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Abstract: This paper presents an analytical method based on the shear flow distribution law to study
the shear lag effect of thin-walled single- and double-cell box girders. The first step in this method
is to determine the box girder’s shear flow distribution. Subsequently, a series of novel improved
longitudinal displacement functions mathematically expressed as cubic parabolas are established.
The parabolic origin of these functions is located at the zero point of the shear flow corresponding to
each plate; the unknown parameters used to describe the function form can be determined according
to the shear flow distribution, the continuity conditions, and the axial force balance condition. Then,
the variational energy method is adopted to derive the governing differential equations. The shear
lag effect in thin-walled single- and double-cell box girders under several boundary conditions and
load cases is studied and analytical expressions for the shear lag coefficient are derived. Finally,
results obtained using the proposed method are validated via comparison with numerical results.
The results show that the proposed method can provide reasonable predictions for the shear lag effect
of single- and double-cell box girders, and that this method is more straightforward and practical.
In addition, the shear lag coefficients at different webs are not entirely equal, which is related to the
distance from the web to the zero point of the shear flow.

Keywords: thin-walled box girders; shear lag effect; shear flow distribution; theoretical analysis;
variational energy method; numerical simulation

1. Introduction

Thin-walled box girders are affected by a phenomenon known as the shear lag effect,
which is the non-uniform stress distribution along flanges caused by shear deformation [1,2].
This effect increases deflections and peak stresses, causing bridge cracking and collapsing [3].
This topic is well known and widely studied in the literature [4–13]. Moreover, in re-
cent decades, many scholars have adopted variational analyses to study the shear lag
effect [14,15]. Although the variational energy method is simple and well applicable, its
accuracy depends on the selected shear lag warping displacement functions. Many authors
have contributed to this.

Reissner [14] was the first to adopt the variational energy method to study the shear
lag effect and established a quadratic parabolic model to describe the normal stress dis-
tributions of rectangular box beams. However, other scholars discovered that the shear
lag warping displacement function with a cubic parabola was more suitable for analyzing
the shear lag effect of box girders [16–18]. Combining the above two models, Hu [19] and
Yu [20] proposed that the warping displacement function of top plates was a quadratic
parabola, while the warping displacement function of cantilever plates was a cubic parabola.
In addition, cosine function models were also used to address the shear lag effect prob-
lem [21]. An additional term was introduced to the cosine function model to ensure the
axial equilibrium of the single-cell box section [22], which improved the accuracy and
preciseness of shear lag analysis. Zhang [23] then defined two global modification factors
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that prevented the generation of additional axial force and bending moment caused by
shear lag warping stresses, successfully capturing the self-balancing characteristic of the
system. Additionally, the web’s longitudinal displacement was added to satisfy axial
equilibrium conditions, and independent shear lag warping displacement functions were
employed in different flanges [24,25]. Zhu [26] also considered axial force balance when
formulating the shear lag displacement model of the single-cell box girders and pointed
out that considering axial force balance yields more precise results.

However, although there have been many assumptions regarding displacement func-
tion, little attention has been paid to analyzing the shear lag effect in box girders from
the perspective of shear flow distribution, particularly in double-cell box girders. Lin [27]
focused on single-cell box girders’ shear flow distribution law and defined the shear lag
warpage function through the shear deformation law. Li [28,29] redivided the flange width
of multi-cell box girders based on the shear flow distribution before depicting the stress
distribution with the cosine function. Nevertheless, the above research reviews could
not obtain precisely accurate normal stress distributions, as they failed to reflect stress
differences at different webs for the double-cell box section, and the process of calculating
the coefficients was complex. Additionally, there is limited research on the shear lag effect
in double-cell box girders. The difference in shear lag coefficients for different web plates is
not reflected in [30,31]. The authors of [32] present only finite element simulation results
and do not offer specific displacement functions.

This paper presents an analytical method based on the shear flow distribution law to
study the shear lag effect of thin-walled single- and double-cell box girders. The first step in
this method is to determine the box girder’s shear flow distribution. Subsequently, a series
of novel improved longitudinal displacement functions mathematically expressed as cubic
parabolas are established. The parabolic origin of these functions is located at the zero
point of the shear flow corresponding to each plate, and the unknown parameters used to
describe the function form can be determined according to the shear flow distribution, the
continuity conditions, and the axial force balance condition. Then, the variational energy
method is adopted to derive the governing differential equations. The shear lag effect in
thin-walled single- and double-cell box girders under several boundary conditions and
load cases is studied, and analytical expressions for the shear lag coefficient are derived.
Finally, the results obtained using the proposed method are validated via comparison with
numerical results supplied by the ANSYS 2022 R2, a commercial finite element software.

2. The Distribution Law of Bending Shear Flow in Box Sections

Under vertical symmetrical loading, the bending shear flow significantly influences
the normal stress distribution [33]. Therefore, the distribution pattern of the shear flow
in single- and double-cell box girders was investigated in this work. Figure 1 displays
simplified thin-walled box cross sections that consist of one top plate of width 2b1, two
cantilever plates of width b2, one bottom plate of width 2b3, and several webs of height h.
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2.1. Basic Coordinate System and Solution Steps

As shown in Figure 1, a coordinate system is introduced, with the origin O located at
the section center. The Z-axis aligns with the beam’s longitudinal direction, the X-axis is
along the section’s width direction, and the Y-axis is perpendicular to the X- and Z-axis. In
addition, the cross section is symmetric about the coordinate plane Y-Z.

The steps for solving the shear flow distribution of single- and double-cell box sections
are organized as follows: first, the shear flow q0 in the open box section is calculated; then,
the additional static shear flow qi is derived using the deformation coordination relation-
ships; finally, the above two parts are added to obtain the total shear flow distribution in
the closed box section.

Notably, in-plane shear stresses are uniformly distributed along the direction of wall
thickness, and the magnitude of q0 is mainly determined by the static moment from the
free surface to the desired point [27]. The q0 can be expressed as follows:

q0 = −Q(z)Sx/Ix (1)

where Q(z) represents the cross-sectional shear force; Sx represents the static moment to the
X-axis; and Ix represents the inertial moment to the X-axis. Consider Q(z)/Ix as constant
1 to ease the calculation, and then, the value of Sx represents the magnitude of shear stress.

2.2. Shear Flow in the Single-Cell Box Girder

As can be seen from Figure 2, an opening is located at the center of the bottom plate
of the thin-walled single-cell box section. According to Equation (1), q0 can be obtained.
Meanwhile, it is easy to find that the additional static shear flow qi is zero due to the
symmetry of the single-cell box section. Consequently, the total shear flow q in the closed
box section equals the shear flow q0 in the open box section.

Figure 2 shows the distribution pattern of shear flow in the single-cell box girder, and
Table 1 lists shear flow magnitudes at critical points. The shear flow magnitude of flanges in
the single-cell box section is observed to reach its maximum at intersections between webs
and flanges and gradually diminishes towards the flanges’ interior. Eventually, it becomes
zero at the free ends of the cantilever plate and the midpoints of the top and bottom plates.
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Figure 2. Shear flow distribution of the single-cell section.

Table 1. Shear flow magnitudes of the single-cell section at critical points.

points 1 2 3 4-left 4-right 5

q 0 t2b3h2 0 −t1b2h1 t1b1h1 0
Notes: t1 represents the thickness of the top plate and cantilever plates; t2 represents the thickness of the bottom
plate; h1 and h2 represent the distances from the center axis of the section to the mid-surface of the up and down
wings, respectively.
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2.3. Shear Flow in the Double-Cell Box Girder

Two openings are inserted at the intersection of the mid web and bottom plate of
the double-cell section, and the distribution of the shear flow distribution of the open
double-cell section is given, as shown in Figure 3. It should be noted that this distribution
exhibits a positive and negative alternating phenomenon in the top plate. The position of
the zero point can be determined as follows:
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x0 =
t2b3h2 + tw2h2

2/2 − tw2h2
1/2 − t1b2h1

t1h1
(2)

where x0 is the distance from the zero point of the shear flow to the side web in the opened
double-cell section; tw1 and tw2 represent the thickness of the middle web and the side
web, respectively. After assigning the additional static shear flow q1 and q2 for the two cells,
the conditions of deformation compatibility are described as follows:∫

s1

q0

Gti
ds +

∫
s1

q1

Gti
ds +

∫
s1

q2

Gti
ds = 0 (3)

∫
s2

q0

Gti
ds +

∫
s2

q2

Gti
ds +

∫
s2

q1

Gti
ds = 0 (4)

where G represents the shear modulus, t represents the thickness, and s denotes the
curvilinear coordinate of the section profile. The additional shear flows can be derived
as follows:

q1 = −q2 = −

b2
3h2

2
+

b3t2h2h
tw2

+
x2

0h1

2
− (b1 − x0)

2h1

2
b3

t2
+

2h
tw1

+
b1

t1
+

h
tw2

(5)

Eventually, the total shear flow distribution in the closed double-cell box section can be
obtained, as shown in Figure 4. The top and bottom plates exhibit a positive and negative
alternating phenomenon in this distribution. It can be found that the zero points of the
shear flow are not situated at the center axis of each cell but at a specific location. According
to the zero points of the shear flow, the top plate is divided into two parts, the lengths
of which are b11 and b12, and the bottom plate is divided into two parts with b31 and
b32 lengths, respectively. Additionally, the distance from the zero point of the shear flow
located at the free end of the cantilever plate to the side web is b21. The above distances can
be obtained as follows:

b11 = b1 − b12 b12 = x0 +
q1

t1h1
b21 = b2 b31 =

q1

t2h2
b32 = b3 − b31 (6)
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Table 2 lists the shear flow magnitudes at critical points in the closed double-cell section.

Table 2. Shear flow magnitudes of the closed double-cell section at critical points.

points 1-left 2 3 4-left 4-right 5

q −t2b31h2 t2b32h2 0 −t1b21h1 t1b12h1 −t1b11h1

3. Box Girder’s Longitudinal Displacement Functions

Based on the shear flow distribution law obtained in the previous section, this section
established the expressions of longitudinal warping displacement functions of single- and
double-cell box girders. Three different analytical perspectives were proposed to address
the coefficients introduced before the cubic term, and constant terms were deduced.

3.1. Basic Assumptions

Some assumptions are reasonably introduced before constructing displacement func-
tion models: (1) the neutral axis of thin-walled box beam sections remains constant under
bending stresses; (2) the box girders are in the linear elastic stage, and the shear deforma-
tion out of the plane is neglected; and (3) the shear lag effect only alters the normal stress
distribution in the cross section, with no effect on the distribution of internal forces along
the beam’s longitudinal direction [34].

Based on the above considerations, the box girder’s longitudinal displacement function
is expressed as follows:

u(x, z) = −yw′(z)− y f (x)φ(z) (7)

where u(x,z) is the longitudinal displacement; w(z) is the vertical deflection; f (x) is a
distribution function corresponding to the shear lag effect; and φ(z) is the maximum
difference in the shear angle.

In addition, the shear lag effect of the box girder can be regarded as a plane stress
problem [35], and the relationship between displacement and strain can be written as follows:

ε =
∂u
∂z

γ =
∂u
∂x

(8)

where ε is the axial strain and γ is the shear strain. The bending normal stress is described
as follows:

σ = E
∂u
∂z

(9)

where σ is the bending normal stress and E is the elastic modulus.

3.2. Displacement Functions of the Single-Cell Box Girder

Considering the warping of webs, longitudinal displacement functions with their
origins being on the zero points of the shear flow in the single-cell box girder are established
as follows:
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

u11 = h1

[
w′(z) +

(
η1

x3

b3
1
+ d1

)
φ(z)

]
(0 ≤ x ≤ b1)

u12 = h1

[
w′(z) +

(
−η2

(x − b1 − b2)
3

b3
2

+ d2

)
φ(z)

]
(b1 ≤ x ≤ b1 + b2)

u13 = −h2

[
w′(z) +

(
η3

x3

b3
3
+ d3

)
φ(z)

]
(0 ≤ x ≤ b3)

u1w2 = −yw′(z) + h1(η1 + d1)φ(z) (−h1 ≤ y ≤ h2)

(10)

where u1i represents the longitudinal displacement function of single-cell box girder’s slabs:
i = 1 for the top plate, i = 2 for the cantilever plate, i = 3 for the bottom plate, and i = w2 for
the side web; ηi and di are introduced coefficients. The term ηi can be selected from three
different analytical perspectives:

(1) The first approach for selecting the coefficients for single-cell box girders (1CS) is
based on the classical cubic parabola formula [17]. The ηi can be expressed as follows:

η1 = η2 = η3 = 1 (11)

(2) The second approach of selecting coefficients (2CS) involves using the relative
magnitudes of the shear flow, which can be derived from Table 1. This is mainly due
to differences in the maximum shear flow in different flanges. The ηi can be expressed
as follows:

η1 =
b1t1h1

b1t1h1
η2 =

b2t1h1

b1t1h1
η3 =

b3t2h2

b1t1h1
(12)

(3) The third approach of selecting coefficients (3CS) involves using the relative shear
deformation of each flange. The ηi can be expressed as follows:

η1 =
b2

1t1h1

b2
1t1h1

η2 =
b2

2t1h1

b2
1t1h1

η3 =
b

2

3t2h2

b2
1t1h1

(13)

In addition, because the axial force caused by the shear lag effect is zero [24] and the
displacements and stresses are continuous. The expressions for di are derived as follows:

∮
σ1dA = 2Eφ′(z) ·


∫ b1

0 t1h1

(
η1

x3

b3
1
+ d1

)
dx +

∫ b1+b2
b1

t1h1

(
−η2

(x − b1 − b2)
3

b3
2

+ d2

)
dx

−
∫ b3

0 t2h2

(
η3

x3

b3
3
+ d3

)
dx +

∫ h2
−h1

tw2h1(η1 + d1)dx


= 2Eφ′(z) ·

 t1h1b1

(η1

4
+ d1

)
+ t1h1b2

(η2

4
+ d2

)
−t2h2b3

(η3

4
+ d3

)
+ tw2(η1 + d1)hh1

 = 0

(14)


d1 = −(A1h1η1 + 4A2h1η1 − 3A2h1η2 + 4A3h1η1 + 3A3h2η3 + 4Awh1η1)/(4h1 A)

d2 = η1 + d1 − η2 d3 = −h1

h2
(η1 + d1)− η3

(15)

where A1 denotes the area of the top plate, A2 denotes the area of the cantilever plate; A3
denotes the area of the bottom plate; Aw denotes the area of the web plate; and A denotes
the total cross-sectional area.
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3.3. Displacement Functions of the Double-Cell Box Girder

Similarly to single-cell box girders, the longitudinal displacement functions of double-
cell box girders are constructed as follows:

u21 = h1

[
w′(z) +

(
−η1

(x − b11)
3

b3
11

+ d1

)
φ(z)

]
(0 ≤ x ≤ b11)

u22 = h1

[
w′(z) +

(
η2

(x − b11)
3

b3
12

+ d2

)
φ(z)

]
(b11 ≤ x ≤ b1)

u23 = h1

[
w′(z) +

(
−η3

(x − b1 − b21)
3

b3
21

+ d3

)
φ(z)

]
(b1 ≤ x ≤ b1 + b2)

u24 = −h2

[
w′(z) +

(
−η4

(x − b31)
3

b3
31

+ d4

)
φ(z)

]
(0 ≤ x ≤ b31)

u25 = −h2

[
w′(z) +

(
η5

(x − b31)
3

b3
32

+ d5

)
φ(z)

]
(b31 ≤ x ≤ b3)

u2w1 = −yω′(z) + h1(η1 + d1)φ(z) (−h1 ≤ y ≤ h2)

u2w2 = −yω′(z) + h1(η2 + d2)φ(z) (−h1 ≤ y ≤ h2)

(16)

where u2i represents the longitudinal displacement function of double-cell box girder’s
slabs: i = 1 for the top plate of length b11, i = 2 for the top plate of length b12, i = 3 for the
cantilever plate of length b21, i = 4 for the bottom plate of length b31, i = 5 for the bottom
plate of length b32, i = w1 for the middle web, and i = w2 for the side web; ηi and di are
introduced coefficients. The term ηi can also be set from the same perspectives as the
single-cell box girder:

(1) In the first approach for selecting the coefficients for double-cell box girders (1CD),
the ηi can be expressed as follows:

η1 = η2 = η3 = η4 = η5 = 1 (17)

(2) In the second approach (2CD), using Table 2, the ηi can be expressed as follows:

η1 =
b11t1h1

b11t1h1
η2 =

b12t1h1

b11t1h1
η3 =

b21t1h1

b11t1h1
η4 =

b31t2h2

b11t1h1
η5 =

b32t2h2

b11t1h1
(18)

(3) In the third approach (3CD), the ηi can be expressed as follows:

η1 =
b2

11t1h1

b2
11t1h1

η2 =
b2

12t1h1

b2
11t1h1

η3 =
b2

21t1h1

b2
11t1h1

η4 =
b2

31t2h2

b2
11t1h1

η5 =
b2

32t2h2

b2
11t1h1

(19)

However, when considering the continuity condition, a contradiction emerges:

d5 = −h1

h2
(η1 + d1)− η4 d5 = −h1

h2
(η2 + d1)− η5 (20)

Therefore, it is necessary to correct η5, which is rewritten as follows:

η5 =
h1

h2
(η1 − η2) + η4 (21)

The coefficients di are derived as follows:
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∮
σ1dA

2Eφ′(z)
=



∫ b11
0 t1h1

(
−η1

(x − b11)
3

b3
11

+ d1

)
dx +

∫ b11+b12
b11

t1h1

(
η2

(x − b11)
3

b3
12

+ d2

)
dx

+
∫ b11+b12+b21

b11+b12
t1h1

(
−η3

(x − b11 − b12 − b21)
3

b3
21

+ d3

)
dx

−
∫ b31

0 t2h2

(
−η4

(x − b31)
3

b3
31

+ d4

)
dx −

∫ b31+b32
b31

t2h2

(
η5

(x − b31)
3

b3
32

+ d5

)
dx

+
1
2

∫ h2

−h1

tw1h1(η1 + d1)dx +
∫ h2

−h1

tw2h1(η2 + d2)dx



=

 t1h1

(
b11

(η1

4
+ d1

)
+ b12

(η2

4
+ d2

)
+ b21

(η3

4
+ d3

))
+

1
2

tw1h1h(η1 + d1)

−t2h2

(
b31

(η4

4
+ d4

)
+ b32

(η5

4
+ d5

))
+ tw2h1h(η2 + d2)

 = 0

(22)


d1 = −

A11η1 + A12η2 − 3η3 A2 + (3η1 + η2)A32 +
3η4h2 A3

h1
4A

− η2 A2 + η1 A31 + η1 Aw1 + η2 Aw2

A

d2 = d1 d3 = η2 + d2 − η3 d4 = −h1

h2
(η1 + d1)− η4 d4 = d5

(23)

where Aij denotes the corresponding plate’s area.

4. Governing Differential Equations and Boundary Conditions

The governing differential equations and boundary conditions for box girders can
be derived using the principle of minimum potential energy. This principle is expressed
as follows [7]:

δΠ = δ(V + U) = 0 (24)

where Π denotes the total potential energy; V denotes the external load potential energy;
and U denotes the strain energy. Under the vertical load, the V and U of each slab can be
expressed as follows:

V =
∫ L

0
M(z)w′′ (z)dz (25)

U =
1
2

x
t
(

Eε2 + Gγ2
)

dydz (26)

where L represents the length of the beam; M(z) represents the bending moment of the cross
section. Substituting Equation (8) into Equation (26), the strain energy can be rewritten
as follows:

U =
1
2

x
t

(
E
(

∂u
∂z

)2
+ G

(
∂u
∂x

)2
)

dydz (27)

For the single-cell box girder, substituting Equation (10) into Equation (27), the strain
energy of side webs U1w2 is expressed as follows:

U1w2 =
1
2

EI1w2

∫ L

0

[
(w′′ )

2
− 3h1(h2 − h1)(η1 + d1)

h2
2 − h1h2 + h2

1
w′′ φ′ +

3h2
1(η1 + d1)

2

h2
2 − h1h2 + h2

1

(
φ′)2

]
dz (28)

where I1w2 = 2t1w2
(
h3

2 + h3
1
)
/3 is the moment of inertia of side webs. The strain energy of

each flange U1i is expressed as follows:

U1i =
1
2

EI1i

∫ L

0

[
(w′′ )

2
+ 2w′′ φ′

(ηi
4
+ di

)
+
(

φ′)2
(

η2
i

7
+

ηidi
2

+ d2
i

)
+

9Gη2
i

5Eb2
k

φ2

]
dz (29)
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where I1i = 2bktkh2
k is the inertia moment of each flange after ignoring its self-inertia

moment; tk is the thickness; hk is the distance from each plate to the neutral axis; and bk is
the width.

For the double-cell box girder, substituting Equation (16) into Equation (27), the strain
energy of the middle web U2w1 is expressed as follows:

U2w1 =
1
2

EI2w1

∫ L

0

[
(w′′ )

2
− 3h1(h2 − h1)(η1 + d1)

h2
2 − h1h2 + h2

1
w′′ φ′ +

3h2
1(η1 + d1)

2

h2
2 − h1h2 + h2

1

(
φ′)2

]
dz (30)

where I2w1 = tw1
(
h3

2 + h3
1
)
/3 is the moment of inertia of the middle web. The strain energy

of side webs U2w2 is expressed as follows:

U2w2 =
1
2

EI2w2

∫ L

0

[
(w′′ )

2
− 3h1(h2 − h1)(η2 + d2)

h2
2 − h1h2 + h2

1
w′′ φ′ +

3h2
1(η2 + d2)

2

h2
2 − h1h2 + h2

1

(
φ′)2

]
dz (31)

where I2w2 = 2t1w2
(
h3

2 + h3
1
)
/3 is the moment of inertia of side webs. The strain energy of

each flange U2i is expressed as follows:

U2i =
1
2

EI2i

∫ L

0

[
(w′′ )

2
+ 2w′′ φ′

(ηi
4
+ di

)
+
(

φ′)2
(

η2
i

7
+

ηidi
2

+ d2
i

)
+

9Gη2
i

5Eb2
k

φ2

]
dz (32)

where I2i = 2bktkh2
k is the inertia moment of each flange after ignoring its self-inertia moment.

The total strain energy U of the system can be obtained by adding the strain energy of
each plate. Subsequently, the system’s total potential energy Π is expressed as follows:

Π = U + V =
∫ L

0

[
Mw′′ +

E
2

N1(w′′ )
2
+ EN2w′′ φ′ +

E
2

N3
(

φ′)2
+

9G
10

N4 φ2
]

dz (33)

where Ni is the parameter related to the cross-sectional properties.
For single-cell box girders, the parameters Ni can be expressed as follows:

N1 =
3
∑

i=1
I1i + I1w2 N2 =

3
∑

i=1
I1i

(ηi
4
+ di

)
− 3h1(h2 − h1)(η1 + d1)

2
(
h2

2 − h1h2 + h2
1
) I1w2

N3 =
3
∑

i=1
I1i

(
η2

i
7

+
ηidi

2
+ d2

i

)
+

3h2
1(η1 + d1)

2

h2
2 − h1h2 + h2

1
I1w2 N4 =

3

∑
i=1

I1i
η2

i
b2

k

(34)

For double-cell box girders, the parameters Ni can be expressed as follows:

N1 =
5
∑

i=1
I2i +

2
∑

i=1
I2wi N2 =

5
∑

i=1
I2i

(ηi
4
+ di

)
−

2
∑

i=1

3h1(h2 − h1)

2
(
h2

2 − h1h2 + h2
1
) (ηi + di)I2wi

N3 =
5
∑

i=1
I2i

(
η2

i
7

+
ηidi

2
+ d2

i

)
+

3h2
1(η1 + d1)

2(
h2

2 − h1h2 + h2
1
) I2w1 +

3h2
1(η2 + d2)

2(
h2

2 − h1h2 + h2
1
) I2w2

N4 =
5
∑

i=1
I2i

η2
i

b2
k

(35)

Substituting Equation (33) into Equation (24), and then applying the partial integration
method, governing differential equations and boundary conditions are deduced as follows:[

EN1w′′ + EN2 φ′ + M
]
δw′′ = 0 (36)[

EN2w′′′ + EN3 φ′′ − 9G
5

N4 φ

]
δφ = 0 (37)

[
EN2w′′ + EN3 φ′]δφ

∣∣L
0 = 0 (38)
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According to Equations (36) and (37), the differential equation of the maximum differ-
ence in the shear angle φ can be expressed as follows:

φ′′ − α2 φ = βQ(z) (39)

In which,

α =

√
9GN1N4

5E
(

N1N3 − N2
2
) β =

N2

E
(

N1N3 − N2
2
) Q(z) = M′(z) (40)

5. Shear Lag Coefficient

As an essential indicator of the shear lag effect, the shear lag coefficient λ represents
the relative relationship between the stress considering the shear lag effect and the stress
derived by the elementary beam theory. The shear lag coefficient can be defined as follows:

λ = σ/σ0 = 1 + σ1/σ0 (41)

where σ0 is the stress calculated by the primary beam theory and σ1 is the stress caused by
the shear lag. In addition, the phenomenon that λ is has a value greater than one at the web
and less than one at the flanges’ interior is called the positive shear lag effect, the opposite
of which is the negative shear lag effect [36].

As shown in Figure 5, a11 and a22 represent the zero points of the shear flow of the top
slab; a12, a21, and a23 stand for the junctions of the top slab and webs; a13 and a24 represent
the zero points of the shear flow of the cantilever slab; a14 and a26 represent the zero points
of the shear flow of the bottom slab; and a15, a25, and a27 stand the for the junctions of the
bottom slab and webs. These points are the maximum or minimum stress points on each
plate, so their shear lag coefficients are representative.
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For single-cell box girders, the shear lag coefficients of critical points can be expressed
as follows:

λ(a11) = 1 − (N1d1 − N2)E
M

φ′ λ(a12) = 1 − (N1η1 + N1d1 − N2)E
M

φ′

λ(a13) = 1 − (N1d2 − N2)E
M

φ′ λ(a14) = 1 − (N1d3 − N2)E
M

φ′

λ(a15) = 1 − (N1η3 + N1d3 − N2)E
M

φ′

(42)
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For double-cell box girders, the shear lag coefficients of critical points can be expressed
as follows:

λ(a21) = 1 − (N1η1 + N1d1 − N2)E
M

φ′ λ(a22) = 1 − (N1d1 − N2)E
M

φ′

λ(a23) = 1 − (N1η2 + N1d2 − N2)E
M

φ′ λ(a24) = 1 − (N1d3 − N2)E
M

φ′

λ(a25) = 1 − (N1η4 + N1d4 − N2)E
M

φ′ λ(a26) = 1 − (N1d4 − N2)E
M

φ′

λ(a27) = 1 − (N1η5 + N1d5 − N2)E
M

φ′

(43)

6. Closed Solutions of the Shear Lag Effect under Several Common Boundaries and Loads

Generally, shear force Q(z) is linearly distributed in bridge structures. Analytical solu-
tions for the maximum shear angle and the vertical deflection are derived from Equation (39)
and are expressed as follows:

φ = β

(
C1 sinh αz + C2 cosh αz − Q(z)

α2

)
(44)

φ′ = βα

(
C1 cosh αz + C2 sinh αz − Q′(z)

α3

)
(45)

w′ = −
∫

M(z)dz
EN1

− N2

N1
β

(
C1 sinh αz + C2 cosh αz − Q(z)

α2

)
+ C3 (46)

w = −
s

M(z)dz
EN1

− N2β

N1α

(
C1 cosh αz + C2 sinh αz − M(z)

α

)
+ C3z + C4 (47)

where Ci is the relevant unknown coefficient determined by the boundary and continu-
ity conditions.

According to Equations (36) and (37), several common boundary conditions are listed:
(1) When the beam is fixed, w = 0, w′ = 0, and φ = 0; (2) When the beam is hinged, w = 0
and φ′ = 0; (3) When the beam is free, φ′ = 0. Additionally, analytical solutions for the
shear lag effect of four typical bridge structural systems frequently used in engineering
are presented.

6.1. Simply Supported Beam under Concentrated Load

As depicted in Figure 6, the span length of the simply supported beam is L, the left
span length is l1, and the right span length is l2. In addition, a concentrated load F is
applied at an arbitrary position of the simply supported beam. The analytical solutions of
this system are described as follows:
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Figure 6. Simply supported beam under concentrated load.

φ =


β

(
C11 sinh αz + C21 cosh αz − bF

Lα2

)
(0 ≤ z ≤ a)

β

(
C12 sinh αz + C22 cosh αz +

aF
Lα2

)
(a ≤ z ≤ L)

(48)

φ′ =

{
βα(C11 cosh αz + C21 sinh αz)(0 ≤ z ≤ a)

βα(C12 cosh αz + C22 sinh αz)(a ≤ z ≤ L)
(49)
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w′ =


− bFz2

2LEN1
− N2β

N1

(
C11 sinh αz + C21 cosh αz − bF

α2L

)
+ C31 (0 ≤ z ≤ a)

aF(L − z)2

2LEN1
− N2β

N1

(
C12 sinh αz + C22 cosh αz +

aF
α2L

)
+ C32(a ≤ z ≤ L)

(50)

w =


− bFz3

6LEN1
− N2β

N1α

(
C11 cosh αz + C21 sinh αz − bFz

αL

)
+ C31z + C41 (0 ≤ z ≤ a)

− aF(L − z)3

6LEN1
− N2β

N1α

(
C12 cosh αz + C22 sinh αz − aF(L − z)

αL

)
+ C32z + C42 (a ≤ z ≤ L)

(51)

in which
C11 = 0 C12 =

F sinh αa
α2 C21 =

F sinh αb
α2 sinh αL

C22 = − F cosh αL sinh αa
α2 sinh αL

C31 =
2aL2 − 3a2L + a3

6LEN1
F C32 =

a3 − aL2

6LEN1
F C41 = 0 C42 =

aL2 − a3

6EN1
F

(52)

6.2. Simply Supported Beam under Uniformly Distributed Load

As depicted in Figure 7, the uniformly distributed load f is applied to the simply
supported beam. The analytical solutions of this system are described as follows:

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 34 
 

( ) ( )

( ) ( )( ) ( )

3

2

11 21 31 41

1 1

3

2

12 22 32 42

1 1

cosh sinh 0
6

cosh sinh
6

NbFz bFz
C z C z C z C z a

LEN N L
w

NaF L z aF L z
C z C z C z C a z L

LEN N L

β
α α

α α

β
α α

α α

− − + − + + ≤ ≤

=
− −

− − + − + + ≤ ≤







  (51)

in which 

11 12 21 222 2 2

2 2 3 3 2 2 3

31 32 41 42

1 1 1

sinh sinh cosh sinh
0

sinh sinh
2 3

0
6 6 6

F a F b F L a
C C C C

L L

aL a L a a aL aL a
C F C F C C F

LEN LEN EN

α α α α
α α α α α

= = = = −

− + − −
= = = =







 (52)

6.2. Simply Supported Beam under Uniformly Distributed Load 
As depicted in Figure 7, the uniformly distributed load f is applied to the simply sup-

ported beam. The analytical solutions of this system are described as follows: 

 
Figure 7. Simply supported beam under uniformly distributed load. 

1 2 2
2sinh cosh

2
L zC z C z fϕ β α α

α
− = + − 

 
 (53)

1 2 3cosh sinh fC z C zϕ βα α α
α

 ′ = + + 
 

  (54)

2 3
2

1 2 32
1 1

3 2 2sinh cosh
12 2

NLz z L zw f C z C z f C
EN N

β α α
α

− − ′ = − − + − + 
 

 (55)

3 4 2
2

1 2 3 4
1 1

2 cosh sinh
24 2

NLz z Lz zw f C z C z f C z C
EN N

β α α
α α
 − −= − − + − + + 
 

  (56)

in which 

( )1 23 3

3
2

3 4 4
1 1

cosh 1
sinh

24

f fC C L
L

N fL fC C
EN N

α
α α α

β
α

 = − = −

 = = −


 (57)

6.3. Cantilever Beam under Concentrated Load 
As shown in Figure 8, the concentrated load F is applied at the free end of the canti-

lever beam. The analytical solutions of this system are described as follows: 

Figure 7. Simply supported beam under uniformly distributed load.

φ = β

(
C1 sinh αz + C2 cosh αz − L − 2z

2α2 f
)

(53)

φ′ = βα

(
C1 cosh αz + C2 sinh αz +

f
α3

)
(54)

w′ = −3Lz2 − 2z3

12EN1
f − N2

N1
β

(
C1 sinh αz + C2 cosh αz − L − 2z

2α2 f
)
+ C3 (55)

w = −2Lz3 − z4

24EN1
f − N2β

N1α

(
C1 cosh αz + C2 sinh αz − Lz − z2

2α
f
)
+ C3z + C4 (56)

in which 
C1 = − f

α3 C2 =
f

α3 sinh αL
(cosh αL − 1)

C3 =
L3 f

24EN1
C4 = −N2β f

N1α4

(57)

6.3. Cantilever Beam under Concentrated Load

As shown in Figure 8, the concentrated load F is applied at the free end of the cantilever
beam. The analytical solutions of this system are described as follows:
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6.4. Cantilever Beam under Uniformly Distributed Load

As shown in Figure 9, the uniformly distributed load f is applied to the cantilever
beam. The analytical solutions of this system are described as follows:
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7. Case Studies

Several examples of the simply supported single- and double-cell box beam were
used to analyze the shear lag phenomenon. In order to verify the accuracy of the proposed
method, the results obtained from the ANSYS finite element model and the proposed
analytical theory were compared and analyzed. Finally, some recommendations about
selecting displacement functions were provided.

7.1. Parameter Selection and Finite Element Model

The span of the simply supported beam is 40 m. The concentrated load F and the
uniformly distributed load f are 200 kN and 5 kN/m, respectively. The Young’s modulus
E and the Poisson’s ratio µ of the material are 34.5 GPa and 0.2, respectively. The shear
modulus G can be derived from the following:

G =
E

2(1 + µ)
(68)

Finite element models were constructed using the general-purpose software ANSYS
2022R2. An eight-node solid element, SOLID65, was adopted to simulate the material
properties. The mesh size is 0.2 m. The loads were applied parallel to the webs uniformly
to avoid torsion, distortion, and transverse bending of the cross section [15].

Figures 10a and 11a display a single-cell box girder’s ANSYS model. The schematic of
the cross-sectional dimensions of this single-cell box girder model is shown in Figure 1a,
where b1 = 3 m; b2 = 2.5 m; b3 = 3 m; t1 = 0.2 m; t2 = 0.25 m; tw2 = 0.3 m; and h = 3 m.
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Figures 10b and 11b display a double-cell box girder’s ANSYS model. The schematic
of the cross-sectional dimensions of this double-cell box girder model is shown in Figure 1b,
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where b1 = 5 m; b2 = 3 m; b3 = 5 m; t1 = 0.2 m; t2 = 0.25 m; tw1 = 0.3 m; tw2 = 0.3 m;
and h = 5 m. The positions of zero points of the shear flow can be obtained according to
Equation (6): b11 = 2.8744 m; b12 = 2.1256 m; b21 = 3 m; b31 = 1.8115 m; and b32 = 3.1885 m.

7.2. Example 1: Simply Supported Single-Cell Box Beam under Concentrated Load

Figures 12 and 13 show the vertical displacement along the girder and longitudinal
distributions of shear lag coefficients for a simply supported single-cell box beam under
mid-span concentrated load. It can be seen that there is a significant increase in the
deflection of the beam due to the shear lag effect, and the results of displacements obtained
using the proposed methods are very close to those obtained by Zhang’s method [17]. In
addition, the shear lag effect is clearly visible in the region surrounding the point of the
concentrated force, whereas at the supports on the two sides the stresses are almost the
same as those calculated using elementary beam theory. Although the results of shear lag
coefficients obtained using the proposed methods and Zhang’s method [17] generally agree
with each other on most points, there are some differences at the mid span of the beam.
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Figure 14 shows the transverse distributions of shear lag coefficients at the mid span
(20 m) and the nearby section (18 m). Table 3 lists the relative errors between the shear
lag coefficient obtained by analytical methods and the results obtained by ANSYS. It can
be found that the theoretical solutions fit well with the finite element solution except
for the discrepancy at the point of application of the concentrated force. This problem
can be attributed to the stress concentration in ANSYS. Furthermore, the results of 1CS,
considering the axial force balance, are more accurate than those of Zhang’s method [17].
The results of 2CS are closer to solutions of ANSYS at 18 m of the girder with a maximum
relative error of only 0.06%.

Table 3. Relative errors of shear lag coefficients of Example 1.

Point ANSYS
1CS 2CS 3CS Zhang [17]

20 m 18 m 20 m 18 m 20 m 18 m 20 m 18 m

a11

0%

1.04% 0.49% 2.29% 0.06% 1.44% 0.22% 2.20% 0.77%
a12 2.02% 0.37% 3.21% 1.40% 3.96% 1.54% 1.01% 0.62%
a13 1.16% 0.17% 8.61% 1.41% 11.07% 2.03% 0.02% 0.45%
a14 0.30% 1.722% 2.61% 0.57% 2.62% 0.46% 1.33% 1.93%
a15 2.05% 1.26% 3.32% 2.23% 3.15% 2.31% 2.71% 1.47%
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7.3. Example 2: Simply Supported Single-Cell Box Girder under Uniformly Distributed Load

From Figure 15, it can be seen that the results of the vertical displacements of Example 2,
obtained using the proposed method, are in good agreement with those achieved using
Zhang’s method [17]; the maximum deflection rises by about 3.1%. Compared to Example 1,
the maximum deflection of Example 2 decreases by approximately 40%, which indicates
that spreading the concentrated force can effectively reduce structural deflection.
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As shown in Figure 16, the shear lag effect can be observed in every section of the
simply supported single-cell box girder under the uniformly distributed load. Though
the shear lag effect near the support is noteworthy, it can be disregarded as the minimal
bending moment rarely leads to damage in practical engineering. The mid-span section
(20 m) and the nearby section (18 m) with higher actual stress are selected for analysis. As
seen in Figure 17 and Table 4, the results obtained by the method in this paper fit well with
the finite element simulation values. It can be seen that the accuracy of Zhang’s method [17]
was improved.
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Table 4. Relative errors of shear lag coefficients of Example 2.

Point ANSYS
1CS 2CS 3CS Zhang [17]

20 m 18 m 20 m 18 m 20 m 18 m 20 m 18 m

a11

0%

0.75% 0.74% 0.42% 0.41% 0.56% 0.55% 0.90% 0.89%
a12 0.86% 0.85% 1.49% 1.50% 1.58% 1.59% 1.00% 1.00%
a13 0.73% 0.73% 0.12% 0.13% 0.43% 0.45% 0.88% 0.88%
a14 1.08% 1.08% 0.56% 0.55% 0.51% 0.51% 1.20% 1.20%
a15 0.95% 0.95% 1.38% 1.38% 1.40% 1.40% 1.06% 1.06%

From Examples 1 and 2, the 2CS method closely approximates the finite element
solution at most points. Thus, a reasonable inference can be made that the 2CS method is
generally more suitable for analyzing the shear lag effect of single-cell box girders.

7.4. Example 3: Simply Supported Double-Cell Box Beam under Concentrated Load

Figure 18 shows the vertical displacements of a simply supported double-cell box
beam under the mid-span concentrated load. The shear lag coefficients obtained using
the proposed method are displayed in Figures 19 and 20. Table 5 lists the relative errors
of the shear lag coefficients to finite element results. The results suggest that the present
method has relatively high accuracy and excellent applicability, especially the 3CD method.
Additionally, Figures 19 and 20 demonstrate that the areas of minimum stress on the top
and bottom slabs of double-cell box girders are not located at the symmetrical axis but near
the zero points of shear flow. As a result, adopting the zero point of shear flow as the origin
of the parabola is feasible. Furthermore, the shear lag coefficients vary at different webs.
The further away from the zero point of the shear flow, the larger the value.

Table 5. Relative errors of shear lag coefficients of Example 3.

Points ANSYS
1CD 2CD 3CD

20 m 18 m 20 m 18 m 20 m 18 m

a21

0%

0.40% 4.64% 3.27% 3.32% 6.21% 1.26%
a22 4.38% 3.51% 0.53% 2.86% 1.44% 2.59%
a23 2.20% 2.37% 0.43% 2.62% 2.15% 2.54%
a24 9.92% 7.56% 5.48% 6.09% 2.55% 3.51%
a25 9.70% 1.80% 6.53% 1.41% 1.70% 0.40%
a26 1.99% 0.60% 2.68% 1.16% 0.31% 1.11%
a27 2.40% 4.59% 0.55% 3.59% 0.88% 2.81%
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Figure 19. Longitudinal distributions of shear lag coefficients of Example 3: (a) λ(a21) (top plate at
x = 0 m); (b) λ(a22) (top plate at x = b11 m); (c) λ(a23) (top plate at x = 5 m); (d) λ(a24) (cantilever plate
at x = 8 m); (e) λ(a25) (bottom plate at x = 0 m); (f) λ(a26) (bottom plate at x = b31 m); (g) λ(a27) (bottom
plate at x = 5 m).
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Figure 20. Transverse distributions of shear lag coefficients of Example 3: (a) z = 20 m; (b) z = 18 m.

7.5. Example 4: Simply Supported Double-Cell Box Girder under Uniformly Distributed Load

Figures 21–23 show that the shear lag effect impacts displacements and stresses of
structures, and the coefficient ηi mainly influenced the stress distribution. It can be found
that the stress at the connection between the mid web and the top plate is much greater
than at the junction between the side web and the top plate, but that this is reversed in the
bottom plate. This is because the mid web is farther from the shear flow zero point of the
top plate but closer to the shear flow zero point of the bottom plate. Therefore, the shear
lag coefficient is different for different webs and is related to the distance from the web to
the shear flow’s zero point. Table 6 indicates that the 3CD method results align best with
ANSYS values.
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Figure 22. Longitudinal distributions of shear lag coefficients of Example 4: (a) λ(a21) (top plate at x 
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x = 8 m); (e) λ(a25) (bottom plate at x = 0 m); (f) λ(a26) (bottom plate at x = b31 m); (g) λ(a27) (bottom 
plate at x = 5 m). 
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Figure 22. Longitudinal distributions of shear lag coefficients of Example 4: (a) λ(a21) (top plate at
x = 0 m); (b) λ(a22) (top plate at x = b11 m); (c) λ(a23) (top plate at x = 5 m); (d) λ(a24) (cantilever plate
at x = 8 m); (e) λ(a25) (bottom plate at x = 0 m); (f) λ(a26) (bottom plate at x = b31 m); (g) λ(a27) (bottom
plate at x = 5 m).
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Figure 23. Transverse distributions of shear lag coefficients of Example 4: (a) z = 20 m; (b) z = 18 m. 
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Table 6. Relative errors of shear lag coefficients of Example 4.

Points ANSYS
1CD 2CD 3CD

20 m 18 m 20 m 18 m 20 m 18 m

a21

0%

3.20% 3.22% 2.57% 2.59% 1.63% 1.63%
a22 2.34% 2.35% 1.94% 1.96% 1.77% 1.78%
a23 1.02% 1.02% 1.23% 1.24% 1.27% 1.27%
a24 2.68% 2.77% 2.01% 2.09% 0.88% 0.95%
a25 0.98% 0.98% 0.69% 0.69% 0.12% 0.11%
a26 0.63% 0.63% 0.86% 0.87% 0.76% 0.77%
a27 1.92% 1.93% 1.45% 1.46% 1.15% 1.15%

From Examples 3 and 4, the 3CD method closely approximates the finite element
solution at most points. Thus, a reasonable inference can be made that the 3CD method is
generally more suitable for analyzing the shear lag effect of double-cell box girders.

7.6. Example 5: Cantilever Double-Cell Box Girder Uniformly Distributed Load

The distributions of shear lag coefficients of the cantilever double-cell box girder under
uniformly distributed load are depicted in Figures 24 and 25. In this case, the negative shear
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lag effect appears. Table 7 reveals that the 3CD method exhibits a maximum relative error
of 4.69% when compared to the ANSYS values, outperforming the 1CD method, which
yields a maximum relative error of 8.21%, and the 2CD method, with a maximum relative
error of 6.93%.
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Figure 25. Transverse distributions of shear lag coefficients of Example 5: (a) z = 2 m; (b) z = 20 m. 

Table 7. Relative errors of shear lag coefficients of Example 5. 

Points ANSYS 
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2 m 20 m 2 m 20 m 2 m 20 m 
a21 

0% 

1.52% 1.34% 0.32% 2.01% 1.55% 3.01% 
a22 2.04% 1.72% 1.50% 2.10% 1.27% 2.27% 
a23 1.37% 2.64% 1.56% 2.41% 1.47% 2.38% 
a24 8.21% 5.91% 6.93% 5.31% 4.69% 4.30% 
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a27 0.11% 0.34% 1.04% 0.83% 1.77% 1.15% 

  

Figure 24. Longitudinal distributions of shear lag coefficients of Example 5: (a) λ(a21) (top plate at
x = 0 m); (b) λ(a22) (top plate at x = b11 m); (c) λ(a23) (top plate at x = 5 m); (d) λ(a24) (cantilever plate
at x = 8 m); (e) λ(a25) (bottom plate at x = 0 m); (f) λ(a26) (bottom plate at x = b31 m); (g) λ(a27) (bottom
plate at x = 5 m).
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Figure 25. Transverse distributions of shear lag coefficients of Example 5: (a) z = 2 m; (b) z = 20 m.

Table 7. Relative errors of shear lag coefficients of Example 5.

Points ANSYS
1CD 2CD 3CD

2 m 20 m 2 m 20 m 2 m 20 m

a21

0%

1.52% 1.34% 0.32% 2.01% 1.55% 3.01%
a22 2.04% 1.72% 1.50% 2.10% 1.27% 2.27%
a23 1.37% 2.64% 1.56% 2.41% 1.47% 2.38%
a24 8.21% 5.91% 6.93% 5.31% 4.69% 4.30%
a25 3.52% 3.16% 3.20% 2.87% 2.33% 2.30%
a26 0.16% 1.51% 0.65% 1.29% 0.63% 1.39%
a27 0.11% 0.34% 1.04% 0.83% 1.77% 1.15%

7.7. Example 6: Double-Cell Box Girder Fixed at Both Ends under Uniformly Distributed Load

As shown in Figure 26, the beam is fixed at both ends and subjected to the uniformly
distributed load. Figure 27 shows that the shear lag coefficient near the inflection point
suddenly changes due to the bending moment being close to zero. Moreover, the result of
the 3CD method is closer to the simulated value from Figure 28 and Table 8.



Appl. Sci. 2024, 14, 828 26 of 30

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 34 
 

7.7. Example 6: Double-Cell Box Girder Fixed at Both Ends under Uniformly Distributed Load 
As shown in Figure 26, the beam is fixed at both ends and subjected to the uniformly 

distributed load. Figure 27 shows that the shear lag coefficient near the inflection point 
suddenly changes due to the bending moment being close to zero. Moreover, the result of 
the 3CD method is closer to the simulated value from Figure 28 and Table 8 

 
Figure 26. Double-cell box girder fixed at both ends under uniformly distributed load. Figure 26. Double-cell box girder fixed at both ends under uniformly distributed load.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 34 
 

7.7. Example 6: Double-Cell Box Girder Fixed at Both Ends under Uniformly Distributed Load 
As shown in Figure 26, the beam is fixed at both ends and subjected to the uniformly 

distributed load. Figure 27 shows that the shear lag coefficient near the inflection point 
suddenly changes due to the bending moment being close to zero. Moreover, the result of 
the 3CD method is closer to the simulated value from Figure 28 and Table 8 

 
Figure 26. Double-cell box girder fixed at both ends under uniformly distributed load. 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 31 of 34 
 

  

 

Figure 27. Longitudinal distributions of shear lag coefficients of Example 6: (a) λ(a21) (top plate at x 
= 0 m); (b) λ(a22) (top plate at x = b11 m); (c) λ(a23) (top plate at x = 5 m); (d) λ(a24) (cantilever plate at 
x = 8 m); (e) λ(a25) (bottom plate at x = 0 m); (f) λ(a26) (bottom plate at x = b31 m); (g) λ(a27) (bottom 
plate at x = 5 m). 

  
(a) (b) 
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x = 0 m); (b) λ(a22) (top plate at x = b11 m); (c) λ(a23) (top plate at x = 5 m); (d) λ(a24) (cantilever plate
at x = 8 m); (e) λ(a25) (bottom plate at x = 0 m); (f) λ(a26) (bottom plate at x = b31 m); (g) λ(a27) (bottom
plate at x = 5 m).
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Table 8. Relative errors of shear lag coefficients of Example 6.

Points ANSYS
1CD 2CD 3CD

2 m 20 m 2 m 20 m 2 m 20 m

a21

0%

1.22% 4.38% 2.43% 2.57% 8.17% 0.12%
a22 3.70% 2.86% 2.02% 1.67% 1.33% 1.14%
a23 0.93% 0.35% 0.44% 0.30% 0.81% 0.40%
a24 36.72% 13.41% 31.35% 11.14% 21.79% 7.31%
a25 13.51% 4.59% 12.57% 3.73% 9.79% 2.00%
a26 2.72% 0.13% 0.95% 0.85% 0.92% 0.55%
a27 2.51% 3.76% 0.26% 2.42% 2.53% 1.55%

8. Conclusions

In this study, an analytical method from the perspective of shear flow was proposed to
study the shear lag effect of thin-walled single- and double-cell box girders. Longitudinal
displacement functions with cubic parabola form were built using the shear flow’s zero
points. Then, the governing differential equations were derived through the variational
energy method, and analytical solutions of the shear lag effect under several common
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boundaries and load cases were presented. Finally, some cases involving the simply
supported beam were used to analyze the shear lag effect. The results obtained using the
proposed method were validated via comparison with numerical results. Based on the
present study, the following conclusions could be drawn:

(1) The proposed method can provide reasonable predictions for the shear lag effect
of single- and double-cell box girders. It is suggested that the 2CS method is suited for
solving the shear lag effect in single-cell box girders, and the 3CD method is recommended
for double-cell box girders. The analytical methods based on the shear flow distribution
law proposed in this paper are more straightforward and practical. They also provide
theoretical support for the subsequent development of finite beam elements.

(2) For double-cell box girders, minimum stress locations on the top and bottom slabs
do not coincide with the symmetry axis. Instead, they are near the zero points of shear flow.
Therefore, it is rational to adopt the zero point of shear flow as the origin of the parabola.

(3) The shear lag coefficients are varied at different webs of the double-cell box section.
The magnitude of the coefficients is related to the distance from the web to the zero point of
the shear flow. The further away from the zero point of the shear flow, the larger the value.

(4) Considering the web’s warping variation and the section’s axial force balance can
increase the accuracy of the calculation results.
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Notation

Ai = the area of the i-th flange
bi = the width of the i-th flange
Ci = the relevant unknown coefficient determined by the boundary and continuity conditions
di = the introduced coefficient
E = the elastic modulus
F = the concentrated load
f = the uniformly distributed load
f (x) = the distribution function corresponding to the shear lag effect
G = the shear modulus
h = the height of webs
hi = the distance between the centroid of the cross section and the midplane of i-th flange
Ii = the inertial moment to the X-axis of the i-th flange
L = the length of the beam
M = the bending moment of the cross-section
Ni = the parameter related to the cross-sectional properties
O = the origin of the coordinate
Q = the cross-sectional shear force
q = the shear flow
Sx = the static moment to the X-axis
s = the curvilinear coordinates of the section profile
ti = the thickness of the i-th flange
Ui = the strain energy of the i-th flange
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ui(x,z) = the longitudinal displacement of the i-th flange
V = the external load potential energy of the system
w = the vertical deflection
X = the width direction of the section
x0 = the distance from the shear flow’s zero point to the side web in the opened double-cell section
Y = the height direction of the section
Z = the longitudinal direction of the beam
γ = the shear strain
ε = the axial strain
ηi = the introduced coefficient
λ = the shear lag coefficient
µ = the Poisson’s ratio
Π = the total potential energy of the system
σ = the bending normal stress
φ(z) = the maximum difference in the shear angle
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