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Abstract: Biomedical image segmentation plays a pivotal role in medical imaging, facilitating precise
identification and delineation of anatomical structures and abnormalities. This review explores the
application of the Denoising Diffusion Probabilistic Model (DDPM) in the realm of biomedical image
segmentation. DDPM, a probabilistic generative model, has demonstrated promise in capturing com-
plex data distributions and reducing noise in various domains. In this context, the review provides
an in-depth examination of the present status, obstacles, and future prospects in the application of
biomedical image segmentation techniques. It addresses challenges associated with the uncertainty
and variability in imaging data analyzing commonalities based on probabilistic methods. The paper
concludes with insights into the potential impact of DDPM on advancing medical imaging techniques
and fostering reliable segmentation results in clinical applications. This comprehensive review aims
to provide researchers, practitioners, and healthcare professionals with a nuanced understanding of
the current state, challenges, and future prospects of utilizing DDPM in the context of biomedical
image segmentation.

Keywords: biomedical image segmentation; Denoising Diffusion Probabilistic Models; probabilistic
generative model

1. Introduction

The accurate identification and delineation of structures within medical images are
essential for extracting meaningful information, aiding clinicians in making informed
decisions. Traditional segmentation methods have demonstrated limitations in handling
the complexity and variability inherent in biomedical images, particularly in the presence
of noise and intricate anatomical details [1].

To address these challenges, probabilistic models have gained prominence for their
ability to capture the uncertainty and variability in imaging data [2]. Among these models,
the Denoising Diffusion Probabilistic Model (DDPM) has emerged as a promising approach
with its capacity to learn intricate probability distributions and effectively denoise im-
ages. DDPM, originally developed for generative modeling, has garnered attention for its
potential application in biomedical image segmentation [3].

In the realm of medical imaging, the significance of accurate image segmentation
cannot be overstated. The extraction of precise information from medical images through
segmentation forms the bedrock for a multitude of clinical applications that are pivotal
for patient care. Accurate segmentation delineates and isolates structures of interest, such
as organs, tissues, and pathological regions, providing clinicians with invaluable insights
into anatomical details and disease states [3]. The reliability of diagnostic assessments,
treatment planning, and therapeutic interventions hinges upon the fidelity of segmentation
results [4].

Innovative methods, including graph-based processing and statistical signal process-
ing such as Markov Random Fields (MRF) exemplified by techniques like synthetic graph
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coordinates [5] and fuzzy clustering with hidden Markov random field models and Voronoi
tessellation [6], offer unique advantages in capturing complex relationships within image
structures. Additionally, the fusion of graph-based processing and MRF models, as demon-
strated in works like the hybrid ACO-ICM algorithm for MRF optimization [7], showcases
the potential for improved segmentation accuracy. Furthermore, the integration of goal-
driven unsupervised image segmentation methods, combining graph-based processing
and MRFs [8], has demonstrated promising results. Such approaches not only enhance the
precision of segmentation but also contribute to the interpretability and adaptability of the
segmentation process.

Traditional methods of image segmentation have long been employed in medical
imaging; however, they often encounter challenges in handling the inherent complexities
of biological structures and the variability present in imaging data. The need for more so-
phisticated and adaptive segmentation approaches has driven the exploration of advanced
techniques, and probabilistic models have emerged as a promising avenue for addressing
these challenges [9].

The accuracy of medical image segmentation is particularly crucial in scenarios where
subtle structural details or anomalies can significantly impact clinical decisions [10]. For
instance, in the detection and characterization of tumors, the delineation of precise bound-
aries is paramount for treatment planning and monitoring disease progression. Similarly, in
anatomical studies and functional assessments, accurate segmentation lays the foundation
for reliable quantitative analyses.

The rationale for exploring DDPM in this context lies in its inherent capacity to capture
complex dependencies in data and its adaptability to the unique challenges posed by
medical images [11,12]. As the field of medical imaging continues to evolve, there is a
growing need for segmentation methods that can robustly handle variations in imaging
conditions, noise levels, and the inherent heterogeneity of biological structures [13].

This review sets the stage for a comprehensive review and analysis of the use of DDPM
in biomedical image segmentation. By exploring the mathematical foundations of DDPM,
discussing its advantages over traditional segmentation methods, and examining recent
methodologies and implementations, this review aims to provide insights into the current
state of the field. Additionally, the review will critically evaluate the challenges associated
with implementing DDPM, discuss relevant evaluation metrics, and highlight emerging
trends that shape the future trajectory of biomedical image segmentation research. Through
this exploration, the review seeks to contribute to the ongoing dialogue surrounding the
integration of advanced probabilistic models, specifically DDPM, into the landscape of
biomedical imaging for improved segmentation accuracy and clinical utility.

2. Biomedical Image Segmentation
2.1. Traditional Approaches to Biomedical Image Segmentation
2.1.1. Thresholding Methods

Thresholding is a fundamental technique in traditional biomedical image segmenta-
tion, offering a simple yet effective approach to separate regions of interest based on pixel
intensity values. This method operates on the premise that pixel intensities in an image
can be classified into distinct regions by defining a threshold value. Pixels with intensities
above the threshold are assigned to one class, while those below are assigned to another.

The simplicity and computational efficiency of thresholding make it widely used,
especially when the imaging conditions and the characteristics of the regions of interest
exhibit clear intensity differences. This method finds application in various biomedical
imaging modalities such as X-ray, computed tomography (CT), magnetic resonance imaging
(MRI), and microscopy.

The classic textbook on digital image processing provides a comprehensive introduc-
tion, including a detailed discussion of thresholding methods and their applications in
biomedical image analysis [14]. Otsu’s method is a widely cited reference for automatic
threshold selection; this method introduces an algorithm for minimizing intra-class vari-



Appl. Sci. 2024, 14, 632 3 of 26

ance in pixel intensities to determine an optimal threshold [15]. Li and Tam propose an
iterative thresholding algorithm based on the minimum cross entropy criterion, demon-
strating its effectiveness in various image segmentation tasks [16]. Kapur et al. propose an
entropy-based thresholding method, outlining a criterion for selecting the threshold that
maximizes the information gained from the image histogram [17]. Sezgin and Sankur pro-
vide a comprehensive overview of various thresholding techniques, including quantitative
evaluation measures, and discuss their applications in biomedical image segmentation [18].

2.1.2. Region-Based Methods

Region-based methods constitute a prominent category within traditional biomedical
image segmentation techniques. Unlike thresholding, which relies on pixel intensity values,
region-based methods consider groups of pixels with similar characteristics, emphasizing
spatial coherence. These methods partition an image into regions based on criteria such as
intensity homogeneity, texture, or other feature similarities.

Region-based segmentation typically involves an iterative process, where regions
evolve to maximize homogeneity and distinctiveness. This approach is particularly useful
when regions of interest exhibit variations in intensity within their boundaries.

Weszka et al. discuss texture-based region segmentation methods and their appli-
cations, providing insights into the importance of texture features in biomedical image
analysis [19]. Adams and Bischof present a region-based segmentation method known as
Seeded Region Growing, which iteratively grows regions from user-defined seed points
based on pixel similarity [20]. Kass et al. introduce active contour models, or “snakes”,
which are region-based deformable models used for contour delineation in medical image
segmentation [21]. The watershed transformation, a region-based segmentation method
rooted in mathematical morphology, is discussed in [22], offering insights into its appli-
cation in biomedical image segmentation. Ref. [23] provides a computational model of
visual segmentation, encompassing region-based methods, and discusses their relevance to
understanding human perception of visual scenes.

2.1.3. Edge-Based Methods

Edge-based methods in traditional biomedical image segmentation focus on identi-
fying boundaries or edges that separate different regions within an image. Edges often
correspond to significant changes in pixel intensity, and the detection of these edges is
crucial for outlining structures or objects of interest. Edge-based methods leverage gradient
information, emphasizing the discontinuities in pixel intensities to delineate boundaries.

These methods are particularly valuable in scenarios where regions of interest have
distinct intensity gradients, and precise delineation is essential for accurate segmentation.

Canny’s edge detection algorithm is a seminal work in the field, providing a system-
atic approach to identifying edges by detecting local intensity gradients [24]. The Sobel
operator is a classic edge detection filter that computes the gradient of the image intensity,
highlighting areas of rapid intensity change [25]. Ref. [26] proposes a model of edge detec-
tion based on zero-crossings in the image intensity profile, contributing to the theoretical
understanding of edge-based methods. Haralick and Shapiro provide a comprehensive
overview of image segmentation techniques, including edge-based methods, highlighting
their applications in biomedical image analysis [27]. Ref. [28] introduces a multiscale edge
representation, exploring the characterization of edges at different scales for improved
edge-based segmentation. Active contour models, or “snakes”, are edge-based deformable
models used for contour delineation in biomedical image segmentation [21]. Deriche
proposed a recursive implementation of the Canny edge detector, enhancing computa-
tional efficiency while maintaining optimality [29]. Ref. [30] showcases the application
of edge-based methods for the segmentation of hip CT images, emphasizing their role in
computer-aided surgery.

A summary of the existing methods introduced in Section 2.1 is shown in Table 1.
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Table 1. Summary of traditional approaches to biomedical image segmentation.

Method Description Reference

Thresholding methods

Fundamental technique based on pixel intensity
values, separating regions using a defined
threshold. Widely used for clear intensity

differences in various biomedical
imaging modalities.

[14–18]

Region-based methods

Emphasizes spatial coherence by considering
groups of pixels with similar characteristics.

Involves an iterative process for evolving regions
based on criteria like intensity homogeneity or

texture. Useful for variations in intensity
within boundaries.

[19–23]

Edge-based methods

Focuses on identifying boundaries or edges
using gradient information, emphasizing

discontinuities in pixel intensities for accurate
segmentation. Valuable in scenarios with distinct
intensity gradients requiring precise delineation.

[24–30]

2.2. Challenges and Limitations of Traditional Methods

Traditional methods in biomedical image segmentation, including thresholding, region-
based, and edge-based approaches, have been foundational in the field, but they come
with a set of challenges and limitations that impact their applicability and performance.
Understanding these constraints is essential for appreciating the need for more advanced
techniques, particularly in the context of the ever-evolving landscape of medical imaging.
Below is a detailed discussion of the challenges associated with traditional methods.

2.2.1. Sensitivity to Image Noise

Traditional segmentation methods are often sensitive to noise present in biomedical
images. Noise can arise from various sources, including imaging modalities, acquisition
processes, or inherent biological variability. High sensitivity to noise can lead to inaccuracies
in segmentation results, affecting the precision of identified structures. Methods relying on
pixel intensity thresholds, in particular, can be significantly impacted by noise, as they lack
the sophistication to discriminate between noise and true anatomical features [31].

2.2.2. Limited Adaptability to Varying Image Characteristics

Traditional segmentation methods may struggle with images exhibiting diverse char-
acteristics, such as varying contrast, illumination, or texture. These methods often rely on
fixed criteria, making them less adaptable to the inherent variability in medical images. The
lack of flexibility to accommodate different imaging conditions can result in suboptimal
performance across datasets with distinct characteristics [32].

2.2.3. Difficulty Handling Complex Anatomical Structures

Accurate segmentation of complex anatomical structures with irregular shapes and
intricate boundaries is a significant challenge for traditional methods. Many medical images
exhibit structures that are not well-suited to simplistic segmentation techniques, leading to
undersegmentation or oversegmentation issues. The lack of adaptability to handle complex
structures limits the broader application of traditional methods in scenarios where detailed
anatomical delineation is crucial [33].

2.2.4. Manual Parameter Tuning

A common challenge associated with traditional segmentation methods is the need
for manual parameter tuning. Methods often involve setting thresholds or parameters that
are specific to the characteristics of the image or the target structure. Manual tuning makes
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these methods less adaptable to different datasets and potentially hinders the automation
of segmentation processes, requiring expertise and user intervention [34].

2.2.5. Limited Capacity for Handling Multimodal and 3D Data

Traditional methods may encounter difficulties in handling multimodal or three-
dimensional (3D) biomedical images. Medical imaging technologies often produce datasets
with multiple modalities or volumetric information. Traditional methods designed for 2D,
single-modal data may not seamlessly extend to the challenges posed by multimodal or 3D
datasets, limiting their applicability in advanced medical imaging scenarios [35].

2.2.6. Difficulty in Incorporating Prior Knowledge

The integration of prior knowledge, such as anatomical atlases or expert annotations,
into traditional methods can be challenging. While advanced techniques often leverage
prior knowledge for improved segmentation accuracy, traditional methods may lack the
mechanisms to effectively incorporate such information. This limitation can hinder the
adaptability of segmentation approaches in scenarios where contextual information is
crucial [32].

2.2.7. Segmentation of Overlapping Structures

Traditional methods may struggle with accurately segmenting overlapping structures,
a common scenario in medical imaging where multiple anatomical components coexist.
Thresholding, region-based, and edge-based methods may lack the specificity to handle
intricate overlaps, leading to challenges in distinguishing and delineating individual
structures accurately [36].

In conclusion, while traditional methods have played a crucial role in the history of
biomedical image segmentation, their challenges and limitations highlight the need for
more advanced and adaptive techniques, such as those based on deep learning, to address
the evolving complexities of medical imaging datasets. These limitations underscore the
ongoing quest for methodologies that can provide robust and accurate segmentation across
diverse biomedical imaging scenarios.

2.3. Introduction of Probabilistic Models in Biomedical Image Segmentation

Probabilistic models play a pivotal role in biomedical image segmentation, offering
a principled framework for capturing uncertainty and variability inherent in complex
imaging data. Among the diverse set of probabilistic models, Gaussian Mixture Models
(GMMs) and Hidden Markov Models (HMMs) have gained prominence for their versatility
and ability to model intricate statistical relationships within biomedical images.

Probabilistic models provide a mathematical foundation to represent and understand
uncertainty in data. In the context of biomedical image segmentation, where pixel inten-
sities can vary significantly, probabilistic models offer a robust framework for capturing
the inherent stochastic nature of the imaging process. These models allow for the estima-
tion of probability distributions, enabling a more nuanced representation of the complex
relationships between image features.

2.3.1. Gaussian Mixture Models (GMM)

GMMs are a powerful class of probabilistic models commonly employed in biomedical
image segmentation. They assume that the observed data are generated from a mixture
of several Gaussian distributions, each corresponding to a different underlying structure
or class in the image. The combination of these Gaussians forms a flexible and expressive
model for capturing the diverse intensity variations present in biomedical images.

GMMs find applications in various segmentation tasks, including tissue classification
in medical images. By modeling the intensity distribution of different tissues with Gaussian
components, GMMs can effectively delineate regions with varying contrasts and textures.
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This flexibility makes them well-suited for scenarios where traditional thresholding meth-
ods may fall short [37,38].

2.3.2. Hidden Markov Models (HMM)

HMMs are another class of probabilistic models with a sequential framework, making
them particularly suitable for tasks involving ordered data, such as temporal sequences in
medical imaging. In the context of segmentation, HMMs model the underlying dynamics
of image intensities by considering a sequence of hidden states, each corresponding to a
different tissue or structure.

HMMs have found applications in dynamic imaging modalities, such as functional
MRI (fMRI) or video sequences. By considering the temporal dependencies of image inten-
sities, HMMs can discern transitions between different states, facilitating the segmentation
of dynamic structures over time. This is especially valuable in functional imaging where
the evolution of tissue properties is a key factor [39,40].

2.3.3. Integration with Deep Learning

Recent advancements in biomedical image segmentation involve the integration of
probabilistic models with deep learning architectures. This synergistic approach com-
bines the representational power of deep neural networks with the probabilistic reasoning
of models like GMMs and HMMs, leading to more accurate and robust segmentation
outcomes [31,35,41].

In conclusion, probabilistic models, including Gaussian Mixture Models and Hidden
Markov Models, offer a principled and versatile framework for addressing the challenges
of biomedical image segmentation. By explicitly considering uncertainty and variability,
these models contribute to more accurate delineation of structures in complex imaging data.
Their integration with advanced computational methods, such as deep learning, represents
a promising avenue for future developments in biomedical image segmentation, catering
to the evolving needs of the field.

2.4. The Limitation of Probabilistic Models in Biomedical Image Segmentation

Probabilistic models, despite their strengths in capturing uncertainty and variability,
are not without criticisms, especially when applied to biomedical image segmentation.
Two key challenges are their sensitivity to noise and limitations in handling complex
anatomical structures.

Probabilistic models, including GMMs and HMMs, can be sensitive to noise in biomed-
ical images. Noise, arising from various sources such as acquisition processes, instrumen-
tation, or biological variability, introduces variations in pixel intensities that may not be
adequately modeled by the assumed probability distributions. This sensitivity can lead to
inaccuracies in segmentation results, impacting the reliability of identified structures [31].

Various strategies have been proposed to mitigate sensitivity to noise. These include
pre-processing techniques such as image smoothing or denoising to enhance the signal-
to-noise ratio before applying probabilistic models. Additionally, advanced probabilistic
models that explicitly consider noise characteristics, such as robust variants of GMMs, have
been explored to enhance the robustness of segmentation in noisy environments.

Probabilistic models may face limitations in accurately segmenting complex anatom-
ical structures with irregular shapes and intricate boundaries. Traditional models, such
as GMMs, assume a certain level of simplicity in the underlying probability distributions,
which may not adequately capture the nuanced variations in intensity profiles present in
intricate anatomical regions [41].

Addressing the challenge of handling complex anatomy involves adopting more
sophisticated probabilistic models or combining probabilistic approaches with other seg-
mentation techniques. Advanced models, such as non-parametric Bayesian models, provide
a more flexible representation of underlying probability distributions, accommodating the
intricacies of complex anatomies. Hybrid approaches, incorporating machine learning or
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deep learning components alongside probabilistic models, have demonstrated improved
segmentation accuracy for complex structures.

While probabilistic models face criticisms, there is an opportunity for improvement
through integration with advanced computational techniques. Combining probabilistic
models with deep learning architectures allows for a more data-driven and adaptive
approach to biomedical image segmentation. Deep learning methods can learn complex
hierarchical features directly from the data, potentially mitigating some of the limitations
associated with probabilistic models [35].

Challenges in integrating advanced computational techniques include the need for
large annotated datasets, potential overfitting, and increased computational complexity.
Striking a balance between the interpretability of probabilistic models and the representa-
tional power of deep learning is an ongoing research endeavor.

In conclusion, while probabilistic models like GMMs and HMMs offer valuable tools
for biomedical image segmentation, they are not immune to criticisms. Sensitivity to noise
and challenges in handling complex anatomy highlight the need for continued research to
enhance the robustness and adaptability of these models. Strategies such as noise reduction,
utilization of advanced probabilistic models, and integration with deep learning hold
promise for addressing these criticisms and advancing the state of the art in biomedical
image segmentation. As the field continues to evolve, a synergistic approach that combines
the strengths of probabilistic models with emerging computational techniques is likely to
pave the way for more accurate and reliable segmentation outcomes in complex biomedical
imaging scenarios.

3. Denoising Diffusion Probabilistic Model (DDPM)
3.1. Overview of DDPM

The DDPM is a powerful generative model designed for image generation and de-
noising tasks. Developed to address challenges in capturing complex data distributions
and handling noise in images, the DDPM has demonstrated significant success in various
domains, including computer vision and biomedical image processing.

At the heart of the DDPM is the denoising diffusion process. As shown in Figure 1, the
model leverages the insight that a sequence of noisy images can be generated by applying a
diffusion process, where each step corresponds to introducing controlled noise. By training
the model to reverse this process and denoise the images, DDPM learns to capture the
underlying probability distribution of the clean data [13].
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Figure 1. Graphical model of DDPM.

DDPM is inherently rooted in probabilistic modeling, aiming to capture the distri-
bution of realistic data. The denoising diffusion process is formulated as a probabilistic
generative model, allowing for the estimation of intricate data distributions and enhancing
the model’s capability to generate high-quality samples. DDPM employs a reversible
diffusion process, where noise is incrementally added to an image in a series of steps. This
process allows the model to learn both the forward and inverse transformations, enabling
effective denoising during the training phase. DDPM is trained using a maximum likeli-
hood estimation (MLE) objective, seeking to maximize the likelihood of observing clean
images given the noisy counterparts generated by the denoising diffusion process. This
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training objective ensures that the model captures the underlying distribution and can
effectively denoise input images [42–44].

DDPM’s denoising capabilities make it particularly valuable in medical imaging,
where the accuracy of segmentation tasks is heavily influenced by the quality of input
images. By effectively removing noise, DDPM enhances the robustness and reliability of
segmentation models in biomedical applications. Beyond denoising, DDPM’s generative
nature allows for probabilistic image generation. In biomedical imaging, this capability can
be harnessed for generating synthetic datasets, augmenting training data, or simulating
various imaging conditions to improve the robustness of segmentation models.

In conclusion, the DDPM represents a cutting-edge approach to image generation and
denoising, rooted in the principles of probabilistic modeling and the reversible denoising
diffusion process. Its applications in biomedical image segmentation, particularly in
denoising medical images and generating synthetic datasets, showcase its potential impact
on advancing the field. As research in probabilistic models continues to evolve, DDPM
stands out as a promising tool for improving the reliability and quality of biomedical image
segmentation tasks.

3.2. Mathematical Foundations of DDPM

The DDPM is built upon a mathematical foundation that combines elements from prob-
ability theory, stochastic processes, and deep learning [45]. This foundation enables DDPM
to model complex data distributions, denoise images, and generate realistic samples [46].

3.2.1. Denoising Diffusion Process

At the core of DDPM is the denoising diffusion process, a probabilistic sequence of
transformations that gradually introduces controlled noise to an image [47]. The process
aims to model the generative path from a clean image to a noisy version. Formally, the
process is defined as:

Xt = fθt(Xt−1) +
√

2ηtε (1)

where Xt is the image at time t, fθt is the denoising function parameterized by θt, ηt is a
schedule of diffusion noise, and ε is a sample from a unit Gaussian distribution.

3.2.2. Probabilistic Modeling

DDPM formulates the denoising process within a probabilistic framework [48]. The
likelihood of observing a clean image given the noisy counterpart is modeled using the
conditional probability:

p(Xt|Xt−1) = N( fθt(Xt−1), 2ηt I) (2)

This probabilistic formulation allows DDPM to learn the conditional distribution and
infer the underlying clean image given its noisy observation.

3.2.3. Reversible Diffusion

The denoising diffusion process in DDPM is designed to be reversible, meaning it has
both a forward and an inverse transformation [49]. The reversibility ensures that the model
can be trained to denoise images by learning to invert the diffusion process. Mathematically,
the reversibility requirement is expressed as:

Xt−1 = f−1
θt

(Xt)−
√

2ηtε (3)

This property is crucial for training the model to accurately denoise images during the
learning process.
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3.2.4. Training Objective

DDPM is trained using an MLE objective [50]. The goal is to maximize the likelihood
of observing the true clean image Xt given the noisy counterpart X0 after the diffusion
process. The training objective is formulated as:

θ∗ = argmaxθ

T

∑
t=1

log p(Xt|X0) (4)

3.2.5. Diffusion Noise Schedule

The diffusion noise schedule determines how noise is added during each step of the
denoising diffusion process. It plays a crucial role in balancing the expressiveness of the
model and the computational efficiency of training. The schedule is often chosen to be
annealed, starting with higher noise levels and gradually decreasing. The choice of the
noise schedule is a critical parameter that influences the model’s performance.

3.2.6. Connection to Markov Chain Monte Carlo

The denoising diffusion process in DDPM can be connected to the framework of
Markov Chain Monte Carlo (MCMC). Specifically, the diffusion process can be viewed as a
discretization of Langevin dynamics, a continuous-time stochastic process used in MCMC.
This connection provides insights into the relationship between DDPM and traditional
MCMC methods [51].

3.2.7. Architectural Components

DDPM often incorporates architectural components such as invertible neural networks
and reversible 1 × 1 convolutions. These components contribute to the model’s ability to
perform the denoising diffusion process effectively and efficiently [52].

In summary, the mathematical foundation of DDPM lies in the formulation of the
denoising diffusion process, probabilistic modeling, reversibility, and a carefully designed
training objective. These components collectively enable DDPM to model complex data
distributions, denoise images, and generate realistic samples. The connection to Markov
Chain Monte Carlo further enriches the theoretical understanding of DDPM. Understanding
the mathematical principles of DDPM is crucial for both implementing and interpreting
the model’s behavior in various applications, including biomedical image segmentation.

3.3. Applications of DDPM in Image Processing

The application of the DDPM in image processing has gained significant attention due
to its ability to generate high-quality images, denoise noisy data, and serve as a powerful
tool in various domains.

3.3.1. Image Denoising

DDPM excels in the task of image denoising by utilizing its denoising diffusion
process. The model is trained to effectively reverse the diffusion process, removing noise
from observed images. By learning the intricate probability distribution of clean data
and accounting for the noise introduced during the diffusion steps, DDPM can produce
denoised images with enhanced clarity [13,43].

3.3.2. Image Generation

DDPM is a generative model, capable of generating realistic images. Its denoising
diffusion process, coupled with the reversibility property, allows it to sample from the
learned distribution and create new images. This application is valuable in tasks such
as image synthesis for artistic purposes or as a source of diverse training data for other
machine learning models [43,44].
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3.3.3. Data Augmentation

DDPM’s generative capabilities extend to data augmentation. By generating realistic
variations of existing images, DDPM aids in enriching training datasets for other machine
learning tasks. This is particularly useful in scenarios where obtaining a large annotated
dataset is challenging [43,53].

3.3.4. Medical Imaging

In the domain of medical imaging, where the accuracy and reliability of segmentation
are paramount, DDPM finds application in denoising medical images and generating
synthetic datasets. The model’s ability to handle noise and capture underlying distributions
makes it valuable in enhancing the quality of medical imaging data [43,54].

3.3.5. Video Processing

DDPM’s sequential denoising process makes it suitable for video processing. By
extending its application to video frames, DDPM can effectively denoise and generate
realistic sequences, contributing to tasks such as video enhancement or synthetic video
generation [55].

3.3.6. Style Transfer

DDPM’s generative capabilities can be applied to artistic tasks, such as style transfer.
By manipulating the denoising diffusion process, DDPM can alter the style of an image
while preserving its content, contributing to the creation of visually appealing and stylized
images [56,57].

3.3.7. Uncertainty Estimation

In addition to its generative capabilities, DDPM has been explored for uncertainty
estimation in various tasks. Bayesian neural networks based on DDPM can provide
valuable uncertainty estimates, aiding in decision-making processes and improving the
reliability of models [43,53].

3.3.8. Integration with Other Models

DDPM’s generative capabilities and denoising properties make it suitable for integra-
tion with other models. Combining DDPM with deep learning architectures or probabilistic
graphical models can lead to hybrid models that benefit from the strengths of both ap-
proaches [13,35].

The application of DDPM in image processing spans a wide range of tasks, from
enhancing medical imaging to generating artistic styles. Its ability to denoise images,
generate realistic samples, and estimate uncertainties makes it a versatile tool in machine
learning and computer vision. The cited references showcase the diverse applications
and the ongoing research efforts to explore the full potential of DDPM in addressing
complex challenges in image processing. As the field continues to evolve, DDPM stands as
a promising model contributing to advancements in image synthesis, denoising, and other
related tasks.

3.4. Advantages of Using DDPM in Biomedical Image Segmentation

The application of DDPM in biomedical image segmentation offers several advantages
that contribute to improved accuracy, robustness, and reliability in delineating structures
within medical images.

3.4.1. Robust Handling of Noisy Medical Images

Biomedical images often suffer from inherent noise arising from the imaging process,
acquisition artifacts, or other environmental factors. DDPM, with its denoising diffusion
process, is specifically designed to handle noisy data. By modeling the sequential intro-
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duction of controlled noise during training, DDPM learns to reverse this process during
inference, effectively denoising the input images [13,43].

3.4.2. Probabilistic Modeling for Uncertainty Estimation

DDPM inherently adopts a probabilistic modeling approach, allowing it to capture
uncertainty in the data distribution. This is particularly advantageous in biomedical im-
age segmentation, where uncertainty estimation is crucial for assessing the reliability of
segmentation results. Bayesian interpretations of DDPM provide valuable uncertainty mea-
sures that can inform clinicians about the confidence levels associated with segmentation
outcomes [43,53].

3.4.3. Generative Capabilities for Data Augmentation

DDPM’s generative nature makes it well-suited for data augmentation in biomedical
image segmentation tasks. The model can generate synthetic images that closely resemble
real data, helping to address challenges associated with limited annotated datasets. Data
augmentation enhances the diversity of training data, leading to more robust segmentation
models [42,44].

3.4.4. Reversibility Facilitating Model Interpretability

The reversible nature of DDPM is a unique feature that supports interpretability. In
biomedical image segmentation, understanding how a model arrives at a segmentation
result is essential for clinical acceptance. The reversibility property allows for tracing back
the denoising diffusion process, providing insights into the features and transformations
contributing to the final segmentation [13,44].

3.4.5. Integration with Advanced Computational Techniques

DDPM can be seamlessly integrated with other advanced computational techniques,
such as deep learning architectures. The combination of DDPM with deep neural networks
enables the development of hybrid models that leverage the representational power of
deep learning and the probabilistic reasoning of DDPM. This integration often results in
more accurate and robust segmentation outcomes [13,35].

3.4.6. Addressing Challenges of Complex Anatomy

Biomedical images frequently involve complex anatomical structures with intricate
boundaries and varying intensity profiles. DDPM’s ability to model complex probability
distributions and handle diverse intensities makes it well-suited for segmenting structures
with intricate anatomies. This is particularly advantageous in applications like neuroimag-
ing, where detailed structures demand precise segmentation [33,54].

3.4.7. Synergistic Integration with Probabilistic Graphical Models

DDPM’s probabilistic framework aligns well with the principles of probabilistic graph-
ical models (PGMs). Integrating DDPM with PGMs allows for a synergistic approach that
leverages the strengths of both paradigms. This can enhance the modeling of complex
relationships within biomedical images, leading to more accurate segmentation [13,33].

3.4.8. Mitigation of Overfitting with Bayesian Interpretations

The probabilistic interpretation of DDPM provides a natural means for Bayesian
modeling. This, in turn, mitigates the risk of overfitting, a common concern in biomedical
image segmentation tasks. Bayesian interpretations allow for the incorporation of prior
knowledge and regularization, leading to more robust models [42,53].

In conclusion, the application of DDPM in biomedical image segmentation brings
forth a multitude of advantages, ranging from robust handling of noisy data to uncertainty
estimation and integration with advanced computational techniques. The cited references
underscore the significance of these advantages and highlight the ongoing research efforts
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to harness the full potential of DDPM in addressing the unique challenges posed by
biomedical imaging. As the field continues to evolve, DDPM stands as a promising tool for
advancing the accuracy and reliability of biomedical image segmentation, with implications
for improved diagnostics and treatment planning in medical practice.

3.5. The Effectiveness of DDPM in Segmentation Tasks

Researchers applied DDPM to denoise and segment magnetic resonance imaging
(MRI) images, enhancing the visibility of tissue boundaries. The model’s probabilistic
framework provided uncertainty estimates, aiding in distinguishing tissue regions from
MRI images. As shown in Figure 2, segmenting tissue in MRI scans is a critical task for
treatment planning and monitoring disease progression [13,42].
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Figure 2. Schematic diagram of brain MRI glioma segmentation.

DDPM was employed to denoise and segment histopathology images, enabling precise
identification of cancerous regions. The generative capabilities of DDPM also facilitated
data augmentation for training robust segmentation models. Segmentation of cancerous
lesions in histopathology images assists pathologists in diagnosing and grading tumors
accurately [42,53].

DDPM was employed to enhance the quality of electron microscopy images and seg-
ment neural synapses. The model’s denoising capabilities contributed to the accurate iden-
tification of synaptic structures. Segmentation of neural synapses in electron microscopy
images is crucial for understanding neural circuitry and synaptic connectivity [13,55].

These case studies exemplify the versatility and effectiveness of DDPM in various
segmentation tasks. Whether applied to medical imaging, histopathology, satellite imagery,
electron microscopy, or industrial quality control, DDPM consistently demonstrates its
ability to enhance segmentation accuracy, provide uncertainty estimates, and contribute to
improved decision-making in diverse domains.

4. Methodologies and Implementation
4.1. Research on the Application of DDPM in Biomedical Image Segmentation

The application of DDPM in biomedical image segmentation has emerged as a promis-
ing avenue, addressing the challenges associated with noisy and complex medical images.
Research in this domain focuses on leveraging DDPM not only as a standalone segmenta-
tion tool but also as a comprehensive framework for image preprocessing and segmentation
algorithms. This comprehensive approach aims to enhance the accuracy and reliability
of biomedical image segmentation, critical for applications such as disease diagnosis and
treatment planning. In this detailed exploration, we will delve into the key aspects of
research applying DDPM to biomedical image segmentation, incorporating both image
preprocessing and segmentation algorithms.
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4.1.1. Image Preprocessing Using DDPM

Biomedical image segmentation is a vital step in medical image analysis, enabling the
delineation of anatomical structures and abnormalities. DDPM, with its unique denoising
and generative capabilities, holds promise for improving the quality and precision of
segmentation in biomedical images.

One of the primary applications of DDPM in biomedical image processing is denoising.
Research has explored the denoising capabilities of DDPM to improve the quality of medical
images, particularly in modalities like MRI and CT, where noise is prevalent [13,43].

Other research has investigated adaptive denoising strategies using DDPM to address
variable noise conditions in different biomedical imaging scenarios. This involves tailoring
the denoising process based on the local characteristics of the image [42,44].

Utilizing the uncertainty estimates provided by DDPM, researchers integrate uncertainty-
aware preprocessing steps. This allows downstream segmentation algorithms to account
for the reliability of the image data during the segmentation process [13,53].

DDPM’s generative nature is harnessed for data augmentation in biomedical image
datasets. This approach involves generating synthetic images that closely resemble real
data, contributing to more robust segmentation model training [42,44].

4.1.2. Segmentation Algorithms Incorporating DDPM

The segmentation algorithm combined with DDPM presents a cutting-edge approach
to medical image segmentation, aiming to address challenges associated with noise and
variability in imaging data.

The masked-DDPM (mDDPM) method (see Figure 3) presents a significant advance-
ment in the realm of unsupervised anomaly detection, providing a pathway for generating
accurate anomaly maps and segmenting anomalies in medical images without the require-
ment for labeled data. The incorporation of masking mechanisms within the diffusion
models not only enhances the precision of anomaly detection but also contributes to the
acquisition of a comprehensive understanding of the structural characteristics of images.
This study lays the foundation for further exploration of mDDPM in various medical
imaging applications, potentially leading to improved diagnostic capabilities and clinical
decision support systems in the future [58].
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Ref. [59] introduces a novel Conditional Bernoulli Diffusion model for medical image
segmentation. Unlike existing diffusion models that use Gaussian noise, BerDiff utilizes
Bernoulli noise as the diffusion kernel, aiming to enhance the capacity of the diffusion
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model for segmentation and produce more accurate and diverse segmentation masks.
The authors emphasize the importance of providing accurate and diverse segmentation
masks as valuable references for radiologists in clinical practice. The paper also references
previous works that have combined diffusion models with segmentation tasks, but notes
that these methods do not fully account for the discrete characteristic of segmentation tasks
and still use Gaussian noise as their diffusion kernel.

Ref. [60] introduces a novel approach, the Collectively Intelligent Medical Diffusion
(CIMD) framework, which realistically models heterogeneity of segmentation masks with-
out requiring additional network input during inference. The authors also propose a
new evaluation metric, the Collective Insight (CI) Score, inspired by collective intelligence
medicine. The study demonstrates the effectiveness of CIMD across three medical imaging
modalities, outperforming existing ambiguous image segmentation networks in terms
of both quantitative standards and qualitative results. The proposed approach not only
improves accuracy but also preserves naturally occurring variation in segmentation. Addi-
tionally, the paper aligns with the interest of clinical practice by introducing a new metric
to evaluate the diversity and accuracy of segmentation predictions. Overall, the CIMD
framework presents a promising advancement in ambiguous medical image segmentation,
offering both quantitative and qualitative improvements over existing methods.

Ref. [61] addresses the vulnerability of deep learning models in biomedical image
segmentation to adversarial attacks. The authors introduce the Adaptive Mask Segmenta-
tion Attack (ASMA), a novel algorithm capable of crafting targeted adversarial examples
with high intersection-over-union rates and imperceptible perturbations. The experimental
results demonstrate the effectiveness of ASMA in altering prediction masks to achieve
misclassification, particularly in skin lesion and glaucoma optic disc segmentation tasks.
The study highlights the potential security risks posed by adversarial examples in medical
image analysis and emphasizes the need for robust defenses against such attacks. Further-
more, the paper provides valuable insights into the growing intersection of deep learning
and medical imaging, shedding light on the implications of adversarial attacks for the
reliability of automated diagnostic systems. The research opens avenues for future work in
developing resilient deep learning models for biomedical image analysis and underscores
the significance of addressing adversarial vulnerabilities in this critical domain.

Ref. [62] introduces Diff-UNet, a novel end-to-end framework for medical volumetric
segmentation that integrates the diffusion model into a standard U-shaped architecture.
This integration effectively extracts semantic information from input volumes, resulting
in superior pixel-level representations for segmentation. The proposed Step-Uncertainty
based Fusion (SUF) module enhances the robustness of the diffusion model’s predictions.
Experimental results on benchmark datasets demonstrate the superiority of Diff-UNet
over state-of-the-art approaches, showcasing its potential to facilitate more precise and
accurate diagnosis and treatment of medical conditions. The paper’s contribution to the
field of medical image segmentation is significant, and Diff-UNet stands out as a promising
method for improving patient outcomes.

Ref. [63] addresses the vulnerability of deep neural networks to adversarial examples
and their impact on biomedical image segmentation models. The authors highlight the
potential security risks associated with this vulnerability and emphasize the need to test
the robustness of deep learning models, especially when deployed in clinical tasks. They
point out that while most research on adversarial examples focuses on non-medical image
datasets, medical image datasets are also susceptible to adversarial attacks.

Ref. [64] introduces MedSegDiff, the first diffusion probabilistic model (DPM) based
model for general medical image segmentation tasks. Leveraging dynamic conditional
encoding and Feature Frequency Parser, MedSegDiff aims to enhance regional attention and
eliminate high-frequency noise components in medical image segmentation. The authors
highlight the success of MedSegDiff in optic cup segmentation, brain tumor segmenta-
tion, and thyroid nodule segmentation, demonstrating considerable improvements over
traditional DPM. The results indicate that dynamic conditioning significantly enhances
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performance, with improvements of 2.1% in optic cup segmentation and 1.6% to 1.8% in
low-contrast image segmentation tasks. Furthermore, the paper contextualizes MedSegDiff
within the broader landscape of computer vision and pattern recognition, emphasizing its
potential to revolutionize medical image segmentation.

Ref. [65] presents an innovative approach to medical image segmentation, addressing
the challenges of high noise, ambiguity, and uncertainty. The proposed VerseDiff-UNet
framework integrates the DDPM into a standard U-shaped architecture, combining noise-
added images with labeled masks to guide accurate diffusion direction. Additionally, a
shape prior module efficiently extracts structural semantic information from input spine
images, enabling more precise segmentation of anatomical structures. The method outper-
forms other state-of-the-art techniques in accuracy while preserving natural features and
variations of anatomy. Overall, the VerseDiff-UNet framework demonstrates promising
potential for improving medical image segmentation, particularly in the context of spine
imaging, and warrants further exploration in other medical imaging modalities.

Ref. [66] proposes a novel framework called ESDiff that integrates retinal image en-
hancement and vessel segmentation to accurately diagnose various diseases. The proposed
approach utilizes a diffusion model-based framework for image enhancement and a modi-
fied UNet to obtain degradation factors that preserve pathological features and pertinent
information. The authors conducted extensive experiments on publicly available fundus
retinal datasets to demonstrate the effectiveness of ESDiff compared to state-of-the-art
methods. The results show that ESDiff outperforms existing methods in terms of image
enhancement and vessel segmentation, and it is capable of diagnosing retinal vessel issues,
offering valuable support to healthcare professionals in disease diagnosis and potentially
reducing the workload of clinical experts in the field of medicine. Overall, ESDiff is a
promising approach for enhancing the quality of low-quality retinal images and accurately
diagnosing various diseases.

Ref. [67] presents a novel approach to unsupervised brain anomaly detection and
segmentation using deep generative models. The authors demonstrate the effectiveness of
their method on a dataset of brain MRI scans, achieving high accuracy and efficiency in
detecting anomalies without the need for manual labeling. They compare their approach
to other state-of-the-art models and show that their method outperforms them in terms
of both accuracy and speed. The potential implications of this research for the field of
neurology and medical imaging are significant, as it could lead to improved patient care
and treatment outcomes. Overall, this paper provides a valuable contribution to the field of
medical imaging and highlights the potential of deep generative models for unsupervised
anomaly detection.

Ref. [68] presents a novel approach that integrates text-based attention mechanisms
with diffusion models to advance medical image segmentation. The DTAN framework
effectively directs the network’s focus towards crucial regions, leveraging the diffusion
model’s inherent information propagation capabilities to achieve precise segmentation
outcomes. Key contributions include the Feature Enhancement Module (FEM) for capitaliz-
ing on multi-scale information and the incorporation of an auxiliary classification task to
refine segmentation accuracy. The authors conducted comprehensive model comparisons
and ablation experiments, demonstrating the superior performance of DTAN on datasets
such as Kvasir-Sessile and GlaS. The integration of text attention and diffusion models has
yielded a robust enhancement in segmentation performance, setting a precedent for future
research trajectories aimed at advancing medical image analysis.

Ref. [69] proposes a novel approach called DiffuseExpand for expanding datasets
for 2D medical image segmentation using Diffusion Probabilistic Models (DPMs). The
approach addresses the challenges of data scarcity and diversity in synthesized images with
paired segmentation masks. Through comparison and ablation experiments on COVID-19
and CGMH Pelvis datasets, the authors demonstrate the effectiveness of DiffuseExpand in
expanding medical image segmentation datasets. The results show that DiffuseExpand can
synthesize high-quality and diverse Image-Mask pairs, which can enhance the performance
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of segmentation models. The approach can be applied to other types of medical image
datasets beyond COVID-19 and CGMH Pelvis datasets. Overall, DiffuseExpand offers a
promising solution for expanding medical image segmentation datasets and improving the
performance of segmentation models.

Ref. [70] introduces a novel framework for skin lesion segmentation called Der-
moSegDiff. This framework addresses the challenges of accurately delineating skin le-
sions by prioritizing boundary information during training and incorporating a denoising
network to enhance the understanding of noise-semantic relationships. The proposed ap-
proach introduces a novel loss function that emphasizes the importance of segmentation’s
boundary region and assigns it higher weight during training. Additionally, a U-Net-based
denoising network is presented, which effectively models noise-semantic information and
leads to performance improvement.

Ref. [71] introduces a novel approach, PatchDDM, to address the challenge of process-
ing large three-dimensional (3D) volumes in medical image analysis. The authors propose
architectural changes to the state-of-the-art diffusion model implementation, enabling
training on large 3D volumes with commonly available GPUs. This approach improves
speed and memory efficiency by training the diffusion model only on coordinate-encoded
patches of the input volume, reducing memory consumption and speeding up the training
process. Additionally, the proposed method allows processing large volumes in their full
resolution without needing to split them into patches during sampling.

Ref. [72] introduces a novel approach to medical image segmentation by combining
diffusion-based models with transformer architectures. This innovative framework ad-
dresses the need for accurate and consistent segmentation in medical imaging, crucial for
applications such as diagnosis and surgical planning. The authors propose an anchor condi-
tion to ensure model stability and introduce the Spectrum-Space Transformer (SS-Former)
to enhance the interaction between noise and semantic features. Through comparative
experiments on 18 organs and 4 medical image segmentation datasets with different modal-
ities, MedSegDiff-V2 outperforms previous state-of-the-art methods, demonstrating its
effectiveness and generalizability. The paper highlights the model’s success in tasks such as
optic-cup segmentation, brain tumor segmentation, and abdominal organs segmentation.
Visual comparisons with state-of-the-art segmentation models showcase MedSegDiff-V2’s
ability to generate precise and accurate segmentation maps, even in challenging areas.
Overall, MedSegDiff-V2 sets a new benchmark for medical image segmentation and paves
the way for future research in this domain.

Ref. [73] presents a novel approach to histopathological image analysis using self-
supervised learning and generative diffusion models, addressing the challenges of data
annotation and model performance through the innovative use of self-supervised learning
and generative diffusion models.

Ref. [74] presents a compelling approach to address the scarcity of expert annotations
in medical image analysis. Leveraging semi-supervised learning and diffusion models, the
study demonstrates the potential for extracting visual representations from multi-modal
medical images in an unsupervised setting. The authors emphasize the practical relevance
of this approach in the medical domain, where limited annotated samples are available
compared to the vast amount of unlabeled data. By fine-tuning the noise predictor network
for semantic segmentation, the proposed method showcases promising performance in
brain tumor segmentation, even with a small number of training samples. The experimental
results, based on the Brain Tumor Segmentation (BraTS) 2021 challenge dataset, highlight
the effectiveness of the approach in accurately delineating tumor regions. Overall, the paper
provides valuable insights into the application of diffusion models for semi-supervised
learning in medical image analysis, offering a potential pathway to address the challenges
associated with limited expert annotations and facilitating more efficient and accurate brain
tumor segmentation.

All of the research discussed in this section is summarized in Table 2.
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Table 2. Summary of segmentation algorithms incorporating DDPM.

Research
Paper Purpose Method Database Accuracy

(%) Advantages

[59] 2023
Achieve accurate and
diverse medical image
segmentation masks

BerDiff Lung CT, Brain MRI 89.7

Efficiently sample
sub-sequences from the overall

trajectory of the reverse
diffusion, thereby speeding up

the segmentation process

[60] 2023
Realistically model

heterogeneity of
segmentation masks

Collectively
Intelligent Medical
Diffusion (CIMD)

CT, Ultrasound,
MRI 91.5

Improve accuracy but also
preserve naturally occurring

variation in segmentation

[61] 2019

Vulnerability of deep
learning models in
biomedical image

segmentation to adversarial
attacks

Adaptive Mask
Segmentation Attack

(ASMA)

ISIC skin lesion,
glaucoma optic disc 98

Sheds light on the implications
of adversarial attacks for the

reliability of automated
diagnostic systems

[62] 2023
Excellent pixel-level

representations for medical
volumetric segmentation

Diff-UNet Multi-organ CT,
Brain MRI, Liver MRI 85.3

Extract semantic information
from the input volume

effectively, robustness of the
diffusion model’s prediction

results

[63] 2021
The impact of adversarial

examples on the biomedical
segmentation model

Multi-scale Attack
(MSA) method based

on multi-scale
gradients

Glaucoma optic disc
segmentation dataset,
ISIC dermatological
lesion segmentation

dataset

98.83

Address the vulnerability of
deep neural networks to

adversarial examples and their
impact on biomedical image

segmentation models

[64] 2022 General medical image
segmentation tasks MedSegDiff

Fundus images, MRI
images, Ultrasound

images
90.5

Enhance regional attention and
eliminate high-frequency noise
components in medical image

segmentation.

[65] 2023

The challenges of high
noise, ambiguity, and
uncertainty in medical

image segmentation

VerseDiff-UNet
(integrates DDPM

into a standard
U-shaped

architecture)

Spine images 78.65

The method outperforms other
state-of-the-art techniques in

accuracy while preserving
natural features and variations

of anatomy

[66] 2023

Clinical fundus images
often suffer from uneven

illumination, blur, and
artifacts caused by

equipment or
environmental factors

ESDiff Fundus retinal
datasets 86.4

Utilize a diffusion model-based
framework for image

enhancement and a modified
UNet to obtain degradation

factors that preserve
pathological features and

pertinent information

[67] 2023 Detect and segment
anomalies in brain imaging

Unsupervised Fast
DDPM 2D CT, Brain MRI 92.0

Reduced inference times,
making their usage clinically

viable

[68] 2023 Advance medical image
analysis

Diffusion
Text-Attention

Network (DTAN)

Kvasir-Sessile,
Kvasir-SEG, GlaS 90.15

The Feature Enhancement
Module (FEM) for capitalizing
on multi-scale information and

the incorporation of an
auxiliary classification task to
refine segmentation accuracy

[69] 2023

Expand datasets for 2D
medical image

segmentation using
Diffusion Probabilistic

Models

DiffuseExpand COVID-19, CGMH
Pelvis 96.4

DiffuseExpand can synthesize
high-quality and diverse

Image-Mask pairs

[70] 2022

Skin lesion segmentation
plays a critical role in the

early detection and
accurate diagnosis of

dermatological conditions

DermoSegDiff Skin segmentation
datasets 97.04

Prioritize boundary information
during training and

incorporating a denoising
network to enhance the

understanding of
noise-semantic relationships
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Table 2. Cont.

Research
Paper Purpose Method Database Accuracy

(%) Advantages

[71] 2023 High efficient 3D MRI
volumes segmentation PatchDDM 3D brain MRI 89.9

Reduce the resource
consumption for 3D diffusion

models, applied to the total
volume during inference while
the training is performed only

on patches

[72] 2023
The need for accurate and
consistent segmentation in

medical imaging
MedSegDiff-V2

Abdominal CT
images, Fundus

images, Brain MRI
images, Thyroid

nodule ultrasound
images

90.1

Propose an anchor condition to
ensure model stability and

introduce the Spectrum-Space
Transformer (SS-Former) to

enhance the interaction between
noise and semantic features

[73] 2023
Histopathological image

segmentation is a laborious
and time-intensive task

GenSelfDiff-HIS Head and neck (HN)
cancer 92.65

Use of self-supervised learning
and generative diffusion

models

[74] 2023
The scarcity of expert

annotations in medical
image analysis

Semi-supervised
learning and

Diffusion models
Brain MRI images 75.86

The method showcases
promising performance in brain
tumor segmentation, even with

a small number of training
samples

4.2. Comparison with Other Segmentation Methods

The comparison between the segmentation algorithm combining DDPM and Deep
Learning-Based Segmentation provides a nuanced understanding of their respective strengths,
limitations, and potential contributions to medical image segmentation. We will explore
how the integration of DDPM with deep learning methods, exemplified by DeepSegDDPM,
compares with traditional deep learning-based segmentation approaches.

4.2.1. Feature Learning and Representation

Deep learning methods, particularly Convolutional Neural Networks (CNNs), excel
at learning hierarchical features directly from raw data. They automatically extract in-
tricate patterns and representations, allowing for end-to-end training and robust feature
learning [1,12].

DeepSegDDPM combines CNNs with DDPM, offering a unique advantage. DDPM
contributes to the denoising of input images during pre-processing, allowing subsequent
deep learning layers to focus on learning relevant features without being hindered by
noise [75,76].

4.2.2. Handling Noisy Medical Images

Traditional deep learning methods might struggle when confronted with noisy medical
images. CNNs, while powerful, may inadvertently amplify noise during training, leading
to suboptimal segmentation outcomes [1,77].

The incorporation of DDPM in the pre-processing stage allows DeepSegDDPM to
effectively mitigate noise, providing clean input images for subsequent deep learning
layers. This denoising capability enhances the robustness of the algorithm in handling
noisy medical images [13,75].

4.2.3. Adaptive and Dynamic Segmentation

Deep learning models are static once trained and may struggle with variations in image
characteristics. They lack adaptability during runtime, which can limit their performance
in handling diverse medical imaging scenarios [78,79].

DeepSegDDPM introduces adaptability through DDPM, which dynamically adjusts
its parameters during pre-processing based on image characteristics. This adaptive na-
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ture allows the algorithm to handle variations and complexities in medical images effec-
tively [80,81].

4.2.4. Generalization across Different Imaging Modalities

While deep learning models demonstrate remarkable performance, they might strug-
gle with generalizing across different imaging modalities due to domain-specific variations
in data distribution [82,83].

DeepSegDDPM, with its denoising capabilities and adaptive pre-processing, exhibits
potential for improved generalization across different imaging modalities. The noise
reduction contributes to a more consistent and robust segmentation approach [84,85].

4.2.5. Interpretability of Results

Interpreting the decisions made by deep learning models, especially in complex
medical contexts, remains a significant challenge. The “black-box” nature of deep networks
can hinder their clinical adoption [85,86].

The integration of DDPM offers a probabilistic framework that enhances interpretabil-
ity. By providing uncertainty estimates, DeepSegDDPM contributes to more transparent
decision-making, aiding clinicians in understanding and trusting the segmentation re-
sults [87,88].

4.2.6. Robustness against Limited Annotated Data

Deep learning models often require large amounts of annotated data for training.
Limited data availability, especially in medical imaging, can pose challenges for achieving
robust segmentation performance [89,90].

DDPM, with its probabilistic modeling, introduces a level of robustness against lim-
ited annotated data. The algorithm’s ability to capture uncertainties in predictions can
contribute to more stable performance when training data are sparse [53,91].

4.2.7. Ethical Considerations and Bias

Concerns about bias and ethical considerations in deep learning models have been
raised. The potential amplification of biases present in training data can lead to disparities
in segmentation performance across different demographic groups [92,93].

DDPM’s probabilistic nature offers a potential avenue for addressing bias concerns. By
explicitly modeling uncertainty, DeepSegDDPM may provide insights into the reliability of
segmentation predictions, encouraging cautious interpretation, and mitigating the impact
of biased training data [94,95].

In conclusion, the integration of DDPM with deep learning, as exemplified by
DeepSegDDPM, introduces several advantages compared to traditional deep learning-
based segmentation approaches. By combining denoising capabilities with a probabilistic
framework, DeepSegDDPM showcases improved adaptability, robustness against noise,
and enhanced interpretability. The probabilistic nature of DDPM also contributes to ad-
dressing ethical considerations and bias concerns. While deep learning remains a powerful
tool for medical image segmentation, the synergistic integration of DDPM offers a unique
approach that aligns with the evolving needs of the field [96].

4.3. Challenges and Limitations in Implementing DDPM for Biomedical Image Segmentation

The implementation of DDPM for biomedical image segmentation brings forth nu-
merous advantages, but it is crucial to acknowledge and address the challenges and
limitations associated with this approach. We will explore the nuanced aspects that
might pose challenges during the implementation of DDPM in the context of biomed-
ical image segmentation.
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4.3.1. Computational Complexity

DDPM involves complex mathematical operations, including iterative sampling and
updating of diffusion processes. This can lead to high computational demands, making
real-time or near-real-time applications challenging [97,98].

4.3.2. Parameter Sensitivity

DDPM relies on the tuning of various parameters such as the diffusion steps, noise lev-
els, and learning rates. Sensitivity to these parameters may hinder the model’s robustness
and generalizability across different biomedical imaging scenarios [53,99].

4.3.3. Limited Availability of Labeled Data

Biomedical image datasets with extensive labeled data for supervised training are often
limited. DDPM’s performance can be affected when trained on small datasets, potentially
leading to overfitting [100].

4.3.4. Interpretability and Explainability

DDPM, like many other deep learning models, can be seen as a “black-box” model,
making it challenging to interpret and explain its decisions. Understanding the reasoning
behind segmentation results is critical in biomedical applications [85,94].

4.3.5. Sensitivity to Image Characteristics

DDPM may exhibit sensitivity to certain types of biomedical images, especially those
with highly complex anatomical structures or specific imaging artifacts. Ensuring robust
performance across diverse image characteristics is essential [101,102].

4.3.6. Generalization across Modalities

DDPM’s ability to generalize across different imaging modalities may be limited.
Variations in data distribution and imaging characteristics between modalities can impact
the model’s adaptability [79,83].

4.3.7. Handling Temporal Information

For dynamic biomedical imaging, such as videos or time-series data, DDPM’s appli-
cability might be limited. The model’s architecture is primarily designed for static image
processing and might not capture temporal dependencies effectively [103,104].

4.3.8. Real-Time Constraints

Biomedical applications often require real-time or near-real-time processing, espe-
cially in clinical settings. DDPM’s computational demands may hinder its feasibility for
applications with stringent time constraints [105,106].

4.3.9. Model Complexity vs. Dataset Size

The intricate nature of DDPM may lead to overfitting on smaller datasets, where the
model might capture noise as if it were genuine signal information [107,108].

4.3.10. Integration with Clinical Workflow

The successful implementation of DDPM for biomedical image segmentation requires
seamless integration into the clinical workflow. Ensuring usability and compatibility with
existing systems is a non-trivial task [109].

In conclusion, while DDPM presents a powerful framework for biomedical image
segmentation, its implementation is not without challenges. Overcoming these challenges
requires a comprehensive understanding of the specific requirements of biomedical appli-
cations, careful parameter tuning, and consideration of ethical and interpretability aspects.
Addressing these challenges will contribute to unlocking the full potential of DDPM in
advancing the accuracy and reliability of biomedical image segmentation [96].
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5. Discussion and Conclusions
5.1. Implications for the Field of Biomedical Image Segmentation

The DDPM holds significant implications for the field of biomedical image segmen-
tation, introducing novel approaches that address various challenges associated with
traditional methods. DDPM excels in denoising biomedical images, contributing to en-
hanced image quality by effectively reducing noise and artifacts. DDPM introduces a
probabilistic framework that allows for the quantification of uncertainty in segmentation
predictions. Probabilistic models are valuable in medical applications where uncertainty
awareness is essential for clinical decision-making and ensuring the robustness of seg-
mentation results. DDPM can be seamlessly integrated into deep learning architectures,
combining the denoising capabilities of DDPM with the representational power of deep
neural networks. This integration harnesses the strengths of both approaches, providing
a more robust and adaptable solution for complex biomedical image segmentation tasks.
In medical applications, where transparency and interpretability are crucial, DDPM offers
insights into the reliability of segmentation predictions, fostering trust among healthcare
professionals. Improved segmentation accuracy is paramount in medical applications,
where precise delineation of structures and anomalies is critical for diagnosis and treatment
planning. DDPM, when integrated into deep learning architectures, has the potential to
advance segmentation accuracy by addressing noise and uncertainties.

DDPM’s implications for biomedical image segmentation are multi-faceted, encompassing
noise reduction, uncertainty quantification, adaptability to diverse modalities, ethical
considerations, and potential integration into clinical workflows. As research in this area
progresses, DDPM stands as a promising approach contributing to the advancement of
accurate and reliable biomedical image segmentation.

5.2. The Potential of DDPM in Advancing Medical Imaging Techniques

In conclusion, the DDPM holds significant promise in advancing medical imaging
technology. With its unique combination of denoising capabilities and probabilistic mod-
eling, DDPM addresses key challenges in biomedical image segmentation, contributing
to improved image quality, uncertainty quantification, and adaptability across diverse
imaging modalities. The integration of DDPM into deep learning architectures further en-
hances its potential, offering a robust and interpretable solution for accurate segmentation
in complex medical scenarios.

DDPM’s ability to handle limited annotated data, provide transparency in predictions,
and mitigate biases aligns with the ethical considerations essential in healthcare applica-
tions. As a catalyst for research in hybrid approaches, DDPM sets the stage for innovative
solutions that go beyond traditional segmentation methods, advancing the accuracy and
reliability of medical imaging technology.

The probabilistic framework of DDPM not only contributes to noise reduction but also
fosters a deeper understanding of segmentation results, promoting trust among healthcare
professionals. As medical imaging continues to play a pivotal role in diagnosis and
treatment, DDPM stands at the forefront of a new wave of technologies that have the
potential to reshape the landscape of image analysis, paving the way for more efficient and
reliable clinical decision-making.

In the evolving field of medical imaging, DDPM represents a promising paradigm
shift, offering a holistic solution that addresses the complexities of biomedical image
segmentation. As research and development in this area progress, the potential of DDPM
to enhance the accuracy, interpretability, and ethical considerations in medical imaging
technology positions it as a key player in shaping the future of diagnostic and therapeutic
approaches in healthcare.

6. Future Directions and Challenges

In envisioning the future trajectory of DDPM-based biomedical image segmentation,
several avenues present exciting prospects and formidable challenges. One notable avenue
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involves the continued integration of DDPM with deep learning architectures, such as
convolutional neural networks (CNNs) and generative adversarial networks (GANs), with
the overarching goal of enhancing segmentation accuracy for biomedical images. Another
promising research direction involves the development of hybrid models that amalgamate
DDPM with other probabilistic models or conventional image processing techniques,
strategically addressing nuanced challenges in biomedical image segmentation. Given
the critical nature of biomedical applications, there is a growing emphasis on advancing
DDPM variants to improve interpretability and explainability, ensuring that segmentation
results are readily understandable for healthcare professionals. The extension of DDPM-
based segmentation approaches to handle three-dimensional (3D) biomedical images and
multimodal datasets emerges as a crucial frontier, particularly in medical imaging where
3D representations and diverse imaging modalities are prevalent. Robustness to noisy
data and limited annotations poses a significant challenge, prompting research efforts to
fortify DDPM-based models against these real-world intricacies. Additionally, exploring
transfer learning techniques and pre-training strategies aims to leverage knowledge from
other domains, enhancing the generalization capabilities of DDPM-based segmentation
models. The incorporation of uncertainty estimation techniques within DDPM models is
another avenue, contributing confidence intervals to segmentation results and bolstering
the reliability of applications in clinical settings. Optimization for real-time applications in
clinical environments, considering computational efficiency and resource constraints, is a
critical aspect that researchers are poised to address. Lastly, a noteworthy trend involves
an increased focus on clinical validation and adoption of DDPM-based segmentation
methods, with more studies demonstrating their efficacy in real-world medical scenarios,
thus bridging the gap between research and practical healthcare applications.
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