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Abstract: Temperature prediction is important for controlling the environment in the preservation of
fresh products. The phase change materials for cold storage make the heat transfer process complex,
and the use of physical models for characterization and temperature prediction can be challenging.
In order to predict the variation of the thermal environment in a temperature-controlled container
with a cold energy storage system, we propose an LSTM model based on historical temperature data
in which the trends of temperature variations of the fresh-keeping area, the phase change material
(PCM), and the fresh products can be predicted immediately without considering the complex heat
transfer process. An experimental platform of a temperature-controlled container with a cold energy
storage system is built to obtain the experimental data for the prediction model’s construction and
validation. The prediction results based on the LSTM model are compared to the results of a physical
model. In order to optimize the input data for better prediction performance, the proportion of input
samples from the dataset is set to 80%, 50%, 20%, and 10%. The prediction results from different
input groups are compared and analyzed. The results show that the LSTM model is able to accurately
predict temperature variations of the fresh-keeping area and products, and the predicted values
are in agreement with the actual values. The LSTM-based prediction model has a higher accuracy
compared to the physical-based prediction model; the RMSE, MAE, and MAPE are 0.105, 0.103, and
0.010, respectively, and the relative error for the prediction of effective control hours of environmental
temperature is 0.92%. It is suggested to use the initial 20% of the historical temperature data as the
input to predict the future temperature variation for better prediction performance. The results of this
paper offer valuable insights for accurate temperature prediction in the fresh-keeping environment
with a cold energy storage system.

Keywords: temperature prediction; LSTM neural network; phase change materials; fresh products

1. Introduction

Cryogenic storage and transportation are considered the most effective methods
for maintaining the freshness of fruits and vegetables through temperature control [1].
However, as energy deficiency and carbon emission regulations become increasingly strin-
gent [2], the running cost of the cryogenic storage and transportation facility is rapidly
growing [3]. Cold storage technology allows for the storage of cold in phase change ma-
terial (PCM) at midnight [4,5], taking advantage of lower-priced electric power [6]. This
facilitates energy shifting, helping to fill in demand valleys, reduce peak load, and lower
grid costs. Thus, cold storage technology can be used to improve the temperature control of
cryogenic storage and transportation facilities; it can not only reduce the running cost but
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also help maintain quality by reducing temperature fluctuations in the storage or transport
process, effectively reducing the loss of fresh products [4].

Temperature control is crucial for maintaining the quality of fruits and vegetables
during storage and transportation [7]. Accurate temperature prediction can enhance the
operation of intelligent temperature control systems [8], thereby improving system effi-
ciency. Numerous studies are addressing this issue. Laguerre et al. predicted temperature
variations at different locations of a phase change refrigeration holding tank by developing
a one-dimensional analytical model [9–11]. Choi et al. developed a packaging structure
thermal resistance calculation model for predicting refrigerant mass calculations [12,13].

Temperature prediction in cold energy storage facilities is challenging because the
thermal characteristics of the PCM are complex during the cold energy release process,
which is also coupled with the ambient environment and the products [14]. On the other
hand, describing the heat transfer process and making temperature predictions for a cold
energy storage system through physical modeling can be difficult to achieve due to the
phase transition and complex heat transfer process of PCM.

An intelligent prediction method can compensate for the limitations of mathematical
methods, which often struggle with parameter fitting due to the complexity of the mecha-
nisms [15]. Moreover, using neural network models to predict the temperature of complex
heat transfer systems can simplify the prediction process and obtain temperature prediction
results without considering the specific heat transfer behavior of complex systems.

In recent years, neural network methods have been widely used in research on tem-
perature variation prediction. Peter et al. [16] predicted the thermal efficiency of a novel
straight-through evacuated tube collector using a neural network model; several artificial
neural network techniques were proposed to predict the thermal performance of an all-
glass, straight-through evacuated tube solar collector. Their research shows that the relative
error between the radial basis function (RBF) model and the actual value is the smallest,
followed by the propagation (BP) model and support vector regression (SVR) model, with
R2 values of 0.9658, 0.9059, and 0.8447, in that order, which also means that these models
can match the experimental data well. Moon et al. [17] developed an artificial neural
network (ANN) model to determine the required time for increasing the current indoor
temperature to the setback temperature. In addition, the effect of different parameters
on the prediction performance was discussed. The optimal number of hidden layers, the
optimal number of hidden neurons, the learning rate, and the moments were 1, 7, 0.6, and
0.7, respectively, and the R2 of the prediction using the ANN model was more than 0.9 after
parameter optimization.

Long short-term memory (LSTM) [18], proposed by Hochreiter and Schmidhuber in
1997, is a type of recurrent neural network (RNN) composed of memory cells and control
units. It is designed to predict future data changes by extracting historical features from
time-series data, making it well suited for time-series data processing. Chen et al. [19]
constructed an LSTM-based deep learning network to predict the temperature state of the
integrated RF module. They fine-tuned the parameters to analyze the error curves between
the predicted and observed values. In this research, the effects of the initial learning rate
and max epochs on the training time and prediction accuracy are discussed. When the
initial learning rate is 0.0001 and the max epochs is 60, the training time of the model is
3 min and 7 s, but the error does not tend to converge until after 50 epochs of training, and
the final predicted value differs significantly from the actual value, with an RMSE of 0.00225.
When the learning rate is increased to 0.0005 and the max epochs is 120, the training time of
the model exceeds the original for 6 min and 34 s. However, the error converges sufficiently,
and the accuracy of the predicted value can reach up to 98.7%, which also indicates that
the initial learning rate and max epochs are important elements affecting the convergence
of the error, the training time, and the prediction accuracy. Lei et al. [20] built a self-
supervised deep long short-term memory (SSDLSTM) network for real-time monitoring
of pot temperature in electrolysis production in the aluminum processing industry with
high accuracy and robustness. In addition, the prediction accuracy and training time of
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this model are more competitive than traditional LSTM models and other RNN models.
Xu et al. [21] built a model based on an LSTM deep learning network to predict the indoor
temperatures of a building. Their results show that the modified model of LSTM is able
to maintain the highest accuracy in both single time-step-ahead prediction and multiple
time-step-ahead prediction compared to BPNN, SVW and DT, which also means that the
modified LSTM model is more capable of reducing the relative error in the prediction
of indoor temperatures than the traditional neural network model. Hoang et al. [22]
developed four different types of LSTM models to predict the change in the temperature
demand of air and fresh products when applying the demand response in a cold room.
Their study shows that using a small amount of data can also maintain a low relative error
in temperature prediction as well as reduce the time needed for training if the temporal
characteristics of the dataset are regular enough. Meanwhile, the convolutional LSTM
model and bidirectional LSTM model are more susceptible to noise than the traditional
LSTM model and stacked LSTM model, which means that the reasonable location of the
data collection will be important for the improvement of their prediction accuracy. The use
of LSTM models in all the above studies has relatively promising results, and it can be used
to predict the temperature variation in the temperature-controlled container with a cold
energy storage system [23].

In summary, LSTM neural networks have been widely used for temperature prediction
in the complex thermal environment. In this paper, a temperature prediction model based
on an LSTM neural network is developed to predict and analyze the temperature variation
in the temperature-controlled container. The results of this paper will be helpful for
temperature control in the fresh-keeping environment with a cold energy storage system.

2. Materials and Methods

The temperature-controlled container with a cold energy storage system developed by
South China Agricultural University (Guangzhou, China) is shown in Figure 1, and the
specific dimensions of the container are shown in Table 1. The container is mainly composed
of a cold storage area, fresh-keeping area, circulating duct, and fan. The construction
material of the container is mainly glass fiber reinforced plastic (GFRP). The insulation
layer consists of vacuum insulation board (VIP) and polyurethane (PU), and the properties
of the materials are shown in Table 2. The airflow in the container is driven by the fans
(0.13 m × 0.13 m, DC, 24 V, 0.7 A), and for the adjustment of the control system, the airflow
speed when the fan is activated is standardized to 4.4 m/s. Due to the airflow circuit
between the cold storage area and the freshness preservation area, the cold energy released
from the PCM is continuously transported to the fresh-keeping area in order to maintain a
low-temperature environment of 2–8 ◦C.
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is used for the water injection (5 kg of water per plate), and a PT100 sensor was placed in 
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Figure 1. Schematic structure of a temperature-controlled container with a cold energy storage
system: 1—fresh-keeping area; 2—fan; 3—insulation surface; 4—circulating duct; 5—cold storage
area; 6—control area; 7—circulating duct; 8—cold storage plate.
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Table 1. Specific dimensions of the container.

Functional Zone Lengths/mm Widths/mm Heights/mm

Outer dimensions of the container 2000 1800 1720
Cold storage area 1535 305 1480

Fresh-keeping area 1800 1200 1460
Dimensions within the control area 300 200 1480

Table 2. Physical properties of materials.

Materials Heat Conduction
/W (m·◦C)−1

Thermal Resistance
/W−1 (m2·◦C)

Densities
/(kg·m−3)

GFRP 0.4651 0.0086 2800
VIP 0.0244 - 45
PU 0.0048 - 280

A prototype based on the temperature-controlled container with a cold energy storage
system was built and is shown in Figure 2 with a basket of fresh products, a paperless
recorder, and 14 PT100 sensors.
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Figure 2. Temperature-controlled container with a cold energy storage system: 1—circulating duct;
2—cold storage area; 3—cold storage plate; 4—paperless recorder; 5—fresh-keeping area; 6—fan
(outlet); 7—fan (inlet); 8—PT100; 9—navel oranges.

The temperatures of the air inlet and outlet, the center and the surface of the cold
storage plate, the fresh-keeping area, the external environment, and the fresh products
were collected using PT100 sensors (adhesive-type Class A, accuracy ± 0.15, temperature
range −60~180 ◦C), which were connected to a paperless recorder (SIN-R9600, accuracy
2%, Hangzhou Lianmei Automation Technology Co., Ltd., Hangzhou, China). The air
inlet velocity was measured at five different points using an anemometer (model Testo410i,
range 0.4~30 m/s, accuracy ± (0.2 m/s + 2% of the measured value)), and the average
value was taken.

The cold storage plates were made of 2 mm thick aluminum alloy (outer dimensions:
1 m × 0.04 m × 0.2 m) and are shown in Figure 3 with a 3 cm filling port on the top, which
is used for the water injection (5 kg of water per plate), and a PT100 sensor was placed in
the center of the cold storage plates to measure the PCM temperature.
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Figure 3. Cold storage plates.

To effectively utilize the results, the temperature at a representative point is often
adopted to represent the overall temperature of the cold storage area. Therefore, only the
temperatures of two pieces of the cold storage plates shown using the red points in Figure 2
were selected and averaged, and this value was used as the temperature representative
point for the real-time status of all the cold storage plates. One and two PT100 sensors were
arranged in the center and outer surface of each plate to measure its center and surface
temperatures, respectively. The material physical parameters of the PCM (water) and the
cold storage plates are shown in Table 3.

Table 3. Material physical parameters.

Material Phase Transition
Temperature/◦C

Latent Heat
Value/(J·kg−1)

Densities
/(kg·m−3)

Heat
Conduction

/(W·(m·◦C)−1)

Specific Heat Capacity of the
Solid State/(J·(kg·◦C)−1)

Specific Heat Capacity of
a Liquid/(J·(kg·◦C)−1)

Water 0 335,100 998 2.22 2050 4186
Aluminum - - 2700 237 - -

The temperature-controlled container with a cold energy storage system was placed
in an open and unobstructed outdoor environment for the test, and the air velocity of
the fan was 4.4 m/s. Before the test, the cold storage plates were placed in a freezer
(−20 ◦C) to be frozen. Sixteen cold storage plates (containing a total of 80 kg of PCM) were
moved to the cold storage area, and a basket (mesh structure with an outer dimension of
0.59 m × 0.415 m × 0.34 m) of 40 kg fresh navel oranges was placed in the fresh-keeping
area. The test was started after the door of the container was closed, and the initial
temperature at the center of the cold storage plates was −8 ◦C. The temperature control
range of the outlet temperature from the cold storage area was set at 5~10 ◦C, which was
reported as the best fresh-keeping temperature for navel oranges [24], and the fan was
turned off when the outlet temperature from the cold storage area dropped to 5 ◦C and was
turned on when it rose to 10 ◦C. The test was completed when the value of the temperature
at the center of the cold storage plates (PCM) rose to 10 ◦C.

The temperature at the air inlet and outlet: 2 PT100 sensors were placed at the air
inlet and outlet (one near the outlet fan and one near the inlet fan) to measure the air
temperature at the air inlet and outlet.

Ambient temperature in the fresh-keeping area: 2 PT100 sensors were placed in the
fresh-keeping area to measure the ambient air temperature.

Fresh products temperature: 2 PT100 sensors were placed at the center of the navel
oranges to measure their temperature.

Surface temperature of cold storage plates: 2 PT100 sensors were placed on the outer
surface of the cold storage plates.

Center temperature of cold storage plates: 2 PT100 sensors were placed at the center
of the cold storage plates.

The distribution of each temperature monitoring point is shown in Figure 4, and the
average of the above sensors was taken as the final value.
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3. Physical Modelling of Heat Transfer

In order to verify the accuracy of the LSTM model, the prediction results of the LSTM
model were compared with the physical model. This physical model is a differential format
based on mathematical derivation with heat balance theory [25], and the accuracy of this
model depends on the variation of heat flow inside and outside the container, as shown in
Figure 5.
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The amount of instant cold released from the cold storage plates is represented by the
following equation:

Qg = AK (Ta − Ts) (1)
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where Qg is the instant cold released from the cold storage plates, W; A is the heat transfer
area on the cold storage plates, m2; K is the surface convection heat transfer coefficient of
the cold storage plates, W/(m2·◦C); Ta is the average temperature in the cold storage area,
◦C, and is equal to the average of the inlet and outlet temperatures; and TS is the surface
temperature of the cold storage plates, ◦C.

The heat transfer is driven by the temperature difference between the inside and
outside of the insulation surface and can be represented by the following equations [26,27]:

Q2 = Awkw (Tw − Tn) (2)

kw =
1

Rw
(3)

Rw =
1
a1

+
1
a2

+
∑ xi

∑ λi
(4)

a = 1.1634
(
4 + 12

√
v
)

(5)

Aw =
√

A1 A2. (6)

In the formula, Q2 is the heat transferred due to the temperature difference between
the inside and outside of the insulation surface, W; kw is the equivalent transfer coefficient
for the whole container, W/(m2·◦C); Tw is the temperature outside the container, ◦C; Tn is
the temperature inside the container, ◦C; Aw is the heat transfer area of the container, m2;
Rw is the thermal resistance of the container, (m2·◦C)/W; a1 is the heat transfer coefficient
of the outside surface of the container, W/(m2·◦C); a2 is the heat transfer coefficient of the
inner surface of the container, W/(m2·◦C); xi is the thickness of each layer of insulation
material, m; λi is the thermal conductivity of each layer of insulation material, W/(m2·◦C);
a is the coefficient of convective heat transfer between the insulation surface and the air,
W/(m2·◦C); v is the speed of air flow in the container, m/s; A1 is the total external surface
area of the temperature-controlled container, m2; and A2 is the total internal surface area of
the container, m2.

Q3 = f Q2 (7)

Q4 = A3kw (Tr − Tw)
τr

24
(8)

Q5 = pψ
ε

24
(9)

In the formula, Q3 is the thermal load from the gap leakage, W; f is the air leakage
coefficient of the container and can be between 0.1 and 0.2 based on the airtightness of the
container [28], 0.1; Q4 is the thermal load for solar radiation, W; A3 is the area exposed to
solar radiation (generally, between 30% and 50% of the total area is chosen; we chose 50%),
m2; Tr is the temperature of the surface exposed to solar radiation (Tr = Tw + 20), °C; τf is
the time of solar radiation per day and night, h; Q5 is the heat from the fan operation, W; p
is the rated power of the fan, W; ψ is the coefficient of thermal conversion, 1; and ε is the
coefficient of fan operation time [29], 19 h.

Q6 = miqi
τi

24
(10)

Q7 = ccmc (Tc − Td)/t1 (11)

where Q6 is the respiratory heat of the navel oranges in the container, W; mii is the mass of
the navel oranges in the container, kg; qi is the respiratory heat flux of the navel oranges
in the container [30], 0.15 W/kg; τi is the time for the navel oranges to emit respiratory
heat in the container [31], 24 h; Q7 is the thermal consumption of the navel oranges in the
container, W; cc is the specific heat capacity of the navel oranges, 3.24 kJ/(kg·◦C); mc is the
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mass of the navel oranges, kg; Tc is the initial temperature of the oranges, ◦C; Td is the
temperature of the navel oranges at the end of the test, ◦C; and t1 is the time in whole tests.

Q8 = n (Q2 + Q3 + Q4) (12)

where Q8 is the thermal load of the opening and closing of the container door, W; n is
the frequency coefficient of the opening of the door, 0.5 (open the door 0 times for 0.25;
open the door 1 to 5 times for 0.5; open the door 6 to 10 times for 0.75; and open the door
11 to 15 times for 1).

The heat balance dynamic equation for the air-cooling process in the holding tank is
shown below:

cama
dTn

dt
= KA (Ta − Ts)− Q2 − Q3 − Q4 − Q5 − Q6 − Q8 − K2 A4 (Tn − Tc) (13)

where ca is the specific heat capacity of air, J/(kg·◦C); ma is the mass of air, kg; t is the time,
s; K2 is the heat transfer coefficient between the navel oranges and the air, W/(m2·◦C); and
A4 is the heat transfer area between the navel oranges and the air [32], m2.

The backward difference method, which specifies a 1 s time interval, was adopted [25]
and then solved to show the temperature variation in the fresh-keeping area.

Tn =
camaTn (t − 1) + KATs (t − 1) + (1 + f )AwkwTw (t − 1) + Q4 + Q5 + Q6 + Q8 + K2 A4Tc (t − 1)

cama + KA + (1 + f )Awkw + K2 A4
(14)

4. LSTM Neural Network Model
4.1. Principle of LSTM Model

A typical LSTM cell is shown in Figure 6, where ⊗ and ⊕ denote multiplication
and addition, respectively, by bits, xt is the input parameter at moment t, ct is the output
parameter from the memory cell at moment t, ht is the output parameter of the control
cell at moment t, ct−1 is the memorized information of the previous moment, f t is the
probability that ct− is forgotten, it is the probability that the candidate valuegenerated from
the activation function tanh xenters the memory cell, ĉt is the memory candidate value after
the current data were transformed, and ot is the probability that the current data become
the output data. The output parameter ht is not only related to the input xt but also to
the previously remembered information ct−1, and the new input xt will also prompt the
memory cells to generate updates that are carried forward [20]. The output of the implicit
layer is mapped using the function of the output layer to obtain the predicted value of the
temperature.
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The calculation formulas for the LSTM model are shown as follows:

ft = σ
[
W f · (ht−1, xt) + b f

]
it = σ[Wi · (ht−1, xt) + bi]

ot = σ[Wo · (ht−1, xt) + bo]

ht = ot · tanh(ct)

ct = Ft · ct−1 + it · c′t

c′t = tanh[Wc · (ht−1, xt) + bc]

(15)

where Wf, Wi, Wo, and Wc are the parameter matrices to be trained and bf, bi, bo and bc are
the bias terms to be trained.

4.2. Predictive Model Construction and Parameter Settings

On the basis of the historical temperature data, the LSTM was used to predict the
temperature inside the temperature-controlled container with a cold energy storage system.
Initially, 62.95 h (226,604 s) was used as the sample for the dataset, the initial 80% of the
dataset was used as the training set for training and model optimization, and the spare 20%
of the data were used as the test set to evaluate the generalization and prediction accuracy
of the LSTM model; the normalization process was carried out before inputting the data
into the model to achieve a better prediction by continuously fine-tuning the parameters
and decreasing the error [33].

The input layer contained 181,267 neurons, the output layer contained 45,317 neurons,
and the hidden layer contained 2 LSTM layers with 32 neurons in each layer. The Adam
optimization algorithm with a mean square error loss function (MSE) was adopted, the
learning rate was set to 0.01, the sample was trained 100 times, the batch size (the number
of samples selected for one training) was 19, and the temperature data from the initial 19 s
were used in each step to predict the temperature data for the next 1 s [34].

4.3. Model Assessment

In order to evaluate the prediction accuracy of the model and facilitate the comparison
and optimization of the model, the root mean square error (RMSE), mean absolute error
(MAE), mean percentage error (MAPE) [35], and the coefficient of determination (R2) were
selected as the evaluation indexes to evaluate the accuracy of the model prediction [36].
The smaller the values of the RMSE, MAE, and MAPE, the smaller the deviation of the
model prediction value compared to the real value; the closer R2 is to 1, the greater the
goodness-of-fit, which corresponds to a better model prediction performance. The specific
calculation formulas are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (16)

MAE =
1
N

N

∑
i=1

|yi − yi| (17)

MAPE =
1
N

N

∑
i=1

|yi − yi|
yi

(18)
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R2 = 1 − ∑N
i=1 |yi − yi|

2

∑N
i=1 |yi − yi|

2 (19)

where N is the number of data points in the dataset, yi is the actual value of temperature, ŷi
is the predicted value of temperature, and yi is the mean of the true values.

5. Results and Analyses
5.1. Experimental Results

The average outdoor ambient temperature during the test was 24.5 ◦C. The temper-
ature variation with time at each monitoring point is shown in Figure 7. The test was
conducted for 62.95 h. At the beginning, due to the large temperature difference between
the initial ambient environment and the cold storage plate, the temperature of the inlet,
outlet, fresh-keeping area, and fresh products dropped rapidly under the work of the
cold storage system, and it took 12.51 h for the navel oranges to be cooled down from
the initial temperature to the target temperature of 10 ◦C. This also means that the fresh
product was maintained at a lower temperature for the majority of the experiment. The
temperature-controlled interval of the outlet temperature (5~10 ◦C) lasted 50.44 h. The
average temperature of the fresh-keeping area within the temperature-controlled interval
was 8.5 ◦C, and the average temperature of the products was 8.3 ◦C, which suggests that
the retention and release rates of cold energy from the PCM allowed the temperature of the
holding area to be maintained in a suitable range for a long period. The center temperature
of the cold storage plates was maintained near the theoretical temperature of 0 ◦C (−2~2 ◦C
interval) for 46.07 h, which accounted for 73.2% of the total test duration, reflecting the fact
that the cold energy is mainly stored as the latent heat of the phase change material [37].
After 46.07 h, the temperature at the center of the plate rose faster because the PCM had
ended the phase transition process, and the value of the difference between its temperature
and the ambient temperature was greater than 8 ◦C, which formed a higher heat transfer
rate. The temperature curves of the other monitoring points changed smoothly because the
temperature difference between them and the environment was relatively small, and there
was not a high rate of heat exchange. The fan was activated 88 times (9.06–45.71 h) during
the test. The slight discrepancy observed between the center and surface temperatures
of the cold storage plates during the test could be attributed to the uniform temperature
distribution of the phase change material (PCM) during the phase transition, resulting in a
surface temperature measurement that closely approximates the center temperature.
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5.2. LSTM-Based Benchmark Model Results

The LSTM neural network model was built and trained on the PyTorch 1.3 platform to
predict the temperature in the fresh-keeping area. The prediction results and training results
of the LSTM-based temperature prediction model are shown in Figures 8 and 9, respectively.
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The training results show that the LSTM model was able to accurately track the changes
between the upper and lower limits of the temperature and predict the future temperature;
on the other hand, the predicted values were in agreement with the actual values.
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5.3. Comparison of Predicted Results

As shown in Figure 10 and Table 4, the RMSM, MAE, MAPE, and R2 of the temperature
prediction results based on the LSTM model were 0.105, 0.103, 0.010, and 0.988, respectively.
In addition, the RMSM, MAE, MAPE, and R2 of the temperature prediction results based
on the physical model were 3.857, 2.554, 0.258 and 0.346, respectively. The accuracy of the
temperature prediction model based on the LSTM was significantly higher than that of
the physical model; the RMSE, MAE, and MAPE were reduced by 3.752, 2.451, and 0.248,
respectively, the R2 improved by 0.642, and the relative error in predicting the moment of
CCB (cold chain breaking, which means the value of temperature rises to an unsuitable
range for freshness) was reduced by 3.92%. The predicted temperature trend based on the
LSTM model closely matched the actual temperature changes, indicating that the LSTM
model is more adept at forecasting time-series ambient temperature fluctuations than the
physical model of the temperature-controlled container. In addition, the physical model
describes changes in heat transfer, but hardly for more in-depth explanations, such as the
effect on temperature of some factors like the direction of airflow in the interior and the
complex changes in the rate of cold energy release during phase transitions, which may be
some of the reasons for the difference between the actual value and the predicted value.
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Figure 10. Comparison of the predictions of the two models.

Table 4. Comparison of the predictions of the two models.

Model RMSE MAE MAPE R2
Time for Temperature to Reach 10 ◦C/h

Relative Error/%
Predicted Actual

LSTM model 0.105 0.103 0.010 0.988 57.26 56.74 0.92
Physical model 3.857 2.554 0.258 0.346 53.99 56.74 4.84

6. Model Optimization

To maintain the model’s predictive accuracy while enhancing its practicality, the
number and structure of the inputs and outputs were optimized. This not only allows
for more precise future predictions of the CCB but also reduces the model’s training time
and improves its generalizability [38]. The initial 80%, 50%, 20%, and 10% of the samples
were configured as training sets, and the corresponding training and prediction results are
shown in Figure 11 and Table 5. It can be seen that the accuracy of the prediction results
of the different methods with the training set of the initial 80%, 50%, and 20% are similar,
indicating that there is no need to have a training set consisting of too many samples if
the characteristics of the time series are regular. The training time of the model decreases
significantly with a reduction in samples in the training set, but the prediction accuracy, R2,
decreases significantly only when the number of samples in the training set is the initial
10%. Using the initial 20% of the historical temperature data to predict the future 80% of
the temperature data is the most practical approach; the training time and R2 are 932 s
(15.5 min) and 0.997, respectively.
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Table 5. Comparison of prediction results for different training datasets.

Number Training
Sample/%

Training
Time/s

RMSE MAE MAPE R2

Time for Temperature
to Reach 10 ◦C/h Relative

Error/%
Predicted Actual

1 80 2487 0.073 0.066 0.007 0.994 57.11 56.74 0.66
2 50 1740 0.102 0.087 0.010 0.993 57.26 56.74 0.93
3 20 932 0.059 0.051 0.006 0.997 57.11 56.74 0.66
4 10 515 0.651 0.580 0.073 0.631 56.62 56.74 0.20

7. Applications of the Model

The LSTM model was employed to accurately capture the temperature fluctuations at
the cold energy storage source, the surface of the cold storage plates, the fresh products, and
the air inlet and outlet of the container. It predicts the temperature changes at these locations,
offers valuable insights into the timely replacement of cold storage plates, monitors the
status of the CCB during transport, and ensures optimal temperatures are maintained in
the fresh-keeping area.

The training set of the model was set to the initial 80% of the samples, and the value of
the CCB temperature of the PCM and fresh products was set to 5 ◦C and 10 ◦C, respectively.
The training and prediction results are shown in Figure 12a–e and Table 6. As shown in
Figure 12, the predicted temperature variations are all in agreement with the actual values.
As shown in Table 6, the relative errors in predicting the status of CCB in cold energy
storage sources and fresh products are 1.05% and 0.45%, respectively, indicating that the
LSTM model can accurately predict the status of CCB. In addition, the RMSE and MAE
of the temperatures of the fresh products, inlet, outlet, and surface of cold storage plates
are all below 1.000, the MAPE is below 0.1000, and the R2 of the temperatures of the fresh
products, inlet, and outlet are slightly higher, with values exceeding 0.9400, which indicates
that the LSTM model accurately predicts the temperatures of the fresh products, inlet,
outlet, and the surface of cold storage plates.
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Table 6. Training and prediction results.

Elements RMSE MAE MAPE R2

Time to Reach the
Moment of CCB/h Relative Error in

CCB prediction/%
Predicted Actual

PCM 1.442 0.975 0.121 0.450 52.98 53.54 1.05
Fresh products 0.091 0.087 0.010 0.981 61.52 61.24 0.45

Inlet 0.223 0.212 0.021 0.944 - - -
Outlet 0.041 0.029 0.003 0.999 - - -

Surface of cold storage plates 0.991 0.640 0.079 0.746 - - -

One of the reasons for the low R2 of the temperature prediction of the cold energy
storage source and surface was that the temperature data in the training set were maintained
near the phase change temperature of 0 ◦C for a long time, and the increasing trends were
not obvious, resulting in the predicted values in the test set not rising as drastically as the
actual values.

8. Conclusions

This study was based on the temperature monitoring data from a temperature-
controlled container with a cold energy storage system. A long short-term memory network
(LSTM) temperature prediction model was built and compared with the physical model.
After that, the dataset for training was optimized to achieve a more accurate prediction of
the temperature in the container, and the conclusions were drawn as follows.

Compared with the physical model, the LSTM model predicted the trend with higher
accuracy, the RMSE, MAE, and MAPE were reduced by 3.752, 2.451, and 0.248, respectively,
the R2 improved by 0.642, and the relative error in predicting the status of the CCB (cold
chain breaking) temperature was reduced by 3.92%.

The optimization results of the model dataset for the temperature prediction in the
fresh-keeping environment showed that it is recommended to use the initial 20% of the
historical temperature data to predict the future 80% of the temperature data, with a
training elapsed time and R2 of 15.5 min and 0.997, respectively.

The LSTM model was able to achieve accurate predictions of the status of CCB for
PCM in the cold storage plates and the fresh products with a relative error of 1.05% and
0.45%, respectively.

The above shows that the temperature prediction of temperature-controlled containers
with a cold storage system using an LSTM model has high accuracy. However, there
are still points that need to be improved. The LSTM model is not adept at handling
a long series of data; the prediction accuracy of the LSTM model is affected when the
time demand for temperature prediction is long. In addition, if it is possible to select the
training set separately according to the phase transition phase and the non-phase transition
phase, then this will be beneficial in improving the accuracy of the temperature prediction
and reduce the training time. Finally, it is worthwhile to test different neural network
models for temperature prediction because more efficient neural networks perform better
in applications.
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