
Citation: Fan, Z.; Chen, F.; Xia, X.; Liu,

Y. EEG Emotion Classification Based

on Graph Convolutional Network.

Appl. Sci. 2024, 14, 726. https://

doi.org/10.3390/app14020726

Academic Editors: Wenjie Zhang and

Zhengyi Yang

Received: 1 September 2023

Revised: 23 September 2023

Accepted: 16 October 2023

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

EEG Emotion Classification Based on Graph
Convolutional Network
Zhiqiang Fan 1, Fangyue Chen 1, Xiaokai Xia 1,2 and Yu Liu 3,*

1 Artificial Intelligence Institute of China Electronics Technology Group Corporation, Beijing 100041, China
2 Beijing Institute of System Engineering, Beijing 100101, China
3 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China
* Correspondence: buaa_liuyu@buaa.edu.cn

Abstract: EEG-based emotion recognition is a task that uses scalp-EEG data to classify the emotion
states of humans. The study of EEG-based emotion recognition can contribute to a large spectrum
of application fields including healthcare and human–computer interaction. Recent studies in
neuroscience reveal that the brain regions and their interactions play an essential role in the processing
of different stimuli and the generation of corresponding emotional states. Nevertheless, such regional
interactions, which have been proven to be critical in recognizing emotions in neuroscience, are
largely overlooked in existing machine learning or deep learning models, which focus on individual
channels in brain signals. Motivated by this, in this paper, we present RGNet, a model that is designed
to learn the regional level representation of EEG signal for accurate emotion recognition. Specifically,
after applying preprocessing and feature extraction techniques on raw signals, RGNet adopts a novel
region-wise encoder to extract the features of channels located within each region as input to compute
the regional level features, enabling the model to effectively explore the regional functionality. A
graph is then constructed by considering each region as a node and connections between regions as
edges, upon which a graph convolutional network is designed with spectral filtering and learned
adjacency matrix. Instead of focusing on only the spatial proximity, it allows the model to capture
more complex functional relationships. We conducted experiments from the perspective of region
division strategies, region encoders and input feature types. Our model has achieved 98.64% and
99.33% for Deap and Dreamer datasets, respectively. The comparison studies show that RGNet
outperforms the majority of the existing models for emotion recognition from EEG signals.

Keywords: electroencephalogram; deep learning; emotion classification

1. Introduction

Emotion recognition has gained increasing prominence in many areas, such as human–
computer interaction and healthcare. For instance, developing the ability to recognize
emotion can assist in understanding the emotional states of patients. Existing techniques for
emotion recognition can be categorized into non-physiological methods and physiological
methods. The non-physiological methods involve facial expression, speech, eye movement
and so on [1–4]. A main issue with the non-physiological method is its uncertainty and
unreliability, as humans can deliberately conceal their true emotions. On the other hand, the
physiological methods offer a higher degree of objectivity since they produce uncontrollable
physiological responses, providing a potentially more accurate reflection of emotional states.
Electroencephalography (EEG), as one of the physiological methods, has been widely used
in emotion recognition tasks due to its easy acquisition and high temporal resolution. The
collection of EEG signal is carried out by placing the electrodes on a human scalp to record
the electrical activity of underlying brain tissues. As the production of emotion tends to
have a strong connection with the activity within brain structures that can be captured
by electrograms, the investigation of EEG signal can help to explore this functionality,
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exemplifying the importance of conducting research on emotion recognition using EEG
signals. Nowadays, the processing and classification on EEG data still remains challenging.
Essentially, EEG signal is the observation of source signal that has been sent from deeper
brain regions that varies with time and is transmitted with different intensity. This non-
stationary property makes it difficult to be handled by linear methods [5]. Moreover, EEG
signal can be contaminated with noise and artifacts produced by the external environment
or mixed with other signals. These issues may affect the collection of brain signals, making
it challenging to handle emotion classification by naive methods. Therefore, more and
more studies are seeking machine learning or deep learning approaches to solve this task.

Earlier studies primarily emphasize how to extract temporal features from an individ-
ual channel, where the inter-channel activity was not thoroughly explored [6–8]. Recently,
there have been many works proposed to utilize the fused features of multiple channels.
For instance, some studies utilizing convolutional neural networks (CNNs) combine the
signal with adjacent channels by treating electrodes as equally spaced pixels in images;
another widely used approach is graph neural networks (GNNs), which map channels into
nodes and relationships into edges to probe the topological characteristics of brain activ-
ity. Although these formulations provide a way to describe how activities from different
locations occur coherently by channel-level representation, it still does not guarantee to
capture the complex functional relationship occurring at the regional level, which has been
identified to be an important factor in the elicitation of emotion. Studies in neuroscience
reveal that the functionality of brain regions and their interactions are important factors in
the process of emotion production [9–12]. Extracting interactions and features frim regions
rather than channels allows us to follow the nature of brain structures and has the potential
to create the ability to interpret the association between brain activity and emotion states.

Based on such a point, there are several works proposed to tackle emotion recognition
from the perspective of brain regions. Ref. [13] uses Bi-LSTM to capture the regional
feature and global feature; Refs. [14,15] focus on extracting features for hemisphere. Al-
though these approaches develop effective ways to present regional features, they do not
thoroughly investigate the topological structure and interactions among brain regions.
Ref. [16] addresses this issue by constructing local and global graphs. However, it takes
the assumption that the connection only exists between nodes or regions that have similar
characteristics, which limits the scope on investigating the complex structure of regions.

In this study, we propose a model that investigates both the internal and the global
activity of brain regions to identify emotions. Our model firstly adopts a preprocessing
technique and feature extractions on the input EEG signal. Next, the channels within the
same region are grouped together to form regional data. The region encoder is applied to
extract the representative features of each region. For the purpose of learning topological
structure among different regions, the graph convolutional network (GCN) is employed to
learn more discriminative features. The main contributions of our study include:

1. We propose a model that solves emotion recognition based on region-level representa-
tion to learn the activity inside and across various brain regions. Such interactions
have been proven to be highly relevant to human emotion state from a neurological
point of view.

2. To capture the correlation between brain regions, we construct a graph on EEG signals
and employ graph spectral filtering with dynamical adjacency matrix. This approach
is more applicable to study the interplay of brain areas since it does not limit itself to
the notion of geographic closeness and provides flexibility in detecting function-level
interactions.

3. To thoroughly investigate how to formulate regional-level characteristics, we conduct
a comprehensive experimental study in terms of different region encoders, region
division strategies and input features. The results show that our approach outperforms
many existing methods on DEAP and Dreamer datasets.
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2. Literature Review

Due to the dynamics property and noise presented in an EEG signal, EEG-based
emotion recognition has always been a challenging task. Many researchers have employed
a wide range of methods to tackle this problem. In this section, we introduce the works
that mainly utilize machine learning and deep learning approaches.

2.1. Machine Learning Approach

Machine learning is a widely used approach in EEG emotion recognition. It often starts
with preprocessing the raw signal and extracting hand-crafted features. Then, features are
fed into a machine learning model, such as a support vector machine, K-nearest neighbor,
decision tree, etc., to classify emotion states.

Many studies have been carried out that focus on evaluating the effectiveness of
different features. Ref. [17] explores power spectral density, differential asymmetry and
rational asymmetry of the paired channels under multiple frequency bands. These features
are processed by a support vector machine to recognize emotions. It finds that differential
asymmetry is more robust to detect the brain dynamics caused by emotions. Moreover,
information provided by the channels from the frontal and parietal lobe is useful to distin-
guish emotions. Ref. [18] conducts studies on emotion classification with different features
as input. During the process, feature dimensionality reduction techniques, such as principal
component analysis and linear discriminant analysis, are adopted to improve the efficiency
and accuracy. The experiment results indicate that the power spectrum was identified as
the most effective amongst all input features and the high frequency band tends to be more
useful in emotion classification. These studies show that the choice of input features can
largely affect the results.

To compare which classifiers have the best performance, Ref. [6] utilizes statistical
data, i.e., min, max, mean and standard deviation, as the input. Then, it adopts a K-
nearest neighbor, regression tree, Bayesian network, support vector machine and artificial
neural network for classification. The experiments show that the K-nearest neighbor and
support vector machine give the best results among all the models. However, it can be
challenging for the majority of machine learning methods to work well with large datasets.
Ref. [19] employs discrete wavelet transform and spectral features. In the classification
stage, it applies a support vector machine with the aid of a radial basis function kernel
to process features from 10 channels to do the classification. Ref. [20] employs empirical
mode decomposition/intrinsic mode functions and variational mode decomposition to
process the raw EEG signal which is widely used in biomedical studies. These methods are
used to decompose nonlinear and non-static signals and feed them into VMD to identify
low and high frequencies. Then, it extracts two non-linear features: entropy and Higuchi’s
fractal dimension. Finally, it carries out experiments by using Naive Bayes, K-nearest
neighbor, decision tree and convolutional neural networks to recognize emotions. A
common observation from these studies is that the support vector machine often generates
the best outcomes in emotion classification tasks.

2.2. Deep Learning Approach

Recently, extensive research efforts have been devoted to deep learning techniques
for EEG-based emotion identification due to the robustness and low requirement for prior
knowledge. These techniques can be generally classified according to the type of network
used, as those with similar architectures are prone to follow analogous ideas.

In previous studies, a common class of deep learning model to address EEG-based
emotion classification is long-short term memory (LSTM), which is typically designed to
capture temporal dependencies with data sequences. Ref. [21] directly inputs EEG signal
into the LSTM network by treating channels as features for each time frame. Similarly,
Ref. [7] computes the discrete wavelet transform from the raw signal, followed by the ex-
traction of statistical data. These extracted features are then fed into a network architecture
that combines LSTM layers with dense layers for each individual channel. Ref. [15] further
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extends LSTM with a domain adversarial neural network. It involves the extraction of
features from each hemisphere using an LSTM-based approach. The domain adversarial
network is adopted here to address the challenge of cross-subject variability. These studies
demonstrate the strength of LSTM in effectively capturing temporal characteristics from
EEG data. A potential drawback of LSTM is that it may hinder the ability to learn the
spatial connections among EEG channels.

Another type of network widely adopted in emotion recognition with EEG signal is a
convolutional neural network (CNN), which uses a shared-weight kernel to slide over data.
It is primarily utilized in the area of image analysis due to its advantages for processing
data with grid patterns. Ref. [22] examines the power of CNN in terms of architecture,
design and training decisions. The results indicate that CNN is capable of learning highly
discriminative features when given the proper conditions. Ref. [23] adopts a 3D convolution
layer, which is able to learn spatial and temporal features simultaneously. It requires a 3D
input representation for the EEG signal by appending consecutive frames together. Ref. [24]
develops a compact convolution architecture for EEG-based brain–computer interfaces
(BCI). It introduces separable and depthwise convolution, which can not only give extract
interpretable features but also reduces the number of parameters. Ref. [14] uses multi-scale
convolutional layers to extract temporal and spatial layers. It specifically considers the
asymmetrical property in the frontal area of brain. These studies demonstrate that CNN is
capable of processing both temporal and spatial aspects of EEG signals. However, an issue
that often comes with CNN is the inflexibility when considering the relationships among
channels or areas. As the nature of CNN is to presume the grid pattern of input data, it is
challenging for CNN to investigate non-Euclidean connectivity. On the other hand, this
problem can be handled by a graph-based approach.

A graph neural network (GNN) is a class of networks that presents data in a graph
structure. In EEG signal tasks, a graph is often constructed by treating each channel as a
node, while the formulation of edges could vary. One of the options is to utilize the spatial
proximity. Ref. [25] builds a 2D matrix to mark the relative position of electrodes. Then,
the adjacency matrix is obtained by thresholding the shortest distance between a node and
its neighbors. Ref. [26] establishes the connectivity based on the inverse square function
of the physical distance. However, argued by [27], these spatial-based formulations may
not represent the real functional connection between channels. To address this problem,
it proposes a dynamical graph convolutions neural network that can dynamically learn
the intrinsic relationship between nodes. In those works that employ GNN, the advantage
of exploring topological structure makes it more adaptable to investigate the relationship
between channels.

To improve the performance on both the spatial and temporal level, hybird networks
are used that are composed of different types of networks. From the perspective of signal
decomposition, Ref. [28] proposes a model that derives the source signal by stack autoen-
coder (SAE). Next, the sequenced features are fed into the LSTM network to learn the
contextual correlation. Ref. [29] proposes a model that first captures spatial features by
convolution layers at each timestamp and feeds them into the LSTM layer. The novelty in
this work is that it adopts an attention mechanism in both stages to capture which channel
or which timestamp contributes more in the process of emotion recognition. Ref. [30]
employs a combination of GNN and LSTM, where GNN is responsible for learning static
graph-domain features and LSTM extracts effective information from the channel-level
relationships in a short range of time. Recently, the study of spatial-temporal graph learning
has also been employed in EEG emotion classification. Ref. [31] integrates the spatial graph
convolutional network with an attention-enhanced bi-directional LSTM module. This type
of model better combines the temporal information to learn the features.

In addition to the aforementioned approach, some other novel methods have emerged
in the field of EEG-based emotion classification. The methods provide different direc-
tions for advancing the deep learning techniques on EEG emotion classification. One of
these methods, Ref. [32], focuses on a real-time method, which employs online learning



Appl. Sci. 2024, 14, 726 5 of 18

techniques, including adaptive random forest, streaming random patches and logistic
regression. Ref. [33] utilizes a capsule network to extract hierarchical features from the EEG
signal, where each emotional capsule associates with an individual task. To enhance the
power of multi-task learning, it uses the dynamic routing algorithm to achieve information
exchange between primary capsules and emotional capsules. Recently, reinforcement
learning has gained attention in EEG emotion classification as well. An example is [34] ,
which is a reinforcement learning-based method that combines the idea of Papez circuit
theory and uses EEG signals from the frontal lobe to simulate brain mechanisms. The key
contribution in this approach is the utilization of a double dueling deep Q network, which
enhances the decision-making process with more informed choices. These various methods
have significantly advanced the field of deep learning for EEG emotion classification.

3. Method

In this paper, we propose a deep learning model, RGNet, to address the emotion
recognition task. The structure of our model is shown in Figure 1. We firstly present the
preprocessing technique in Section 3.1. Next, we introduce the regional feature learning
block, which attempts to learn the region functionality in Section 3.2. Finally, to capture the
interactions between regions, the graph learning block is proposed in Section 3.3.

Figure 1. The structure of RGNet.

3.1. Prepocessing

In order to retrieve useful signals that correspond to the emotions elicited by stimuli,
we adopt several preprocessing techniques: the baseline signal removal method [35],
segmentation and normalization.

Given the trial signal denoted by X ∈ RC×T , where C is the number of channels and T
is the time duration, assume the time duration in seconds is t and the frequency of signal
is f , then by the definition of frequency, we have T = t × f . It suggests that signal X
can be split up into t segmentations where we denote each segmentation as Xi ∈ RC× f .
Similarly, the baseline signal Xb can be segmented into tb signals where the ith segmentation
is referred to as Xb

i ∈ RC× f . The mean of baseline signal Xb can be derived as following:

Xb =
∑tb

i=1 Xb
i

tb
. (1)

Next, Xb will be subtracted from each segmentation of the trial signal:

Xi = Xi − Xb. (2)

The normalization is then applied, i.e., Xi is subtracted by its mean and divided by the
standard deviation. Once the preprocessing is completed, we further extract features for
each slice. The details of segmentation and feature extraction are described in Section 4.
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3.2. Regional Feature Learning Block

Many studies have argued that individual emotions can be related to activity in
multiple brain regions and a single region can be associated with the formulation of
multiple emotions [12,36–38]. It is therefore vital to investigate the function that each
region plays to determine how the activity of each region helps to recognize different
emotions. In this study, we intend to explore the emotional functionality of brain regions by
gathering channels within the same region and then feeding them into the corresponding
region encoder.

Based on the spatial location of channels, we divide EEG channels into n different
regions R1, R2, · · · , Rn, where Ri is defined as a set of channels grouped together, i.e.,
Ri = {k1, k2, · · · , km}, and k j refers to the channel index. The regional input XRi ∈ Rm×Ts

consists of the signals of channels in the same region:

XRi = {xkj
|xkj

∈ R1×Ts , k j ∈ Ri}, (3)

where xki
is the signal of channel ki. Firstly, we apply a multi-layer perceptron (MLP) to

process the raw input signal XRi ∈ Rm×Ts :

X′
Ri

= MLP(XRi ). (4)

The processed data X′
Ri

∈ Rm×Fin will be taken as the input to be fed into the region
encoder fi:

FRi = fi(X′
Ri
), ∀i ∈ {1, 2, · · · , n}. (5)

The structure of region encoder fi is displayed in the third section in Figure 2. We employ
the graph-based network by mapping channels into nodes. The benefit of this approach is
its ability to model the underlying patterns of each region since it provides a natural way
to explore the relationships between channels, rather than focusing on the integration of
individual channel features. In the graph, all nodes are fully connected to each other at the
beginning due to the observation that channels in the same region tend to have similar activities.
We adopt a graph convolutional network (GCN) to propagate the information among nodes.
Finally, the derived node features are flattened and passed into fully connected layers to
produce the output FRi . The detail of the GCN is described in Section 3.3.

Figure 2. Different types of region encoders.
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3.3. Graph Learning Block

Many works suggest that the correlation of regional brain activation plays a critical
role in the processing of emotions [12,39]. Thus, with given features of an individual region,
we seek a method that allows the study of how these regions relate to one another. In
neuroscience research, graph theoretic analyses are frequently employed to investigate
functional brain networks from a topological standpoint since they provide a systematic
approach to analyze brain structure by mapping neural elements into nodes and their
connections into edges [40–42]. Following such an idea, we feed the regional features
derived from the region encoder into a graph convolutional network (GCN). We employ
the spectral approach to define the convolutional filter instead of spatial approach since it
is the more dominant method for dealing with signal processing [43].

The regional features derived from Section 3.2 are used as nodes to formulate a graph
G. Then, assume we have the graph G with adjacency matrix A ∈ Rn×n and degree matrix
D ∈ Rn×n. We can derive the Laplacian matrix by L = D − A, or the normalized version
L̂ = I − D

1
2 AD− 1

2 . Since L will be a real symmetric positive semidefinite matrix, it can be
decomposed into

L = UΛUT (6)

via singular value decomposition where λ = diag(λ1, · · · , λn) is the diagonal matrix of the
eigenvalues of L̂ and U is the Fourier basis. For a given graph data point X, we can derive
its graph Fourier transform and inverse graph Fourier transform:

X̂ = UTX, (7)

X = UX̂. (8)

Then, the signal filtered by function gθ(·) can be expressed by

Y = gθ(L)X

= gθ(UΛUT)X

= Ugθ(Λ)UTX, (9)

where gθ(Λ) can be expressed as:

gθ(Λ) =

g(λ0) · · · 0
...

. . .
...

0 . . . g(λN−1)

. (10)

Due to difficulties on the large computation caused directly by learning gθ(Λ), we
additionally adopt Chebyshev expansion [44], which is formulated as following:

T0 = 1, T1 = x, (11)

Tk(x) = 2xTk−1(x)− Tk−2(x), (12)

where Tk(x) is the Chebyshev polynomial with order k. Say we have λmax as the largest
eigenvalue of L and In ∈ Rn×n is the identity matrix, we denote Λ̃ = 2Λ

λmax
− In as a diagonal

matrix filled with scaled eigenvalues within [−1, 1]. Then, we can make the following
estimation based on the Kth order polynomial:

gθ(Λ) =
K−1

∑
k=0

θkTk(Λ̃) (13)
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where the parameter θ ∈ RK presents the Chebyshev coefficients. Similarly, we can derive
gθ(L) = ∑K−1

k=0 θkTk(L̃) with L̃ = 2L
λmax

− In. Back to the filtering operation, we now have:

Y = gθ(L)X =
K−1

∑
k=0

θkTk(L̃)X. (14)

Additionally, to allow the network to learn the connectivity among brain regions in a
flexible way, we utilize a dynamical graph convolutional network where the adjacency
matrix can be learned.

The detail of the structure of the graph learning block is provided in Figure 3. Finally,
the output embedding will generate the final results for predicting the label.

Figure 3. The structure of the graph learning block in Figure 1.

4. Experiments and Discussions

In this section, we present the datasets and discuss the results of experiments that
are conducted to investigate the region division strategy, region encoders and different
feature types. Lastly, we demonstrate a contrasting study to compare our results with other
popular models.

4.1. Dataset

We utilize two public datasets: DEAP [45] and Dreamer [46]. The placement of
electrodes in both datasets follows 10–20 systems.

DEAP is a dataset that records the physiological data and corresponding emotion
states. It contains the data collected from 32 participants where each participant is required
to watch 40 music videos to elicit emotions. Each videos has 3 s baseline data and 60 s trial
data. The signal is recorded at 512 Hz. The data of each trial involve 40 channels where
the first 32 are EEG channels. The levels of arousal, valence and dominance are rated by
each participant on a scale from 1 to 10. The official dataset also provides preprocessed
data, where data were downsampled at a rate of 128 Hz. In our study, we make use of the
preprocessed data. Following the protocol of [29], each trial is segmented into a set of 3 s
slices with a non-overlapping sliding window. The label is categorized into low and high
states by a threshold of 5.

Dreamer is a dataset that records EEG and ECG data of 23 participants watching film
clips. Each participant is required to watch 18 different videos, which last from 64 s to
393 s. The signals of 14 channels are recorded at a sampling rate of 128 Hz. The levels of
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arousal, valence and dominance need to be rated by each participant on a scale from 1 to 5.
Following the protocol of [47], we segment each recording into a set of 1 s samples with a
non-overlapping sliding window. The label is categorized into low and high states by a
threshold of 3.

Additionally, we add the SEED dataset [48,49] into our evaluation. The SEED dataset
contains data from 15 participants, each of whom participated in 3 sessions. Within each
session, there are 15 trials. The signals are recorded with 62 channels and have been
downsampled to a frequency of 200 Hz. The emotion label provided by each participant is
expressed as either negative, neutral or positive.

4.2. Training Detail

During the training, we set the batch size as 64, number of epochs as 30 and learning
rate as 1 × 10−3. For all the graphs in the network, we chose fully connected edges to
capture all the dependencies. In the region encoder, the number of nodes is determined
based on the number of channels in the dataset. Specifically, we set the number of nodes
to 32 for the Deap dataset, 14 for the Dreamer dataset and 62 for the SEED dataset. In
the graph learning block, the number of nodes is determined by the division strategy in
Figure 4. Nodes sharing the same color are regarded as a unified region, with the region
iteself being treated as a single node. The number of nodes is set to be 5 for the first strategy
and 14 for the second strategy. As for the third strategy, the number of nodes is consistent
with the number of channels proveded by the datasets.

Figure 4. Three different region division strategies constructed based on 10–20 systems. The electrodes
in the same group are presented in the same color.

4.3. Evaluation Metric

To align with previous works [29], we conduct 10-fold cross validation experiments.
The data of each subject will be randomly shuffled at the beginning and divided into
10 folds. To assess the sensitivity of parameters, we randomly initialize the parameters
of the model via a uniform distribution. In the experiments, we present the mean and
standard deviation of the results obtained from 10-fold cross validation to evaluate the
model’s convergence and its ability to generalize across different subsets of data. To provide
the result of each fold, we calculate the precision, recall and f1-score as below:

precision =
TP

TP + FP
, (15)

recall =
TP

TP + FN
, (16)

f1-score =
2 × precision × recall

precision + recall
, (17)

where TP, FP and FN denote true positive, false positive and false negative.
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4.4. Experiment on Region Representation

To study how to generate effective regional features that contribute to emotion
recognition, we firstly conduct experiments from the perspective of region encoders and
region strategies.

The region encoders utilized in experiments are shown in Figure 2. In addition to
the GCN region encoder presented in Section 3.2, we introduce two other types of region
encoders for comparison:

• Multi-layer perceptron (MLP) is one of the most common networks. The input X′
Ri

is firstly flattened into a one-dimensional vector, then the multi-layer perceptron
is applied:

YRi = MLPRi (Flatten(X′
Ri
)), (18)

to generate the output YRi ∈ RFout .
• Convolutional neural network (CNN) is a class of neural network that is widely used

in emotion recognition tasks. It utilizes kernel to move data into a grid pattern. Say
the kernel size is m, then we can derive:

yi = g(∑
j

wijx′j + bi), (19)

where xj is the jth feature; wij is the kernel weight; bj is the offset of the jth feature;
g(·) is the activation function.

As can be observed in Figure 2, each of the three types of regional encoders has its
own specific structure to handle input features from different perspectives. We intend to
examine which structure works the best in generating the regional features.

In addition to region encoders, the strategy to define regions is also a critical factor.
We provide three different strategies to define the division of brain regions, as shown
in Figure 4. Each strategy determines which electrodes are grouped together to form a
single region Ri, as stated in Section 3.2. Note that the figure is illustrated based on full
10–20 systems while, in practice, we only consider the electrodes that are given by the
dataset. The first one is based on the common division of a human brain [50], where the
cortex can be segmented into frontal, temporal, parietal and occipital lobes. Despite the fact
that the central lobe does not actually exist in the human brain, we still use it as a distinct
region based on 10–20 systems to help identify the location of recorded brain activity more
precisely [51]. The other two procedures are further divided into more granular pieces,
where, in the second one, left, center and right parts are split into different regions and
in the third one only symmetric electrode sites are grouped. We adopt these strategies
in accordance with earlier studies implying that the asymmetries in brain activity may
have a great impact on emotion identification [52,53]. The main difference between those
two strategies is that we set different levels of subdivision to discover which one is best at
preserving the distinctive features of asymmetric difference.

The results of applying region strategies on different region encoders are shown in
Table 1, which records the average accuracy of valence, arousal and dominance on DEAP
and Dreamer datasets. An observation obtained in both datasets is that the second and
first strategy achieved the best and worst results, respectively. Such findings suggest that
the second strategy gives a proper division where the functionality of each region and the
interaction among them can be sufficiently captured by our model. In contrast, the first
strategy splits the area in a coarser way, making it difficult to preserve the hemisphere
structure, while groups in the third strategy show a more dispersed pattern that resembles
channel-wise characteristics rather than region-wise features. For the DEAP dataset, we
can see that for the second and third region division strategy, the results derived from the
MLP region encoder are usually the lowest and GCN can achieve the best. It demonstrates
that compared to MLP and CNN, GCN is better at capturing the regional features by



Appl. Sci. 2024, 14, 726 11 of 18

considering the internal topological structure. For the Dreamer dataset, the results imply a
similar level of performance on the three region encoders with the same division strategy.
The variation among different region encoders is less than 0.3%. A possible explanation is
that the Dreamer dataset provides signals from less channels, causing each region to have
extremely few electrodes. In this scenario, the structure of each region tends to be relatively
simple, which makes the advantages of GCN on capturing internal relationships less useful.
Nevertheless, we can still observe that GCN gives the best outcomes in both datasets.

Table 1. The accuracy (%) of region division strategies combined with different region encoders. The
first column is the index of the region division strategy.

Region No. MLP CNN GCN

DEAP

1. 94.11 93.58 94.13
2. 97.48 97.64 98.65
3. 97.05 97.54 98.01

Dreamer

1. 94.25 94.00 94.29
2. 99.12 99.09 99.15
3. 97.11 96.94 97.03

4.5. Feature Visualization

In this study, we attempt four different types of input features that are often used in
EEG-based emotion recognition:

• Raw signal.
• Differential entropy (DE) is a measure of the complexity of a continuous random

variable. It can be calculated as following:

DE(X) = −
∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2

· log
(

1√
2πσ2

e−
(x−µ)2

2σ2

)
=

1
2

log(2πeσ2), (20)

where µ and σ denote the mean and standard deviation.
• Fast Fourier transform (FFT) is an algorithm that is used to compute the discrete

Fourier transform(DFT) of a sequence of data points in an efficient way. It can be
defined as:

S( f ) =
∫ +∞

−∞
s(t)e−j2π f tdt, (21)

where f is the frequency; t denotes time; s(t) is the signal in time domain.
• Power spectral density (PSD) refers to the distribution of power of different frequen-

cies in a signal. It is calculated by taking the squared magnitude of Fourier transform
of the signal:

PSD( f ) =
∣∣∣∣ ∫ +∞

−∞
x(τ)e−j2π f τdτ

∣∣∣∣2. (22)

Note that for the frequency-domain features, we decompose the EEG signal into five
frequency bands: δ band (1–3 Hz), θ band (4–7 Hz), α band (8–12 Hz), β band (8–12 Hz) and
γ band (8–12 Hz). The features are extracted from each band respectively, which indicates
the dimension of features for each segment would be five.
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To compare learning of models with different input features and region encoders,
we visualize the features of the last fully connected layers using the t-SNE visualization
tool. The features of data from the same subject are extracted to make a fair comparison.
The t-SNE visualization of DEAP is shown in Figure 5. With DE, PSD and FFT as input
features, MLP region encoders are unable to distinguish between the two classes, while
CNN and GCN have relatively better performance. All the region encoders are able to
observe distinct separation with raw signal input.

The features from the Dreamer dataset, as shown in Figure 6, are more variable
between low/high classes. We are able to observe that the PSD and FFT features have
relatively more outliers for all region encoders. On the other hand, a more distinct boundary
can be detected with other features, especially DE.

The differences between observations of DEAP and Dreamer might be attributed to
their intrinsic differences as datasets, e.g., stimuli they used or the collection of data and
experiment settings. Based on the analysis of features, for the following experiments, we
choose the raw signal to be the input for the DEAP dataset and DE as the input for the
Dreamer dataset.

Figure 5. t-SNE visualization of features for DEAP dataset. Row represents region encoder and
column represents the type of input features.

4.6. Subject-Wise Results

We plot the subject-wise accuracy and standard deviation of our models with different
region encoders and the baseline models for different emotion dimensions. Note that for
dominance in the DEAP dataset, we exclude the 27th subject since we can only find low
labels in its data. As shown in Figure 7, for the DEAP dataset, our methods achieve higher
and more stable results most of the time. Despite the fact that for a few subjects, our models
have a relatively big standard deviation, it still can be observed that our approach is able to
derive qualified results for the majority of subjects. Among all approaches, RGNet-GCN has
shown comparatively superior results due to its high accuracy and low standard deviation.
For the Dreamer dataset, as shown in Figure 8, a more stable outcome is demonstrated for
both baseline models and our methods. We can observe that the three types of regional
encoders have a similar trend on the Dreamer dataset due to the aforementioned problem
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about the low number of electrodes in each region. The advantages of GCN in terms of
capturing internal relationships within regions are suppressed under these circumstances.

Figure 6. t-SNE visualization of features for Dreamer dataset. Row represents region encoder and
column represents the type of input features.

(a) Valence (b) Arousal (c) Dominance

Figure 7. Subject-wise average accuracy and standard deviation (%) on DEAP dataset with respect to
the classification of valence, arousal and dominance.

(a) Valence (b) Arousal (c) Dominance
Figure 8. Subject-wise average accuracy and standard deviation (%) on Dreamer dataset with respect
to the classification of valence, arousal and dominance.
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4.7. Comparison of Different Models

In our comparison study, we include two baseline models: decision tree (DT) and
support vector machine (SVM), which utilize DE as input. Additionally, we evaluate
the outcomes of our approaches using the raw signal and DE as input formulation in
comparison to the following models:

• CNN-RNN [35] is a hybrid neural network that combines CNN and RNN to process
the spatial and temporal features.

• RACNN [47] is the regional-asymmetric convolutional neural network. It firstly
extracts the time-frequency features using 1D CNN. Then, the asymmetrical regional
features are captured from 2D CNN.

• ACRNN [29] is an attention-based convolutional recurrent neural network. In the
first stage, it applies CNN to extract spatial features where a channel-wise attention
mechanism is employed to determine the importance of different channels. Next, the
extracted features are fed into the RNN network that has an extended self-attention
mechanism to determine the intrinsic importance of each sample.

• DGCNN [27] is a model that utilizes a dynamical graph convolutional network, which
maps multi-channel EEG signals into a graph structure by considering each channel
as a node and the connection between them as edges. It allows the model to learn
the dynamical structure of a graph so that the relationships among nodes are not
constrained to geographical proximity.

• CapsNet [33] uses the attention mechanism and capsule network to conduct multi-
task learning. The attention mechanism is used to capture the importance of each
channel. The capsule network consists of multiple capsule layers that not only learn
the characteristics required for individual tasks but also the correlations between them.

The contrasting results of the DEAP dataset are displayed in Table 2. Among our
approaches, RGNet-GCN has outperformed all other methods. Additionally, in our ap-
proach, it can be observed that the second best results are yielded from RGNet-CNN and
the worst ones come from RGNet-MLP. Such results demonstrate that GCN is more capable
of learning regional features than CNN and MLP. When compared to other models, firstly,
we can observe that each of the deep learning approaches presented in the table is superior
to DT and SVM by a margin of at least 17%. The accuracy derived from the majority of
models is under 98%, while our model, RGNet-GCN, is able to attain 98.61%, 98.63% and
98.71%, respectively.

For the results of Dreamer dataset shown in Table 3, there is no significant margin
between baseline models and some previous deep learning methods. Moreover, the accu-
racy derived from CNN-RNN is lower than SVM. The highest accuracy achieved by other
methods does not exceed 98% for valence and arousal, while the results of our model are
over 99% for almost all classes.

Table 2. The comparison of different models on the average accuracy/std(%) of DEAP dataset.

Method Feature Valence Arousal Dominance

DT DE 67.52/4.79 69.59/6.09 69.96/9.68
SVM DE 71.05/6.11 72.18/6.89 71.85/8.38

CNN-RNN raw signal 89.92/2.96 90.81/2.94 90.90/3.01
ACRNN raw signal 93.72/3.21 93.38/3.73 -
DGCNN DE 92.55/3.53 93.50/3.93 93.50/3.69
RACNN raw signal 96.65/2.65 97.11/2.01 -

MTCA-CapsNet raw signal 97.24/1.58 97.41/1.47 98.35/1.28

RGNet-MLP raw signal 98.09/1.66 96.99/2.98 97.36/2.58
RGNet-CNN raw signal 98.21/1.55 97.21/2.69 97.49/2.35
RGNet-GCN raw signal 98.61/1.24 98.63/1.26 98.71/1.07



Appl. Sci. 2024, 14, 726 15 of 18

Table 3. The comparison of different models on the average accuracy/std(%) of Dreamer dataset.

Method Feature Valence Arousal Dominance

DT DE 76.39/6.69 76.62/6.91 76.59/6.27
SVM DE 83.36/5.21 82.58/5.41 82.71/5.30

CNN-RNN raw signal 79.93/6.65 81.48/6.33 80.94/5.66
ACRNN raw signal 97.93/1.73 97.98/1.92 98.23/1.42
DGCNN DE 89.59/5.13 88.93/3.93 88.64/5.13
RACNN raw signal 96.65/2.18 97.01/2.74 -

MTCA-CapsNet raw signal 94.96/3.60 95.54/3.63 95.52/3.78

RGNet-MLP DE 99.16/0.75 99.00/1.25 99.20/0.72
RGNet-CNN DE 99.13/0.82 98.97/1.27 99.18/0.78
RGNet-GCN DE 99.17/0.85 99.06/1.29 99.23/0.89

We conclude that for both datasets, our approach has the best performance in com-
parison with other popular models. Furthermore, in our approach, the best results all
came from the GCN region encoder. The detailed results from our approach are shown
in Tables 4 and 5 for the DEAP and Dreamer dataset, respectively. We further conduct
experiments on the SEED dataset. The result in Table 6 reveals that the model exhibits
better performance for positive emotion state. However, the prediction ability for the
neutral and negative emotion states yielded comparatively lower outcomes. Nevertheless,
the overall performance has proven the effectiveness of our method.

Table 4. Detailed performance of RGNet-GCN on DEAP dataset.

Precision Recall F1-Score

Valence 98.65 ± 1.17 98.72 ± 1.61 98.67 ± 1.31
Arousal 98.64 ± 1.33 98.61 ± 1.98 98.60 ± 1.57

Dominance 98.76 ± 1.12 98.85 ± 1.50 98.78 ± 1.19

Table 5. Detailed performance of RGNet-GCN on Dreamer dataset.

Precision Recall F1-Score
Valence 99.05 ± 0.99 98.93 ± 1.11 98.99 ± 1.03
Arousal 99.06 ± 1.36 98.86 ± 1.59 98.96 ± 1.29

Dominance 99.19 ± 0.90 99.35 ± 0.73 99.27 ± 0.80

Table 6. Detailed performance of RGNet-GCN on SEED dataset.

Precision Recall F1-Score

Positive 97.84 ± 2.70 98.28 ± 1.53 97.90 ± 1.97
Neutral 95.72 ± 3.30 94.18 ± 4.55 94.58 ± 3.95
Positive 94.57 ± 6.14 88.50 ± 9.40 90.31 ± 8.19

5. Conclusions

In this study, we propose RGNet, a region-based graph convolutional network, for
emotion recognition from EEG signals. Our approach firstly preprocess and extracts
features from given EEG signal. Then, the channels are clustered via the region division
strategy. Each group of channels is fed into the corresponding region encoder. Next,
the produced regional features are treated as node embeddings to be inputted into a
graph convolutional network. Finally, the resulting node features are flattened and passed
into fully connected layers to produce the classification results. In the experiments, we
conducted extensive studies on the region division strategies, region encoders and input
feature types to determine the proper regional representation. For the classification of
valence, arousal and dominance, our model has achieved 98.61%, 98.63%, 98.61% for the
DEAP dataset and 99.17%, 99.06%, 99.23% for the Dreamer dataset. The comparison with
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other models indicates that our model is able to outperform most of the popular methods
for both datasets.
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6. Sohaib, A.T.; Qureshi, S.; Hagelbäck, J.; Hilborn, O.; Jerčić, P. Evaluating Classifiers for Emotion Recognition Using EEG. In

Proceedings of the Foundations of Augmented Cognition; Lecture Notes in Computer Science; Schmorrow, D.D., Fidopiastis, C.M.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 492–501.

7. Garg, A.; Kapoor, A.; Bedi, A.K.; Sunkaria, R.K. Merged LSTM Model for emotion classification using EEG signals. In Proceedings
of the 2019 International Conference on Data Science and Engineering (ICDSE), Patna, India, 26–28 September 2019; pp. 139–143.

8. Chen, S.; Jin, Q. Multi-modal Dimensional Emotion Recognition using Recurrent Neural Networks. In Proceedings of the 5th
International Workshop on Audio/Visual Emotion Challenge, Brisbane, Australia, 26 October 2015; ACM: New York, NY, USA,
2015; pp. 49–56.

9. Davidson, R.J.; Abercrombie, H.; Nitschke, J.B.; Putnam, K. Regional brain function, emotion and disorders of emotion. Curr.
Opin. Neurobiol. 1999, 9, 228–234. [CrossRef]

10. Pessoa, L. Beyond brain regions: Network perspective of cognition-emotion interactions. Behav. Brain Sci. 2012, 35, 158–159.
[CrossRef]

11. Kober, H.; Barrett, L.F.; Joseph, J.; Bliss-Moreau, E.; Lindquist, K.; Wager, T.D. Functional grouping and cortical–subcortical
interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage 2008, 42, 998–1031. [CrossRef]

12. Lindquist, K.A.; Wager, T.D.; Kober, H.; Bliss-Moreau, E.; Barrett, L.F. The brain basis of emotion: A meta-analytic review. Behav.
Brain Sci. 2012, 35, 121–143. [CrossRef]

13. Li, Y.; Zheng, W.; Wang, L.; Zong, Y.; Cui, Z. From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal Neural
Network Model for EEG Emotion Recognition. IEEE Trans. Affect. Comput. 2022, 13, 568–578. [CrossRef]

14. Ding, Y.; Robinson, N.; Zeng, Q.; Chen, D.; Phyo Wai, A.A.; Lee, T.S.; Guan, C. TSception:A Deep Learning Framework for
Emotion Detection Using EEG. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow,
UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.

15. Li, Y.; Zheng, W.; Zong, Y.; Cui, Z.; Zhang, T.; Zhou, X. A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG
Emotion Recognition. IEEE Trans. Affect. Comput. 2021, 12, 494–504. [CrossRef]

16. Ding, Y.; Robinson, N.; Zeng, Q.; Guan, C. LGGNet: Learning from Local-Global-Graph Representations for Brain-Computer
Interface. arXiv 2022, arXiv:2105.02786.

17. Lin, Y.P.; Wang, C.H.; Jung, T.P.; Wu, T.L.; Jeng, S.K.; Duann, J.R.; Chen, J.H. EEG-Based Emotion Recognition in Music Listening.
IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806.

http://doi.org/10.1016/j.knosys.2022.109978
http://dx.doi.org/10.1016/j.knosys.2022.109589
http://dx.doi.org/10.1016/j.knosys.2022.108580
http://dx.doi.org/10.1016/j.knosys.2016.08.018
http://dx.doi.org/10.1186/1753-4631-3-2
http://www.ncbi.nlm.nih.gov/pubmed/19470156
http://dx.doi.org/10.1016/S0959-4388(99)80032-4
http://dx.doi.org/10.1017/S0140525X11001567
http://dx.doi.org/10.1016/j.neuroimage.2008.03.059
http://dx.doi.org/10.1017/S0140525X11000446
http://dx.doi.org/10.1109/TAFFC.2019.2922912
http://dx.doi.org/10.1109/TAFFC.2018.2885474


Appl. Sci. 2024, 14, 726 17 of 18

18. Wang, X.W.; Nie, D.; Lu, B.L. Emotional state classification from EEG data using machine learning approach. Neurocomputing
2014, 129, 94–106. [CrossRef]

19. Bazgir, O.; Mohammadi, Z.; Habibi, S.A.H. Emotion Recognition with Machine Learning Using EEG Signals. In Proceedings
of the 2018 25th National and 3rd International Iranian Conference on Biomedical Engineering (ICBME), Qom, Iran, 29–30
November 2018; pp. 1–5.

20. Alhalaseh, R.; Alasasfeh, S. Machine-Learning-Based Emotion Recognition System Using EEG Signals. Computers 2020, 9, 95.
[CrossRef]

21. Alhagry, S.; Aly, A.; El-Khoribi, R. Emotion Recognition based on EEG using LSTM Recurrent Neural Network. Int. J. Adv.
Comput. Sci. Appl. 2017, 8, 355–358. [CrossRef]

22. Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.;
Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization: Convolutional Neural Networks
in EEG Analysis. Hum. Brain Mapp. 2017, 38, 5391–5420. [CrossRef] [PubMed]

23. Salama, E.S.; El-Khoribi, R.A.; Shoman, M.E.; Wahby, M.A. EEG-Based Emotion Recognition using 3D Convolutional Neural
Networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 329–337. [CrossRef]

24. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural
network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [CrossRef]

25. Priyasad, D.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Affect recognition from scalp-EEG using channel-wise encoder
networks coupled with geometric deep learning and multi-channel feature fusion. Knowl.-Based Syst. 2022, 250, 109038. [CrossRef]

26. Zhong, P.; Wang, D.; Miao, C. EEG-Based Emotion Recognition Using Regularized Graph Neural Networks. IEEE Trans. Affect.
Comput. 2020, 13, 1290–1301. [CrossRef]

27. Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE
Trans. Affect. Comput. 2020, 11, 532–541. [CrossRef]

28. Xing, X.; Li, Z.; Xu, T.; Shu, L.; Hu, B.; Xu, X. SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG.
Front. Neurorobotics 2019, 13, 37. [CrossRef] [PubMed]

29. Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Wan, F.; Chen, X. EEG-based Emotion Recognition via Channel-wise Attention and Self
Attention. IEEE Trans. Affect. Comput. 2020, 14, 382–393. [CrossRef]

30. Yin, Y.; Zheng, X.; Hu, B.; Zhang, Y.; Cui, X. EEG emotion recognition using fusion model of graph convolutional neural networks
and LSTM. Appl. Soft Comput. 2021, 100, 106954. [CrossRef]

31. Feng, L.; Cheng, C.; Zhao, M.; Deng, H.; Zhang, Y. EEG-based emotion recognition using spatial-temporal graph convolutional
LSTM with attention mechanism. IEEE J. Biomed. Health Inform. 2022, 26, 5406–5417. [CrossRef]

32. Moontaha, S.; Schumann, F.E.F.; Arnrich, B. Online learning for wearable eeg-based emotion classification. Sensors 2023, 23, 2387.
[CrossRef]

33. Li, C.; Wang, B.; Zhang, S.; Liu, Y.; Song, R.; Cheng, J.; Chen, X. Emotion recognition from EEG based on multi-task learning with
capsule network and attention mechanism. Comput. Biol. Med. 2022, 143, 105303. [CrossRef] [PubMed]

34. Li, D.; Xie, L.; Wang, Z.; Yang, H. Brain emotion perception inspired eeg emotion recognition with deep reinforcement learning.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–14. [CrossRef]

35. Yang, Y.; Wu, Q.; Qiu, M.; Wang, Y.; Chen, X. Emotion Recognition from Multi-Channel EEG through Parallel Convolutional
Recurrent Neural Network. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de
Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

36. Poldrack, R.A. Mapping Mental Function to Brain Structure: How Can Cognitive Neuroimaging Succeed? Perspect. Psychol. Sci.
2010, 5, 753–761. [CrossRef]

37. Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 2008, 9, 148–158. [CrossRef] [PubMed]
38. Scarantino, A. Functional specialization does not require a one-to-one mapping between brain regions and emotions. Behav.

Brain Sci. 2012, 35, 161–162. [CrossRef] [PubMed]
39. Vytal, K.; Hamann, S. Neuroimaging Support for Discrete Neural Correlates of Basic Emotions: A Voxel-based Meta-analysis. J.

Cogn. Neurosci. 2010, 22, 2864–2885. [CrossRef]
40. Fornito, A.; Zalesky, A.; Breakspear, M. Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage

2013, 80, 426–444. [CrossRef]
41. Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev.

Neurosci. 2009, 10, 186–198. [CrossRef]
42. Fair, D.A.; Cohen, A.L.; Power, J.D.; Dosenbach, N.U.F.; Church, J.A.; Miezin, F.M.; Schlaggar, B.L.; Petersen, S.E. Functional Brain

Networks Develop from a “Local to Distributed” Organization. PLoS Comput. Biol. 2009, 5, e1000381. [CrossRef] [PubMed]
43. Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98.
[CrossRef]

44. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering.
In Proceedings of the NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; Volume 29.

http://dx.doi.org/10.1016/j.neucom.2013.06.046
http://dx.doi.org/10.3390/computers9040095
http://dx.doi.org/10.14569/IJACSA.2017.081046
http://dx.doi.org/10.1002/hbm.23730
http://www.ncbi.nlm.nih.gov/pubmed/28782865
http://dx.doi.org/10.14569/IJACSA.2018.090843
http://dx.doi.org/10.1088/1741-2552/aace8c
http://dx.doi.org/10.1016/j.knosys.2022.109038
http://dx.doi.org/10.1109/TAFFC.2020.2994159
http://dx.doi.org/10.1109/TAFFC.2018.2817622
http://dx.doi.org/10.3389/fnbot.2019.00037
http://www.ncbi.nlm.nih.gov/pubmed/31244638
http://dx.doi.org/10.1109/TAFFC.2020.3025777
http://dx.doi.org/10.1016/j.asoc.2020.106954
http://dx.doi.org/10.1109/JBHI.2022.3198688
http://dx.doi.org/10.3390/s23052387
http://dx.doi.org/10.1016/j.compbiomed.2022.105303
http://www.ncbi.nlm.nih.gov/pubmed/35217341
http://dx.doi.org/10.1109/TNNLS.2023.3265730
http://dx.doi.org/10.1177/1745691610388777
http://dx.doi.org/10.1038/nrn2317
http://www.ncbi.nlm.nih.gov/pubmed/18209732
http://dx.doi.org/10.1017/S0140525X11001749
http://www.ncbi.nlm.nih.gov/pubmed/22617670
http://dx.doi.org/10.1162/jocn.2009.21366
http://dx.doi.org/10.1016/j.neuroimage.2013.04.087
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1371/journal.pcbi.1000381
http://www.ncbi.nlm.nih.gov/pubmed/19412534
http://dx.doi.org/10.1109/MSP.2012.2235192


Appl. Sci. 2024, 14, 726 18 of 18

45. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S..; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for
Emotion Analysis ;Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [CrossRef]

46. Katsigiannis, S.; Ramzan, N. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless
Low-cost Off-the-Shelf Devices. IEEE J. Biomed. Health Inform. 2018, 22, 98–107. [CrossRef]

47. Cui, H.; Liu, A.; Zhang, X.; Chen, X.; Wang, K.; Chen, X. EEG-based emotion recognition using an end-to-end regional-asymmetric
convolutional neural network. Knowl.-Based Syst. 2020, 205, 106243. [CrossRef]

48. Duan, R.N.; Zhu, J.Y.; Lu, B.L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the 2013 6th
International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 81–84.

49. Zheng, W.L.; Lu, B.L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural
networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [CrossRef]

50. Ribas, G.C. The cerebral sulci and gyri. Neurosurg. Focus 2010, 28, E2. [CrossRef] [PubMed]
51. Klem, G.; Lüders, H.; Jasper, H.; Elger, C. The ten-twenty electrode system of the International Federation. The International

Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [PubMed]
52. Dimond, S.J.; Farrington, L.; Johnson, P. Differing emotional response from right and left hemispheres. Nature 1976, 261, 690–692.

[CrossRef]
53. Davidson, R.J.; Ekman, P.; Saron, C.D.; Senulis, J.A.; Friesen, W.V. Approach-withdrawal and cerebral asymmetry: Emotional

expression and brain physiology: I. J. Personal. Soc. Psychol. 1990, 58, 330–341. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.1109/JBHI.2017.2688239
http://dx.doi.org/10.1016/j.knosys.2020.106243
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.3171/2009.11.FOCUS09245
http://www.ncbi.nlm.nih.gov/pubmed/20121437
http://www.ncbi.nlm.nih.gov/pubmed/10590970
http://dx.doi.org/10.1038/261690a0
http://dx.doi.org/10.1037/0022-3514.58.2.330

	Introduction
	Literature Review
	Machine Learning Approach
	Deep Learning Approach

	Method
	Prepocessing
	Regional Feature Learning Block
	Graph Learning Block

	Experiments and Discussions
	Dataset
	Training Detail
	Evaluation Metric
	Experiment on Region Representation
	Feature Visualization
	Subject-Wise Results
	Comparison of Different Models

	Conclusions
	References

