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Abstract: COVID-19 is an infectious disease that has greatly affected worldwide healthcare systems,
due to the high number of cases and deaths. As COVID-19 patients may develop cardiac comorbidities
that can be potentially fatal, electrocardiographic monitoring can be crucial. This work aims to identify
electrocardiographic and vectorcardiographic patterns that may be related to mortality in COVID-19,
with the application of the Advanced Repeated Structuring and Learning Procedure (AdvRS&LP).
The procedure was applied to data from the “automatic computation of cardiovascular arrhythmic
risk from electrocardiographic data of COVID-19 patients” (COVIDSQUARED) project to obtain
neural networks (NNs) that, through 254 electrocardiographic and vectorcardiographic features,
could discriminate between COVID-19 survivors and deaths. The NNs were validated by a five-fold
cross-validation procedure and assessed in terms of the area under the curve (AUC) of the receiver
operating characteristic. The features’ contribution to the classification was evaluated through the
Local-Interpretable Model-Agnostic Explanations (LIME) algorithm. The obtained NNs properly
discriminated between COVID-19 survivors and deaths (AUC = 84.31 ± 2.58% on hold-out testing
datasets); the classification was mainly affected by the electrocardiographic-interval-related features,
thus suggesting that changes in the duration of cardiac electrical activity might be related to mortality
in COVID-19 cases.

Keywords: Advanced Repeated Structuring and Learning Procedure; COVID-19; deep learning;
electrocardiography; local-interpretable model-agnostic explanations; neural network

1. Introduction

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which has greatly
affected healthcare systems on a worldwide level due to its high transmission rate and
health consequences [1]. As of 25 October 2023, there had been more than 700 million cases
since the beginning of the pandemic [1]. Among these cases, the virus has manifested in
different manners, as infected people have experienced mild to severe symptoms related to
the respiratory system [2,3]. Severe manifestations of COVID-19 can require hospitalization
in intensive care units [2,3] and may also be lethal, as proven by the great number of deaths
(773,819,856 from the beginning of the pandemic until the time of writing) [1], especially in
elderly groups and/or in subjects with preexisting conditions like, for example, overweight.
Even when not requiring hospitalization, COVID-19 infection often contributes to the
worsening of an already unstable health status [1].

Appl. Sci. 2024, 14, 817. https://doi.org/10.3390/app14020817 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020817
https://doi.org/10.3390/app14020817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9152-7216
https://orcid.org/0000-0002-8327-8379
https://orcid.org/0000-0002-8553-2414
https://orcid.org/0000-0001-9801-2760
https://orcid.org/0000-0002-6276-6314
https://orcid.org/0000-0002-9474-7046
https://orcid.org/0000-0001-9729-2641
https://doi.org/10.3390/app14020817
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020817?type=check_update&version=2


Appl. Sci. 2024, 14, 817 2 of 13

It has also been observed that COVID-19 may lead to manifestations in biological
systems other than the respiratory system. Some of the most common manifestations of
COVID-19 outside the respiratory system arise at the cardiac level, for example, arrhyth-
mias, bundle branch blocks, acute coronary syndrome, myocarditis, and heart failure [4–13].
As cardiac complications are prevalent among COVID-19 patients and have been observed
in more than 50% of COVID-19 deaths [5,6], timely identification by cardiac monitoring is
essential. A common form of cardiac screening is the standard 10-second 12-lead electrocar-
diogram (ECG, Figure 1a), which, together with the vectorcardiogram (VCG, Figure 1b), can
be used to identify the presence of cardiac abnormalities. Usually, ECG and VCG analyses
are automatically performed, and cardiologists combine their interpretation with patients’
anamnesis. However, interpretation is highly dependent on cardiologists’ experience and
can be affected by limitations in the data or intra-subject and intra-rater variability [14–16].
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VCG is obtained from the ECG through the Kors matrix transformation.

In the context of the detection and investigation of cardiac risk associated with COVID-
19, the use of machine learning and deep learning methods has already been largely
investigated [17–22]. The methods proposed in [17–22] showed good accuracy, ranging
from 85% to 100%, in detecting cardiovascular changes that may be related to COVID-19.
However, complex deep learning models, such as convolutional neural networks (CNN),
are not easily interpretable due to their nature (being black boxes). The non-explainability
of the reasoning behind these complex models causes a lack of trust among clinicians and,
thus, hampers their usage in clinical practice as diagnostic methods.

Sbrollini et al. [23,24] proposed a new machine learning method, called the Repeated
Structuring & Learning Procedure (RS&LP), and tested it to detect heart failure, ischemia,
and atrial fibrillation, with promising results. This method allows the construction of
supervised neural networks (NNs) that were created by considering features as inputs and
proved to be more interpretable than other deep learning models, which consider entire
signals as inputs. The recent application of an advanced version of the RS&LP, namely Ad-
vanced Repeated Structuring & Learning Procedure (AdvRS&LP), for myocardial ischemia
detection has seen further improvements in terms of NN performance [25].

Considering the good results obtained, the current work aims to investigate the use of
the novel AdvRS&LP for the identification of electrocardiographic and vectorcardiographic
patterns related to mortality with COVID-19. With this aim, the presented paper contributed
to revealing the hidden electrocardiographic and vectorcardiographic patterns related
to mortality with COVID-19, assessing the reliability of NNs created by AdvRS&LP in
electrocardiographic feature interpretation and investigating interpretable solutions to
support clinical practice using AI-based methods.
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2. Materials and Methods
2.1. Database

Data pertain to the database collected during the “automatic COmputation of car-
dioVascular arrhythmIc risk from ECG data of COVID-19 patients” (COVIDSQUARED)
project [21]. This database is composed of 1123 ECGs (12 leads), acquired from 646 subjects
(age range: 19–100 years) hospitalized due to COVID-19 symptoms at the Ospedale San
Matteo in Pavia, Italy (from 7 June 2020 to 21 September 2021). For research purposes,
COVIDSQUARED can be obtained for free by contacting the authors.

The review board of the Fondazione Policlinico San Matteo approved the publication
of anonymized case series of COVID-19 patients using data collected for routine clini-
cal practice and waived the requirement for specific informed consent. The ECGs were
recorded with a sampling frequency of 500 Hz, had a duration of 10 s, and were acquired
by the standard 12-lead ECG configuration (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6).
Survival of COVID-19 was assessed by follow-up, one year after hospitalization, using
the Lombardy region death register (SISS). The database comprises multiple acquisitions
for the same subject, obtained in different days; for each subject, only the ECG closest
to hospitalization was included in this study. Moreover, ECGs that presented null leads
were excluded. Subjects were divided into cases and controls: subjects that survived the
infection were considered as controls, while subjects that died within one year after the
infection were considered as cases. According to these criteria, 492 ECG recordings were
classified as controls, and 148 ECG recordings were classified as cases.

2.2. Signal Pre-Processing and Feature Extraction

All computations were performed on MATLAB (Mathworks, version 2022a).
The ECG recordings included in the database were filtered with a digital bidirec-

tional third-order Butterworth high-pass filter (cut-off frequency equal to 0.5 Hz) to reduce
baseline wander. On lead I, R-peak positions were identified by the Pan–Tompkin’s algo-
rithm [26] and considered as synchronization points for all heartbeats in all 12 ECG leads.
For each ECG lead, synchronization points were used to select beat-related ECG segments
spanning the time interval between 0.25 s before and 0.40·RR1/2 s after the synchronization
point (where RR corresponds to the median RR interval in s) [24]. These ECG segments
were used to compute 12 lead-dependent median ECG beats. Next, median VCG beats
of the X, Y, and Z leads were computed by multiplying the median ECG beats of the
8 independent leads I, II, V1–V6, by using the Kors matrix [27–29]. From the median VCG
components, the median vector magnitude signal was obtained.

The ECG landmarks were then identified in the 12 median ECG beats and in the vector-
magnitude signal. These landmarks are the positions of the P-wave peak, QRS onset, R peak
position, QRS offset (or J point), T-wave peak, and T-wave offset [24,30]. These landmarks in
time plus the synchronization points were finally used to characterize each ECG recording
by using the 254 features in Tables 1–3: 216 features (18 × 12 [features × leads], ID from
f1 to f216 in Table 1) describe the morphological and temporal characteristics regarding
12-lead median ECG beats’ lead-dependent features; 16 features (ID from f217 to f232 in
Table 2) are related to the global QT interval, global QRS duration, heart rate (HR), HR
variability, and dispersion of the ECG temporal characteristics, that are variability among
ECG leads’ lead-independent features; 22 features (ID from f233 to f254 in Table 3) are
related to the median vector-magnitude signal. These 254 features are designed to represent
the most clinically relevant morphological, spatial, and temporal information of 10-second
12-lead ECG signals.
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Table 1. Lead-dependent ECG features. The 18 features reported here, considered in all 12 leads for a
total of 216 features, are related to morphological and temporal information of the ECG.

Feature ID Feature Name Feature Description

f1–f12 PA (µV) P-wave peak amplitude
f13–f24 QA (µV) Q-wave amplitude at QRS-complex onset position
f25–f36 QRSA (µV) QRS-complex amplitude at R-wave peak position
f37–f48 SA (µV) J-point amplitude
f49–f60 TA (µV) T-wave peak amplitude
f61–f72 QRS/P (adi) Ratio between the QRSA and PA
f73–f84 QRS/T (adi) Ratio between the QRSA and TA
f85–f96 ToTpS (◦) Angle between the baseline and the left front of the T wave

f97–f108 TpTeS (◦) Angle between the baseline and the right front of the T wave
f109–f120 PR (ms) Time interval between P-wave peak and R-wave peak
f121–f132 PS (ms) Time interval between P-wave peak and J point
f133–f144 PT (ms) Time interval between P-wave peak and T-wave end
f145–f156 QT (ms) Time interval between QRS-complex onset and T-wave end
f157–f168 QRS (ms) Time interval between QRS-complex onset and QRS-complex end
f169–f180 RS (ms) Time interval between QRS-complex peak and QRS-complex end
f181–f192 ToTp (ms) Time interval between T-wave onset and T-wave peak
f193–f204 TpTe (ms) Time interval between T-wave peak and T-wave end
f205–f216 ρ (adi) Median correlation coefficient between ECG beats and median ECG beat

For each lead-dependent feature, the feature ID considers the leads listed in the following order: I, II, III, aVR,
aVL, aVF, V1, V2, V3, V4, V5, V6.

Table 2. Lead-independent ECG features. The 14 features reported here are related to HR, HR
variability, and ECG morphological dispersion.

Feature ID Feature Name Feature Description

f217 GQT (ms) Global QT interval
f218 GQRS (ms) Global QRS duration
f219 mnRR (ms) Mean RR interval
f220 mnHR (bpm) Mean HR
f221 MHR (bpm) Maximum value of HR
f222 mHR (bpm) Minimum value of HR
f223 mHR/MHR (-) Minimum over maximum values of HR
f224 stdRR (ms) Standard deviation of RR intervals
f225 PRD (ms) Dispersion of the time intervals between P-wave peak and R-wave peak over the 12 leads
f226 PSD (ms) Dispersion of the time intervals between P-wave peak and J point over the 12 leads
f227 PTD (ms) Dispersion of the time intervals between P-wave peak and T-wave end over the 12 leads
f228 QTD (ms) Dispersion of the time intervals between QRS-complex onset and T-wave end over the 12 leads

f229 QRSD (ms) Dispersion of the time intervals between QRS-complex onset and QRS-complex end over the
12 leads

f230 RSD (ms) Dispersion of the time intervals between QRS-complex peak and QRS-complex end over the
12 leads

f231 ToTpD (ms) Dispersion of the time intervals between T-wave onset and T-wave peak over the 12 leads
f232 TpTeD (ms) Dispersion of the time interval between T-wave peak and T-wave end over the 12 leads

Table 3. VCG features. The 22 features here reported are related to the median vector magnitude.

Feature ID Feature Name Feature Description

f233 MPV (µV) Magnitude of the maximal P vector
f234 EPV (◦) Elevation of the maximal P vector
f235 APV (◦) Azimuth of the maximal P vector
f236 MQRSV (µV) Magnitude of the maximal QRS vector
f237 EQRSV (◦) Elevation of the maximal QRS vector
f238 AQRSV (◦) Azimuth of the maximal QRS vector
f239 MJV (µV) Magnitude of the maximal J vector
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Table 3. Cont.

Feature ID Feature Name Feature Description

f240 EJV (◦) Elevation of the maximal J vector
f241 AJV (◦) Azimuth of the maximal J vector
f242 MTV (µV) Magnitude of the maximal T vector
f243 ETV (◦) Elevation of the maximal T vector
f244 ATV (◦) Azimuth of the maximal T vector
f245 MVG (µV) Magnitude of the ventricular gradient
f246 EVG (◦) Elevation of the ventricular gradient
f247 AVG (◦) Azimuth of the ventricular gradient
f248 PI (µV·ms) Integral of the P wave in the vector magnitude
f249 QRSI (µV·ms) Integral of the QRS complex in the vector magnitude
f250 TIon (µV·ms) Integral of the left front of the T wave on the vector magnitude
f251 TIoff (µV·ms) Integral of the right front of the T wave on the vector magnitude
f252 PQRS-SA (◦) Spatial angle between the P vector and the QRS vector
f253 QRST-SA (◦) Spatial angle between the QRS vector and the T vector
f254 PT-SA (◦) Spatial angle between the P vector and the T vector

2.3. Advanced Repeated Structuring and Learning Procedure

Extracted features are considered as inputs to an NN created with the Advanced
Repeated Structuring and Learning Procedure (AdvRS&LP) [25], an enhanced version of
the RS&LP algorithm by Sbrollini et al. [23,24], a procedure to create architecture specifically
designed for the problem of interest. The AdvRS&LP (Figure 2) builds a supervised NN,
starting by fixing a defined number of inputs (IN) and classification outputs (OUT). Next,
the procedure iteratively allows a gradual structuring, which starts with 1 neuron in a
single hidden layer. During each structuring phase (Figure 2, block 1), the current NN is
extended in multiple new NNs thanks to the insertion of additional neurons (AD) in one
of the existing hidden layers or in a new hidden layer. New AD neurons are initialized
(Figure 2, block 2) with random weights and biases, which range between −1 and +1, and
sigmoid activation function. The weights and biases of neurons that are already part of
the current NN do not vary. Insertion of new AD neurons is considered successful if the
performance of the extended NNs is greater than the performance of the current NN after
a single learning step. If performance improvement does not occur, the addition of AD
neurons is discarded. Successful new structures are then trained (Figure 2, block 3) by
optimizing the loss function (mean squared error) using the scaled-conjugate-gradient
algorithm [31], considering the early stopping criterion to prevent overfitting [32] and the
inverse of class prevalence as input to counterbalance possible class disparities [33].

The performance of the new NN is evaluated and compared with the current NN,
and the NN with the lowest error is considered the best NN (Figure 2, block 4). If the best
NN is different from the current NN, the best NN becomes the new current NN, and the
procedure restarts (Figure 2, block 5). By contrast, if the best NN corresponds to the current
NN, the number of AD neurons is decreased by 1 (Figure 2, block 6), and the procedure
restarts. Finally, the procedure concludes when the number of AD neurons becomes zero
(Figure 2, block 7). More details about AdvRS&LP can be found in [25].

For this study, IN was equal to 254 (ECG/VCG features), OUT was equal to 2 (case
and control classes), and AD was equal to 30. A 5-fold cross-validation procedure was
employed [34]. The dataset was divided into 5 folds, of which 4 folds were used for creating
the NN by AdvRS&LP, while the remaining fold was used as a hold-out testing dataset.
The data division was performed by maintaining the case–control prevalence in all folds
and without mixing patients in the training and hold-out testing datasets.
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2.4. Deep Learning Interpretability Module

To investigate the contribution of each ECG/VCG feature to the classification by the
NNs, the Local-Interpretable Model-Agnostic Explanations (LIME) algorithm [35–37] was
applied. The LIME is an explainer algorithm that allows the interpretation of deep learning
models’ decisions, taken for each observation in a dataset, by approximating the model
with a local, interpretable, and much less complex model. Explanations come in the form of
features ranked according to the amount of influence they had on classification. In practice,
LIME was applied to locally approximate the NN with a linear model and to obtain feature
rankings for each recording included in the database. Next, to obtain a general view of the
ECG/VCG features’ contribution to classification, feature relevance (FR) was computed
as the weighted average of the percentage of recordings presenting each feature in each
ranking position. Consequently, 254 FR values, each associated with the corresponding
ECG/VCG feature, were obtained. Features were then sorted according to FR values.

2.5. Statistics

The performance of the NNs created by AdvRS&LP was quantified by considering
the architecture, by computing the area under the curve (AUC) of the receiver operating
characteristic (ROC) and the accuracy (ACC) in training and validation datasets and the FR.
Moreover, to compare deep learning analysis with standard statistical analysis, univariate
AUC of the ROC was computed for each of the 254 ECG/VCG features. Features, as
previously undertaken with FR, were sorted according to AUC values. Agreement between
AUC and FR for each NN and between the FRs of the different NNs was assessed by
computing Pearson’s correlation coefficient. Statistical significance was set at 0.05.
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3. Results

The AdvRS&LP produced 5 NNs (one for each cross-validation fold), whose archi-
tectures and performance are listed in Table 4. Despite the different architectures, all the
NNs presented high-level performances, comparable across folds, in the hold-out testing
sets (AUC > 80% and ACC > 79%). The best NN, composed of 714 neurons distributed
in three layers, was related to the second fold: the highest AUC on the validation dataset
(AUC = 86.42% and ACC = 83.17%). The worst performance was obtained in the 4th fold
(AUC = 80.89% and ACC = 79.21%).

Table 4. Architecture and performance of the neural networks created by the Advanced Repeated
Structuring and Learning Procedure.

Architecture AUC (%) ACC (%)

Number of
Layer

Distribution of
Neurons Training Hold-Out Testing

Fold Training Hold-Out Testing
Fold

fold 1 3 [101 100 555] 99.11 86.05 99.01 79.21

fold 2 3 [101 100 513] 95.75 86.42 97.28 83.17

fold 3 1 [736] 94.61 86.00 97.24 81.19

fold 4 3 [196 188 245] 100.00 80.89 100.00 79.21

fold 5 4 [101 100 100 228] 97.41 82.18 98.51 79.21

Overall - - 97.38 ± 2.25 84.31 ± 2.58 98.42 ± 1.17 80.40 ± 1.77

ACC: accuracy; AUC: area under the curve of the receiver operating characteristic curve. Overall performance is
reported in terms of average ± standard deviation.

Table 5 shows the first 10 features of the ranking obtained for the univariate AUC
and FR computed for each NN created by AdvRS&LP, while Figure 3 depicts the scatter
plots of the comparisons between the AUC and FR for each NN and between the FRs of
the different NNs. The FRs obtained by all the folds presented a poor correlation with the
univariate AUC (ρ < 0.30, p < 0.05), but the agreement between the FRs obtained in the
different folds was statistically strong (ρ > 0.97, p < 0.05).

Table 5. List of the first 10 features on the ranking obtained for univariate AUC and FR computed for
each NN created by AdvRS&LP.

Ranking AUC (%)
FR

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1
TpTeS on lead V6 mnNN mnNN mnNN mnNN mnNN

(0.65) (0.78) (0.78) (0.78) (0.78) (0.78)

2
PR on lead aVL PT on lead V2 QT on lead V6 PT on lead II PT on lead V6 QT on lead aVR

(0.65) (0.78) (0.77) (0.71) (0.74) (0.75)

3
SDNN PT on lead aVR QT on lead aVR PT on lead aVR PT on lead V4 PT on lead aVR
(0.64) (0.78) (0.77) (0.72) (0.77) (0.76)

4
PTD PT on lead II QT on lead aVF QT on lead aVR PT on lead V5 PT on lead I
(0.64) (0.77) (0.77) (0.77) (0.74) (0.75)

5
PS on lead aVL PT on lead I QT on lead II PT on lead V4 PT on lead II QT on lead II

(0.64) (0.77) (0.76) (0.75) (0.78) (0.75)

6
QA on lead II PT on lead V3 QT on lead V4 PT on lead V1 PT on lead aVR QT on lead V6

(0.63) (0.76) (0.76) (0.71) (0.78) (0.75)

7
TpTeS on lead V5 PT on lead V1 QT on lead V5 QT on lead II QT on lead aVR PT on lead V6

(0.63) (0.76) (0.76) (0.76) (0.77) (0.78)
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Table 5. Cont.

Ranking AUC (%)
FR

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

8
QA on lead V6 QT on lead II PT on lead V6 QT on lead aVF QT on lead II PT on lead II

(0.63) (0.75) (0.76 (0.77) (0.76) (0.77)

9
QRST-SA QT on lead aVR QT on lead V3 PT on lead I PT on lead I QT on lead I

(0.63) (0.75) (0.76 (0.72) (0.76) (0.74)

10
ToTpD PT on lead V4 QT on lead V2 QT on lead V1 PT on lead aVL QT on lead aVL
(0.63) (0.75) (0.75) (0.75) (0.73) (0.74)
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4. Discussion

This work aims to identify, with the application of the novel AdvRS&LP, electrocar-
diographic and vectorcardiographic patterns that may be related to mortality in subjects
affected by COVID-19.

The definition of “death due to COVID-19” is still under discussion. Indeed, most
of the subjects whose mortality is associated with COVID-19 are also affected by other,
pre-existing diseases; thus, the infection aggravates an already compromised condition.
For this reason, we considered the ECG acquisition closest to the hospitalization date,
considering the infection active during the recording, and we defined cases as subjects
that died within one year from the infection, assuming the deaths were correlated with
COVID-19. Due to the limited size of the database, the selected ECG signals were all
employed for the 5-fold cross-validation procedure. Although this procedure is widely
accepted in the literature [17,18,20,21], the validation of the method in a testing holdout
dataset would demonstrate the applicability of the method in a real-world application.
Consequently, the classification results are purely indicative. Future studies will aim to
demonstrate the reliability of the method in a real-world clinical scenario.
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Despite these limitations, the NNs created through AdvRS&LP showed very promis-
ing classification capabilities, with a training AUC and ACC higher than 94% and 97%,
respectively, and a validation AUC and ACC higher than 80% and 79%, respectively
(Table 4). The AUC performed a little better than the ACC because the dataset was unbal-
anced (the number of controls was much larger than the number of cases). Considering
the good performances, the application of AdvRS&LP for the identification of ECG/VCG
patterns associated with mortality in COVID-19 patients seemed fitting.

The architectural structuring of the artificial NNs was accomplished using the novel
AdvRS&LP algorithm [25], an enhanced version of RS&LP recently proposed by Sbrollini
et al. [23,24]. Thanks to the removal of structural rules (previously included in RS&LP)
and to a variable number of neurons to be added in each structuring step of the proce-
dure, AdvRS&LP fosters the creation of NNs that adapt to the task for which they are
needed, without compromising classification performance. Indeed, the architectures of
the NNs obtained for the different folds are structurally different, since they are created
with different data divisions, although they provide similar classification performances
in both training (AUC = 97.38 ± 2.25% and ACC = 98.42 ± 1.17%) and hold-out testing
(AUC = 84.31 ± 2.58% and ACC = 80.40 ± 1.77%).

Classifiers created by AdvRS&LP can take into account a number of inputs that corre-
spond to the number of features included in the training dataset. In this work, 254 features
that covered the clinically relevant morphological, spatial, and temporal information for the
ECG/VCG signals were extracted from 10-second 12-lead ECG signals. The use of features,
as in this work, rather than raw or processed signal sequences guarantees a certain level
of interpretability in NN classification. We decided not to normalize the input features:
this design choice will guarantee the interpretability of the features by clinical personnel,
which allows comparisons with normality ranges. Moreover, we decided not to apply
the preprocessing feature-selection method. During the training of the NN, the adjust-
ment of weights and biases automatically selects the feature of interest, embedding the
feature-selection procedure inside the NN construction. The complexity of deep learning
models can hinder the uncovering of the decision process behind classification, which is,
however, fundamental in a diagnostic context. Notably, no anamnestic or clinical features
were considered as inputs for the NNs, with the aim of underlining hidden cardiac patterns
associated with mortality with COVID-19.

To permit the interpretability of the NN created by AdvRS&LP, LIME was applied [35–37].
The use of LIME allowed the construction of a feature ranking, which highlighted the
ECG/VCG features that most significantly affected the classification performed by the
NNs and, therefore, the ECG/VCG features whose changes could be mainly associated
with mortality in cases involving COVID-19. According to this analysis, HR and electro-
cardiographic intervals seem to be of relevance for classification, as features involving the
mnNN, PT interval, and QT interval appeared in the top 10 on the FR ranking of all the
NNs (Table 5), suggesting that changes in the duration of cardiac electrical activity might
be related to mortality in COVID-19 cases. This finding is in agreement with the body of
clinical research, which already revealed the modification of the QT interval [38], ST-T pat-
tern [39–41], and PR interval [42] induced by COVID-19 infection. Notably, modifications to
the QT interval are, indeed, often associated with a higher risk of developing arrhythmias
or heart failure [2,43], both of which have been observed in COVID-19 patients [4–13]. The
agreement between the FRs extracted from the different NNs (ρ > 0.97, Figure 2) suggests
robust feature interpretation by LIME.

The rankings obtained from LIME and the conventional statistical analysis, with the
latter usually evaluated by clinicians, showed disagreement (ρ < 0.30). This disagreement
was surely due to the different approaches: while conventional ROC analysis is based on a
linear separation boundary between samples by considering the role of each single variable
regardless of possible interactions, NNs build highly nonlinear separation boundaries by
considering all variables simultaneously during model training. The conventional statistical
analysis gave relevance to the features related to repolarization and RR-interval variability,
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as evidenced by the top 10 on the univariate AUC ranking (Table 5). From a physiological
perspective, a relationship between the RR interval and the QT interval cannot be denied,
as changes in one lead to variations in the other [44]. Thus, future studies will be needed to
investigate the correlation between QT and RR features exclusively.

In the context of the detection and investigation of cardiac risk associated with COVID-
19, the use of machine learning and deep learning methods has already been investi-
gated [17–22] (Table 6). All these studies are based on electrocardiography, but they differ
in terms of the type of input: three papers [17–19] considered the ECG paper scan of the
open access “ECG image dataset of Cardiac and COVID-19 patients” database [45], two
studies [20,22] considered ECG signals collected on a private database, and one paper [21]
considered ECG signals on the COVIDSQUARE database. Most of the papers [17–19,21]
investigated the detection of COVID-19 among those with healthy status or other diseases,
one study [23] assessed the severity of the COVID-19 infection, and Sridhar et al. [20]
aimed to predict COVID-19-related mortality. All the studies applied CNN [17–22], which
was validated by the k-fold cross-validation method [17,18,20,21], or static train/test data
division. Regarding performance, methods that were designed to identify patients af-
fected by COVID-19 presented very high levels of performance (accuracy higher than
85%) [17–19,21], and the method that was designed to predict COVID-19-related mortal-
ity presented a good performance (AUC equal to 60%) [20]. Finally, only two out of six
papers applied post-processing algorithms for ECG interpretation, both of which were
based on color maps [19,22]. Thus, in comparison with the literature, the method pre-
sented here is a unique approach that considers ECG features as NN inputs and includes
an interpretability-post-processing algorithm (LIME) that is able to sort ECG features ac-
cording to their importance to the classification performance. This design choice ensures
the high level of acceptability of the AI-based method in a real clinical scenario. Indeed,
the non-explainability typical of CNN causes a lack of trust among clinicians and, thus,
hampers their usage in clinical practice as diagnostic methods. Finally, in comparison with
the work of Sridhar et al. [20], our NN, created by using AdvRS&LP, provided a higher
level of performance in detecting mortality correlated with COVID-19 after it was assessed
with the same type of validation procedure, albeit on a different database.

Table 6. Qualitative comparison with the literature.

Ref. Input Output Method Validation Performance Interpretation

[17]

Hexaxial feature mapping
computed by extracting
signal from ECG-image
dataset of cardiac and

COVID-19 patients

COVID vs. No
COVID CNN 5-fold cross-

validation AUC = 95% -

[18]
ECG-image dataset of
cardiac and COVID-19

patients

TEST1: COVID vs.
Other vs. Normal

TEST 2: COVID vs.
Myocardial

Infarction vs.
Abnormal heartbeat

vs. History of
Myocardial

Infarction vs. Normal

CNN 10-fold cross-
validation AUC = 99% -

[19]
ECG-image dataset of
cardiac and COVID-19

patients

COVID vs. No
COVID

Efficient
ECGNet

Static train/test
data division ACC = 99% Grad-CAM

[20]
1386 ECGs recorded from
hospitalized COVID-19

patients
Survived vs. Dead CNN-

LSTM

10-fold
stratified cross-

validation
AUC = 60% -
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Table 6. Cont.

Ref. Input Output Method Validation Performance Interpretation

[21]
ECG of COVIDSQUARED

and ECG of Physionet
database

COVID vs. Non
COVID CNN 7-fold cross-

validation ACC = 85% -

[22] 1453 adult patients
affected by COVID-19 Severity Stratification CNN Static train/test

data division AUC = 73% Heatmap

This
work

ECG features extracted
from COVIDSQUARED Survived vs. Dead NN 5-fold cross-

validation AUC = 84% LIME

5. Conclusions

The application of an NN-based algorithm combined with an interpretability approach
highlighted features related to electrocardiographic intervals as those mainly affecting
the classification performed by NNs trained on ECG signals from COVID-19 patients.
This application highlighted the promising applicability of the neural networks created
by Advanced Repeated Structuring and Learning Procedure in the clinical environment,
supporting clinical personnel in the interpretation of the electrocardiographic patterns
associated with a specific pathology.
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