. and K.H.; visualization, K.H.; supervision, M.D. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Education, Science, Research and Sport of the
Slovak Republic, grant number KEGA:027ŽU-4/2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. At the time the project was carried out, there was no obligation to make the
data publicly available.
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