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Featured Application: A methodology is introduced for the analytical formulation of vertical
vibrations of assemblies of thin coupled beams on a plane. The method allows the fast and efficient
estimation of vibration modes. It is validated and compared against the Finite Element Method
and an experimental setting, and is applied for the prediction of displacement and frequencies of
vertical vibrations in a CNC router type geometry. The method can be used to predict machine
and tool proper functioning for CNC router machines and similar equipment.

Abstract: Mechanical vibrations represent an important problem in machining processes performed
by machine tools. They affect surface quality, tool life, and productivity. In extreme situations,
chattering may appear, which can dramatically reduce the tool life. CNC router machines are
particularly sensitive to vibrations, with their structure bearing resemblance to a composition of
beams that are uniform in cross-section. These CNC machines are commonly used for different tasks,
like engraving, cutting, and 3D printing. This work proposes a modeling methodology for vibration
systems that consist of coupled thin beams subjected to vertical vibration. This methodology is used to
model vertical vibrations in a CNC router machine. For this, the geometry is decomposed into beams of
uniform cross-sections that are coupled at their ends. Each beam is modeled by means of the classical
theory of Bernoulli–Euler for thin beams. The boundary conditions are determined by the beam
couplings. In the system thus defined, fundamental frequencies are calculated using the bisection
method, and then the modes are computed for the corresponding frequencies. The modal amplitudes,
being time-dependent, are modeled as a state space system, considering the first m frequencies. In
order to provide support to the modeling methodology, simulation experiments are performed for
validation, comparing the results provided by models built with the proposed methodology against
finite element models and an experimental setting with a real structure. Moreover, an analysis of
the vibration model focusing on a specific component of the equipment is presented to illustrate the
usefulness and flexibility of the models obtained with the proposed methodology.

Keywords: vertical vibrations; modal analysis; CNC router

1. Introduction

Mechanical vibrations are present in many machine tools, affecting the cutting tool
and the surface finish of the machined part. For this reason, the study of vibration behavior
in machine tools has been a topic of interest. Pioneers in this topic, Minis and Yanushevsky,
Altintaş and Budak [1,2], analyzed the vibrations in a machining process in the frequency
domain. Minis and Yanushevsky [1] proposed a method to predict chattering in a machin-
ing process by modeling the system as a system of finite differences equations and analyzing
stability via Fourier analysis. Altintas and Budak [2] presented a method to predict stability
by modeling the system as a transfer function. Subsequently, many authors proposed
different perspectives to analyze machining processes. More recently, Ghoshal and Bhat-
tacharyya [3] studied the influence of vibrations in micromachining using microchemical
processes. Quintana and Ciurana [4] presented a review of the state of the art about chat-
tering. The dynamics of the cutting process and the effect in vibrations have also been
investigated [5–7].
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The reduction of vibrations has also received attention. Different methods have been
used for this purpose. The classic passive method adds masses and damping. The semi-
actives used dynamic adapting dampers and the ones used active control through the use
of fast actuators to compensate for vibrations. Long et al. [8] proposed a control system for
peripheral machining operations. The relative vibration between the tool and the machined
part is controlled with piezoelectric actuators that adjust the part with two degrees of
freedom. Similarly, Aggogeri et al. [9] proposed a mechatronic platform to actively control
the vibrations of a micromachined tool of high precision using piezoelectric actuators.
The frequency of the vibrations is a relevant parameter to understand the behavior of the
tool. Ostasevicius et al. [10] analyzed the frequency of the vibrations during a cutting
process modeling the tool as an elastic component. The vibrations at the tip of the cutting
tool had an influence on the surface finish of the part; therefore, they reported that the
excitation of the second vibrational flexional mode dissipated energy reducing vibrations
in the system. A piezoelectric was used to excite the mode. Altintas and Khoshdarregi [11]
used filters to compensate for the commands of the axes to avoid vibrations. They tested
experimentally their algorithm in a table of two axes. Finally, in this effort to control the
vibrations of the tool, Ford et al. [12], proposed a method to improve the performance
of a machine tool controlling adaptive structural vibrations of the machine. The control
system was implemented in a vertical milling machine. Deep learning techniques have also
been investigated for application in monitoring and maintaining machinery that produces
vibrations [13,14]. It has been of interest in the community to develop techniques that
are computationally inexpensive to be implemented in equipment health monitoring by
collecting data and applying algorithms in real-time [15]. The use of deep learning has
great potential due to the access to data handling and acquisition, as well as the ability to
process complex algorithms with reasonable computational cost in equipment maintenance.
However, these methods require training and data input, limiting their use and application
to situations where large data are available. In design and concept testing validation stages,
methods that do not require training may be more suitable.

A particular machine sensible to mechanical vibrations is the so-called CNC router.
The equipment RoutakitHD [16], Pro60120CNC [17], X-Carve [18], Zenbot CNC [19] are
commercially available and present similar geometries. These equipment are widely used
for different tasks such as cutting and engraving. Understanding the mechanical vibrations
in this equipment may result in enhancing the quality of the operation and increasing the
lifetime of the machine. Lou et al. [20] presented a method to evaluate the superficial quality
in the machining process in a CNC router. Liu et al. [21] proposed a complex vibration model
for the linear displacement mechanism of the power screw, a mechanism widely used in CNC
machines. Experimental measurements of the vibrations in similar configurations as a CNC
router are reported by different authors [22–25]. These investigations deal with the tool usage
at different conditions including adding damping to the machine.

This work proposes a new methodology for modeling vibration systems of coupled
thin beams under vertical vibration, which is later applied to a CNC router type geometry.
The main contribution of this research is to propose and validate a method that models
the vertical vibrations of a system of collinear and perpendicular beams, which are located
in a plane, and the applied load is perpendicular to this plane. This arrangement is
equivalent to the structure of a CNC router. Furthermore, since this method is an analytical
solution to the model, it does not require computational effort and can be used in design
stages to identify critical operating conditions of equipment subjected to vertical loads
that produce vibration. Additionally, it can be used to monitor and control the mechanical
vibrations of operating equipment, taking advantage of its low computational cost. The
first step consists of decomposing the structure geometry into a set of coupled beams with
attached masses. Next, boundary conditions are defined for the beams, considering the
couplings. These conditions lead to the computation of modes for the complete structure
and natural frequencies. The modal amplitudes are represented as a state-space control
system. Different scenarios with different loads (e.g., constant, harmonic, time-dependent)
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can be efficiently simulated with the resulting model. It is shown through numerical
experiments that the obtained models are accurate when compared with a Finite Element
Method (FEM) simulation, whenever the cross-section of the beams is small. Moreover,
a validation based on an experimental setting with a real structure is also performed.
The obtained state-space model is more suitable for control purposes in comparison to
computationally expensive FEM models, particularly for CNC structures in which the
model has to be updated when the tool moves. The methodology introduced here is
related to other works that proposed analytical models for beams with attached masses.
For instance, collinear beams with concentrated masses and coupled boundary conditions
were investigated in [26,27]. Ghayesh et al. [28] studied a general solution procedure
for time-dependent and nonlinear boundary conditions. They consider the concentrated
masses as internal boundary conditions, and their developed method focuses on non-linear
subsystems in 1-d resulting from the non-linear time-dependent boundary conditions.
Rezaiee-Pajand and Hozhabrossadati [29] studied a system of two beams with elastic
constraints at one end and free at the other end. The beams are coupled through a mass-
spring device. The modes are analyzed for different parameters such as the spring constant
of the coupling. Wu [30] presented an analysis of a Timoshenko beam with several endorsed
masses for a collinear structure. An interesting analytical method for a collinear array
of beams with coupled masses was developed by Liu et al. [31], the novelty of their
method is that many rigid bodies can be connected to many beams in any position and
orientation. Maiz et al. [32] presented an analysis of transverse vibrations of one beam with
several masses added. They used the classical Bernoulli–Euler theory and calculated the
fundamental frequencies and vibration modes of the assembly. An extension of this work
adding the considerations of the beams theory of Rayleigh and Timoshenko, is discussed
by the same group in [33]. Notice that all these works analyzed arrays of collinear beams,
while in our approach we consider 2-d arrays.

The article is organized as follows. Section 2 recalls basic concepts. Section 3 presents
the proposed methodology and the application to a CNC router structure. Section 4 shows
the results of simulations and it compares the results with FEM calculations and an experi-
mental setting. In the discussion, simulations of a particular CNC model are presented and
discussed. Finally, some conclusions are provided.

2. Basic Concepts

The proposed modeling methodology is based on the classical Bernoulli–Euler theory.
A CNC router operating properly functions within the elastic range. Any operation in the
plastic range might lead to catastrophic failure. The proposed model forecasts the behavior
of a CNC router geometry under normal operating conditions. Basic concepts and notation
are presented in this section.

According to the Bernoulli–Euler theory, the behavior of vertical displacements w(x, t)
along a thin beam of uniform cross-section without damping, subjected to a load distribu-
tion f (x, t), is described by

EI
∂4w(x, t)

∂x4 + ρA
∂2w(x, t)

∂t2 = f (x, t) (1)

where E is the Young modulus, I is the second moment of area, ρ is the density and A is
the beam cross section area. We consider the classical solution of split variables, in which
the vertical displacement is expressed as

w(x, t) = W(x)T(t), (2)

Considering the unloaded case (i.e., f (x, t) = 0), previous expressions lead to

EI
ρA

1
W(x)

∂4W(x)
∂x4 = − 1

T(t)
∂2T(t)

∂t2 (3)
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Since the left term is a function of x and the right term is a function of t, the only solution is
that both terms are equal to a constant value, usually denoted as ω2. The expression (3) is
then split in two equations:

∂4W(x)
∂x4 = β4W(x) (4)

∂2T(t)
∂t2 = −ω2T(t) (5)

where
β4 =

ρA
EI

ω2 (6)

The general solution of (4) is given by

W(x) = c1cosh(βx) + c2sinh(βx) + c3cos(βx) + c4sin(βx)
= g(β, x)c

(7)

where
g(β, x) =

[
cosh(βx) sinh(βx) cos(βx) sin(βx)

]
c =

[
c1 c2 c3 c4

]T (8)

The coefficients c1, c2, c3 and c4 depend on the boundary conditions. In fact, given a
set of boundary conditions, there exist an infinite number of solutions c and β for (4). In
particular, the solutions for β is a countable set. If the positive solutions for β are ordered
as β1 < β2 < β3..., for each βk the corresponding value ωk can be computed by (6). Such
values ω1 < ω2 < ω3... are named natural frequencies. In this way, for each k-th natural
frequency ωk, we have a parameter βk, and a particular vector of coefficients ck can be
computed such that the resulting function Wk(x) = g(βk, x)ck is as a solution of (4). This
solution Wk(x) is called the k-th mode.

On the other hand, given a natural frequency ωk and particular initial conditions, the
solution of (5) is denoted as Tk(t), called the k-th modal amplitude, which can be generally
described as

Tk(t) = aksin(ωkt) + bkcos(ωkt) (9)

where the coefficients ak and bk depend on the initial conditions.
In this way, the general solution for the displacement w(x, t) can be expressed as

w(x, t) =
∞

∑
k=1

Wk(x)Tk(t) (10)

3. Method Development

The goal of this work is to develop vibration models for structures consisting of cou-
pled thin beams within a plane, having attached masses, and describing either orthogonal
or straight angles. The model will be developed based on the Bernoulli–Euler theory for
thin beams with a regular cross-section, thus it should be applied only to lean beams. It will
be assumed that deformations will be maintained inside the elastic range, being coherent
with practical applications, in which machines are designed for operating in this range.
Elasticity in coupling components, such as bearings and ballscrews, will be neglected, since
these elements are built with rigid materials and geometries. The model will only describe
vertical vibrations, avoiding to consider both lateral and torsional vibrations. For this, the
following modeling methodology is proposed:

1. The geometry is decomposed as a collection of thin beams coupled at the endpoints
with masses attached to them.

2. Boundary conditions are established for each beam, considering couplings between
sections.

3. Fundamental frequencies and modes are computed for the complete structure.
4. Load distributions are established.
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5. A state space model for the modal amplitudes is obtained.

The information on the modal amplitudes and modes allows obtaining the vertical
displacement at any point of the structure, by using (10).

3.1. Geometry Decomposition

In order to extend the single-beam Bernoulli–Euler solution to structures composed
of several sections with attached masses, the structure is decomposed in simple regular
beams. This decomposition must be defined in such a way that couplings only occur at
the beam endpoints. Moreover, every pair of coupled beams must describe an angle in the
set 0°, 90°, 180°, 270°. The principal axis of each beam must belong to a horizontal plane.
Masses should only be attached at the beam endpoints.

The following notation will be used: ei denotes the i-th beam, li denotes the length of
ei, each beam has two endpoints, the coordinate xi will refer to the beam (local coordinate
system), thus one endpoint of ei is located at xi = 0 and the other endpoint is located at
xi = li. wi(xi, t) represents the vertical displacement of the beam ei at local coordinate
xi ∈ [0, li]. Ei, Gi, Ii and Ji denote Young’s modulus, the shear modulus, the cross-sectional
moment of inertia, and the polar moment of inertia of ei, respectively. Given a function
f (x), it will be used f (x)|x′ to denote the evaluation of f (x) at x = x′.

Figure 1 shows a correct decomposition in 6 simple beams for the structure of a CNC
router type structure similar as RoutakitHD equipment [16]. Arrows on the beams indicate
the local coordinate systems, i.e., the endpoint where xi = 0 and the positive axis direction.

This decomposition will allow computing the modes by sections, i.e., the mode for
ei associated with the k-th fundamental frequency will be given by Wk

i (xi) = g(βk
i , xi)ci,

where βk
i is related to the fundamental frequency ωk by (6) (Notice that if some beam sec-

tions have different cross-section and/or different material, a single fundamental frequency
ωk will lead to a set of parameters βk

1, βk
2, ..., βk

m, since the parameters Ei, Ii, ρi, Ai in (6) could
be different for each beam section. In the particular case that all the beam sections have the
same material and cross-section, a single parameter will be obtained for each fundamental
frequency ωk, i.e., βk

1 = βk
2 = ... = βk

m). In this way, the set of functions

{Wk
1 (x1), Wk

2 (x2), ..., Wk
n(xn)}

describe the k-th mode of the complete structure, associated with the frequency ωk.
The following subsections will explain how to compute the fundamental frequencies

ωk, the corresponding parameters βk
i and the coefficient vectors ck

i for each beam element
ei, by following the aforementioned methodology.

e1

e2

e3

e4

e5

e6

x1

x2

x3

x4

x5

x6

m1

r1

m2

r2

m3

r3

Figure 1. Decomposition of a CNC router structure similar as RoutakitHD equipment [16].
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3.2. Boundary Conditions

Computing the modes for the beam sections is a coupled problem, i.e., the modes
shapes of a beam depend on the modes of the other beams in the structure. This behavior
results from the beam coupling, which can be described by boundary conditions. Thus, the
first step in the modes computation is to establish boundary conditions for all the beams in
the structure that consider the beams coupling. The beam couplings in the CNC router are
mechanical elements, such as bearings, ballscrews and masses, which may have their own
elastic properties and behavior. For this reason, masses can be attached at the coupling
points in the model. However, elasticity at couplings is not considered in the model, since
the elastic contribution of these components will be small because these are built with rigid
geometries and materials. The relative positions of the beams studied in this work are those
that a CNC router observes during operation, i.e., beam elements being either collinear
or perpendicular.

In detail, two boundary conditions must be established for each endpoint of each
beam, otherwise stated, each function wi(xi, t) requires a total of four boundary conditions
(two for each endpoint). These conditions depend on whether the beam is coupled to
another beam at the endpoint or not. Figure 2 shows four possibilities of beams coupling.

An interesting feature will appear when two or more beams are perpendicularly
coupled, as shown in Figure 2d). In this figure, beams eh and ei act as torsional springs for
beams ej and el , and vice versa. To compute the torsion of such springs, variables ϕe

h, ϕe
i , ϕe

j

and ϕe
l (resp. ϕ

f
h , ϕ

f
i , ϕ

f
j , and ϕ

f
l ) are defined to express the torsional deformation of beam eh,

ei, ej and el , respectively, at the coupling end-point (resp. at the other end-point). The sign
of these angles is defined according to the right-hand rule. These torsional deformations
are null at fixed and simple supported endpoints. On the other hand, they can be expressed
as slopes of perpendicular beams at coupling endpoints, e.g.,

ϕe
j ≃ tan(ϕe

j ) =
∂wh(xh, t)

∂xh

∣∣∣∣
xe

h

(11)

In the following, boundary conditions for different cases are described as both, its general
formulation in terms of wi(xi, t) and its modal formulation in terms of Wi(xi) = gx(βi, xi)ci.
For this, let us denote the first, second, and third derivatives of g(βi, xi) with respect to xi
as gx(βi, xi), gxx(βi, xi) and gxxx(βi, xi), respectively.

• In the case of uncoupled endpoints (e.g., x1 = 0 at e1 of Figure 1), the boundary
conditions can be defined as one of the following cases:

– Free endpoint (cantilever): there are neither bending moments nor shear forces:

General:
∂2wi(xi, t)

∂x2
i

∣∣∣∣∣
xe

i

= 0,
∂3wi(xi, t)

∂x3
i

∣∣∣∣∣
xe

i

= 0,

Modal: gxx(βi, xe
i )ci = 0, gxxx(βi, xe

i )ci = 0,

(12)

where xe
i denotes the coordinate of the endpoint (thus xe

i = 0 for one endpoint or
xe

i = li for the other endpoint).
– Fixed endpoint: there is no vertical displacement, there is no slope:

General: wi(xe
i , t) = 0,

∂wi(xi, t)
∂xi

∣∣∣∣
xe

i

= 0,

Modal: g(βi, xe
i )ci = 0, gx(βi, xe

i )ci = 0.
(13)
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– Simple supported endpoint: there is no vertical displacement, there is no bend-
ing moment:

General: wi(xe
i , t) = 0,

∂2wi(xi, t)
∂x2

i

∣∣∣∣∣
xe

i

= 0,

Modal: g(βi, xe
i )ci = 0, gxx(βi, xe

i )ci = 0.

(14)

• Additional boundary conditions are required for endpoints at which two or more
beams are coupled. These conditions depend on how many beams are coupled at
the same point, if these are aligned or not, and if torsion is allowed or not. Four
configurations can occur, as shown in Figure 2. The most general case involves four
beams eh, ei, ej and el , coupled at the same point, where eh and ei are aligned between
them, ej and el are perpendicular to them, and torsion is allowed. In the following,
take Figure 2d) as reference. For this, the following conditions must be defined:

– The following conditions are required to guarantee displacements continuity

General: wh(xe
h, t) = wi(xe

i , t) = wj(xe
j , t) = wl(xe

l , t)

Modal: g(βh, xe
h)ch = g(βi, xe

i )ci = g(β j, xe
j )cj = g(βl , xe

l )cl
(15)

where xe
h, xe

i , xe
j , xe

j denote the endpoints coordinates where the beams eh, ei, ej, el
are coupled.

– The aligned beams require slope continuity, i.e.,

General:
∂wh(xh, t)

∂xh

∣∣∣∣
xe

h

=
∂wi(xi, t)

∂xi

∣∣∣∣
xe

i

,

∂wj(xj, t)
∂xj

∣∣∣∣∣
xe

j

=
∂wl(xl , t)

∂xl

∣∣∣∣
xe

l

Modal: gx(βh, xe
h)ch = gx(βi, xe

i )ci,
gj(β j, xe

j )cj = gx(βl , xe
l )cl

(16)

– Another condition is due to a balance of vertical forces, in detail, shear forces
must be coherent with the acceleration of the mass attached at the coupling point,
which is generally formulated as

Eh Ih
∂3wh(xh, t)

∂x3
h

∣∣∣∣∣
xe

h

− Ei Ii
∂3wi(xi, t)

∂x3
i

∣∣∣∣∣
xe

i

+ Ej Ij
∂3wj(xj, t)

∂x3
j

∣∣∣∣∣
xe

j

−El Il
∂3wl(xl , t)

∂x3
l

∣∣∣∣∣
xe

l

= m
d2v
dt2

where v is the vertical displacement of the attached mass m; if there is no mass at-
tached at this point then the right term is substituted by 0. By using (1) and (4), the
mass acceleration can be expressed in terms of the displacement at the endpoint
of any of the coupled beams, e.g.,

d2v
dt2 =

∂2wh(xh, t)
∂t2

∣∣∣∣
xe

h

= − Eh Ih
ρh Ah

∂4wh(xh, t)
∂xh

∣∣∣∣
xe

h

= − El Il
ρl Al

β4
i wl(xe

l , t)

The corresponding modal formulation becomes

Eh Ihgxxx(βh, xe
h)ch − Ei Iigxxx(βi, xe

i )ci + Ej Ijgxxx(β j, xe
j )cj

−El Il gxxx(βl , xe
l )cl = −mEh Ih

ρh Ah
β4

hg(βh, xe
h)ch

(17)
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– By considering the balance of moments along the longitudinal axis of beams
eh − ei and ej − el , and the aforementioned torsional spring effects, two boundary
conditions are imposed as follows

Eh Ih
∂2wh(xh, t)

∂x2
h

∣∣∣∣∣
xe

h

− Ei Ii
∂2wi(xi, t)

∂x2
i

∣∣∣∣∣
xe

i

− kj
(

ϕe
j − ϕ

f
j

)
−kl

(
ϕe

l − ϕ
f
l

)
= mr2

d2ϕe
j

dt2

Ej Ij
∂2wj(xj, t)

∂x2
j

∣∣∣∣∣
xe

j

− El Il
∂2wl(xl , t)

∂x2
l

∣∣∣∣∣
xe

l

− kh
(

ϕe
h − ϕ

f
h

)
−ki

(
ϕe

i − ϕ
f
i

)
= mr2 d2ϕe

h
dt2

where r is the vertical distance from the neutral beam axis to the mass center
of m, and ki = Gi Ji/li denotes the equivalent torsional elastic coefficient of ei.
The angular mass accelerations can be expressed in terms of slopes by using (1)
and (4) and assuming that torsional angles are small, i.e.,

d2ϕe
j

dt2 ≃ ∂2

∂t2
∂wh(xh, t)

∂xh

∣∣∣∣
xe

h

= − Eh Ih
ρh Ah

β4
i

∂wh(xh, t)
∂xh h

∣∣∣∣
xe

h

d2ϕe
h

dt2 ≃ −
Ej Ij

ρj Aj
β4

i
∂wj(xj, t)

∂xj j

∣∣∣∣∣
xe

j

The corresponding modal formulation is

Eh Ihgxx(βh, xe
h)ch − Ei Iigxx(βi, xe

i )ci − kj
(

ϕ̂e
j − ϕ̂

f
j

)
−kl

(
ϕ̂e

l − ϕ̂
f
l

)
= −mr2 Eh Ih

ρh Ah
β4

hgx(βh, xe
h)ch

Ej Ijgxx(β j, xe
j )cj − El Il gxx(βl , xe

l )cl − kh
(

ϕ̂e
h − ϕ̂

f
h

)
−ki

(
ϕ̂e

i − ϕ̂
f
i

)
= −mr2 Ej Ij

ρj Aj
β4

j gx(β j, xe
j )cj

(18)

where the variables ϕ̂ are the modal components of the corresponding angles ϕ,
e.g., considering ϕe

j given by (11), we have

ϕ̂e
j ≃ − ∂Wh(xh)

∂xh

∣∣∣∣
xe

h

= gx(βh, xe
h)ch

In case that torsion is not allowed, the difference between torsional angles at
the end-points of any beam must null, e.g., (ϕe

j − ϕ
f
j ) = 0, thus (ϕ̂e

j − ϕ̂
f
j ) = 0,

which would imply that slopes at the coupling endpoints were null. Conditions
(15)–(18) can be straightforwardly applied to the other configurations of Figure 2,
just by removing the terms of the missing beams. Be aware that if the sense of
the local coordinate system of a beam is changed, the signs of the corresponding
terms in the boundary conditions must also be changed.
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Figure 2. Different possibilities for defining initial conditions at coupling endpoints: (a) two aligned
beams, (b) two perpendicular beams, (c) three beams, (d) four beams.

3.3. Modes and Fundamental Frequencies Computation

Coefficient vectors ci of each beam segment ei ∈ {e1, e2, ..., en} depend on the boundary
conditions of the complete structure. In detail, the set of all boundary conditions, as
described in the previous section, can be rewritten as a set of coupled linear equations of
the form

F(ω)


c1

c2

...

cn

 = 0 (19)

where F(ω) is a 4n × 4n matrix that depends on ω. For this, it is required to substitute
variables β1, β2, ..., βn in the boundary conditions by their equivalent expressions on ω,
accordingly with (6), i.e.,

βi =

(
ρi Ai
Ei Ii

)1/4
ω1/2

Equation (19) has always a trivial solution, in which all the coefficients are null.
Nevertheless, the solutions of interest appear when the coefficients are not null. For this,
matrix F(ω) must lose rank, which occurs for the fundamental frequencies ωk. These
values ωk can be obtained numerically, by using roots-finding methods such as Newton’s
or bisection. Next, for each of such value ωk, the corresponding values {βk

1, βk
2, ..., βk

n}
can be computed as in (6). Moreover, coefficients vectors [(ck

1)
T , (ck

2)
T , ..., (ck

n)
T ]T can be

computed fulfilling (19).

3.4. Modes for the CNC Router Structure

Let us formulate (19) for the structure of Figure 1, assuming the beams have the same
cross-section and material. First, we have to define the boundary conditions as follows.
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Fixed endpoints (13) in e1, e2, e3 and e4:

g(β1, 0)c1 = 0, gx(β1, 0)c1 = 0,

g(β2, l2)c2 = 0, gx(β2, l2)c2 = 0,

g(β3, 0)c3 = 0, gx(β3, 0)c3 = 0,

g(β4, l4)c4 = 0, gx(β4, l4)c4 = 0.

Continuity at the coupled endpoints (15):

g(β1, l1)c1 = g(β2, 0)c2,
g(β1, l1)c1 = g(β5, 0)c5,
g(β3, l3)c3 = g(β4, 0)c4,
g(β3, l3)c3 = g(β6, l6)c6,
g(β5, l5)c5 = g(β6, 0)c6.

Slope continuity at the coupled endpoints between aligned beams (16):

gx(β1, l1)c1 = gx(β2, 0)c2,
gx(β3, l3)c3 = gx(β4, 0)c4,
gx(β5, l5)c5 = gx(β6, 0)c6.

The balance of vertical forces at coupled endpoints (17) leads to:

gxxx(β1, l1)c1 − gxxx(β2, 0)c2 − gxxx(β5, 0)c5 = −M1β4g(β1, l1)c1,

gxxx(β3, l3)c3 − gxxx(β4, 0)c4 + gxxx(β6, l6)c6 = −M2β4g(β3, l3)c3,

gxxx(β5, l5)c5 − gxxx(β6, 0)c6 = −M3β4g(β5, l5)c5,

(20)

where M1 = m1/(ρA), M2 = m2/(ρA) and M3 = m3/(ρA).
The balance of moments at coupled endpoints (18) leads to:

gxx(β1, l1)c1 − gxx(β2, 0)c2 − K56(gx(β1, l1)c1 − gx(β3, l3)c3)

= −M1r2
1β4gx(β1, l1)c1,

−gxx(β5, 0)c5 − K12(gx(β5, 0)c5) = −M1r2
1β4gx(β5, 0)c5,

gxx(β3, l3)c3 − gxx(β4, 0)c4 − K56(gx(β3, l3)c3 − gx(β1, l1)c1)

= −M2r2
2β4gx(β3, l3)c3,

gxx(β6, l6)c6 − K34(gx(β6, l6)c6) = −M2r2
2β4gx(β6, l6)c6,

gxx(β5, l5)c5 − gxx(β6, 0)c6 = −M3r2
3β4gx(β5, l5)c5,

(21)

where
K12 =

GI
EIl1

+
GI

EIl2
, K34 =

GI
EIl3

+
GI

EIl4
and K56 =

GI
EI(l5 + l6)

Now, if displacements are restricted to the vertical direction, additional conditions on
the slopes at the coupling endpoints must hold:

gx(β1, l1)c1 = 0,
gx(β5, 0)c5 = 0,
gx(β3, l3)c3 = 0,
gx(β6, l6)c6 = 0.
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This will lead to a simplification of (21), since certain mass rotational inertia terms and
the spring-effect terms will become null, resulting in

gxx(β1, l1)c1 − gxx(β2, 0)c2 = 0,

gxx(β5, 0)c5 = 0,

gxx(β3, l3)c3 − gxx(β4, 0)c4 = 0,

gxx(β6, l6)c6 = 0,

gxx(β5, l5)c5 − gxx(β6, 0)c6 = −M3r2
3β4gx(β5, l5)c5.

The first four conditions of this set are redundant with the previous ones.
Then, the boundary conditions restricted to vertical displacements lead to the algebraic

system:
F(ω) =

g(0) 0 0 0 0 0
gx (0) 0 0 0 0 0
0 g(l2) 0 0 0 0
0 gx (l2) 0 0 0 0
0 0 g(0) 0 0 0
0 0 gx (0) 0 0 0
0 0 0 g(l4) 0 0
0 0 0 gx (l4) 0 0
g(l1) −g(0) 0 0 0 0
g(l1) 0 0 0 −g(0) 0
0 0 g(l3) −g(0) 0 0
0 0 g(l3) 0 0 −g(l6)
0 0 0 0 g(l5) −g(0)
gx (l1) −gx (0) 0 0 0 0
0 0 gx (l3) −gx (0) 0 0
0 0 0 0 gx (l5) −gx (0)
gxxx (l1) + M1 β4

1 g(l1) −gxxx (0) 0 0 −gxxx (0) 0

0 0 gxxx (l3) + M2 β4
2 g(l3) −gxxx (0) 0 gxxx (l6)

0 0 0 0 gxxx (l5) + M3 β4
5 g(l5) −gxxx (0)

gx (l1) 0 0 0 0 0
0 0 0 0 gx (0) 0
0 0 gx (l3) 0 0 0
0 0 0 0 0 gx (l6)
0 0 0 0 gxx (l5) + M3r2

3 β4
5 gx (l5) −gxx (0)



F(ω)



c1
c2
c3
c4
c5
c6

 = 0

(22)

where the dependence of the functions g and theirs derivatives on ω has been omitted due
to space limitations.

3.5. Modal Amplitudes in Space State

Once the modal shapes are computed, the next step is to obtain a representation of the
dynamics of the modal amplitudes Tk(t), for each ωk, as function of applied loads.

Let us consider the displacement model for the i-th beam element, with an uniform
damping γ and load f (i, xi, t), where f (i, xi, t) denotes the force applied on element ei at
coordinate xi ∈ [0, li] at time t:

Ei Ii
∂4wi(xi, t)

∂x4
i

+ γρi Ai
∂wi(xi, t)

∂t
+ ρi Ai

∂2wi(x, t)
∂t2 = f (i, xi, t) (23)

Considering (4) and (10), it is obtained:

∞

∑
k=1

Wk
i (x)

[
Ei Ii(βk

i )
4 Tk(t) + γρi Ai

dTk(t)
dt

+ ρi Ai
d2Tk(t)

dt2

]
= f (i, xi, t)

Notice that modal amplitudes Tk(t) do not have subindex, since each k-th modal
amplitude is shared for all the beam elements.

Multiplying the previous equation by the j-th mode W j
i (x) and considering the or-

thogonality property Wk
i (xi)W

j
i (xi) = 0 if k ̸= j, the following is obtained:
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W j
i (xi)

2
[

Ei Ii(β
j
i)

4 T j(t) + γρi Ai
dT j(t)

dt
+ ρi Ai

d2T j(t)
dt2

]
= W j

i (x) f (i, xi, t)

The previous expression is valid for any beam element ei ∈ {e1, e2, ..., en} at any local
coordinate xi. Now, integrating over all the spatial domain (i.e., over xi ∈ [0, li] for each ei),
it is obtained:

n
∑

i=1

li∫
0

W j
i (x)2dx

[
Ei Ii(β

j
i)

4 T j(t) + γρi Ai
dT j(t)

dt
+ ρi Ai

d2T j(t)
dt2

]
=

n
∑

i=1

li∫
0

W j
i (x) f (i, xi, t)dx

Finally, using (6) and rearranging the terms, the following is obtained:

(ω j)2 T j(t) + γ
dT j(t)

dt
+

d2T j(t)
dt2 =

n
∑

i=1

li∫
0

W j
i (x) f (i, xi, t)dx

n
∑

i=1
ρi Ai

li∫
0

W j
i (xi)2dx

(24)

Equation (24) is a second-order ordinary differential equation that describes the dy-
namics of the j-th modal amplitude. The right-hand side is a function of time, which can be
determined for different load patterns. For instance, consider that three loads are applied
simultaneously, denoted as f (i, xi, t) = f1(i, xi, t) + f2(i, xi, t) + f3(i, xi, t), a punctual load
applied on the beam element el , at the position xl = xa (i.e., f1(i, xi, t) = δl(i)δ(xa) f1(t),
where δl(i) = 1 if i = l, otherwise δl(i) = 0), an uniform load with time-varying magnitude
on the beam er (i.e., f2(i, xi, t) = δr(i) f2(t)), and an uniform constant load applied on all
the beams, such as gravity (i.e., f3(i, xi, t) = −gAiρi). Then

n
∑

i=1

li∫
0

W j
i (x) f1(i, xi, t)dx =

n
∑

i=1

li∫
0

W j
i (xi)δl(i)δ(xa) f1(t)dx = W j

l (xa) f1(t)

n
∑

i=1

li∫
0

W j
i (x) f2(i, xi, t)dx =

n
∑

i=1

li∫
0

W j
i (xi)δr(i) f2(t)dx = f2(t)

lm∫
0

W j
r(xm)dx

n
∑

i=1

li∫
0

W j
i (x) f3(i, xi, t)dx =

n
∑

i=1

li∫
0

W j
i (xi)(−gAiρi)dx = −g

n
∑

i=1
Aiρi

li∫
0

W j
i (xi)dx

Denoting, ∀j ∈ N,

bj
i =

li∫
0

W j
i (xi)dx, Bj =

n
∑

i=1
ρi Ai

li∫
0

W j
i (xi)dx,

Sj =
n
∑

i=1
ρi Ai

li∫
0

W j
i (xi)

2dx, η j =
γ

2ω j , V j(t) =
dT j(t)

dt
,

the expression (24) can be written as

dV j(t)
dt

= −(ω j)2T j(t)− 2η jω jV j(t) +
W j

l (xa)

Sj f1(t) +
bj

r

Sj f2(t)− g
Bj

Sj (25)

The previous expression describes the dynamics of the j-th modal amplitude and its
time derivative, i.e., T j(t) and V j(t).

In this way, the space state model of the first m modal amplitudes is
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dT(t)
dt

=



0 1 0 0 ... 0 0
−(ω1)2 −2η1ω1 0 0 ... 0 0

0 0 0 1 ... 0 0
0 0 −(ω2)2 −2η2ω2 ... 0 0
...

...
...

...
...

...
0 0 0 0 ... 0 1
0 0 0 0 ... −(ωm)2 −2ηmωm


T(t)

+



0 0 0
W1

l (xa)

Sj
b1

r
Sj

B1

Sj

0 0 0
W2

l (xa)

Sj
b2

r
Sj

B2

Sj
...
0 0 0

Wm
l (xa)

Sj
bm

r
Sj

B3

Sj


f(t)

(26)

where the state is given by

T(t) =
[

T1(t) V1(t) T2(t) V2(t) ... Tm(t) Vm(t)
]T (27)

and the input vector is given by

f(t) =
[

f1(t) f2(t) −g
]T (28)

Finally, based on (10), the displacement at xy on a beam element ej can be approximated
by considering the first m modal components as

w(xy, t) ≃
[

g(β1
j , xy)c1

j 0 g(β2
j , xy)c2

j 0 ... g(βm
j , xy)cm

j 0
]
T(t) (29)

The previous equation can be replicated as many times as it is required to calculate
displacements at different locations.

Let us remark that there are no restrictions on the type of loads that can be applied
(constant, periodic, punctual, distributed, etc.) Moreover, the simulation of the system
(26)–(29) requires low computational efforts compared with numerical methods such as
finite differences or FEM.

4. Results

In this section, numerical experiments are performed with the proposed vertical
vibration model for two purposes: to validate the model, and to provide an illustrative
example of the possible applications of the model. For this, a structure as shown in Figure 1
is considered.

4.1. Model Validation through Simulation

In order to validate the proposed model, fundamental frequencies and modes are
computed with both our method and FEM. The goal of this comparison is to investi-
gate the conditions under which the proposed model is valid. The choice for FEM
as the ground-truth data source is due to the acceptance of the method for vibration
analysis [30,31,34–36].

The analyzed structure is shown in Figure 1. The total lengths of the segments are
1 m, i.e.,

l1 + l2 = 1 m

l3 + l4 = 1 m
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l5 + l6 = 1 m

Moreover, we have the conditions l1 = l3 and l2 = l4. The cross-section of all beams is
square and equal, denoting their side dimension as a, in m. Moreover, equal masses are
attached to the endpoints of l1, l3, and l5, as shown in Figure 1, denoting their value as m,
in kg. Free endpoints are fixed, and displacements are restricted to the vertical direction.

In order to compute the fundamental frequencies ωk, the bisection method was used
to find the values ωk at which the matrix F(ωk), given by (22), is singular, as explained in
the previous section.

For the analysis with FEM, the well-known software Ansys was used. In detail,
“structural steel” was selected as the material, with a density of ρ = 7850 kg/m3 and elastic
coefficient E = 200 GPa. The torsional elastic coefficient is G = 85 N/m2. Small high-density
rigid bodies were attached (having a volume of 20 mm3) to the endpoints of l1, l3, and l5,
to simulate the attached masses. Moreover, frictional supports were added to the beams
lateral faces to restrict displacements to the vertical direction, as shown in Figure 3. For
meshing, fine mesh with an element size of 5 mm was used, using the element “SOLID187”.
Smaller elements were attempted, obtaining similar results. The “Modal” analysis was
performed with the “Mechanical APDL”, using “Block Lanczos” as the extraction method.

M5

M1

M3

Figure 3. Structure with restrictions and attached masses for FEM. M1, M5 and M3 correspond to
the position of mass 1, 5, and 3.

Different simulations were performed for different values of l1, l5, a, and m, in order
to investigate the influence of each of these parameters on the solution accuracy. The
following metric was used to measure the errors for the computation of the fundamental
frequencies:

ek(a, m) =
1

|L1| · |L5|
∑

l1∈L1

∑
l5∈L5

abs

(
f k
Model(l1, l5, a, m)− f k

FEM(l1, l5)
f k
FEM(l1, l5, a, m)

)
(30)

where L1 and L5 are the set of values for l1 and l5, respectively, that were simulated,
f k
Model(l1, l5, a, m) and f k

FEM(l1, l5, a, m) denote the k-th fundamental frequency estimated
by our model and the FEM in Hertz, respectively, considering the specified values for
l1,l5, a and m. Then, ek(a, m) represents the mean absolute proportional error of the k-th
fundamental frequency.

Several simulations were performed, covering all the combinations of values l1 ∈
{0.2, 0.3, 0.4, 0.5}, l5 ∈ {0.2, 0.3, 0.4, 0.5}, a ∈ {0.01, 0.03, 0.1} and m ∈ {0, 0.2, 1}. However,
for the case in which m = 0, the value of l5 is irrelevant. For instance, Table 1 shows the
first four fundamental frequencies obtained for a = 0.01 m, m = 0.2 kg, and different values
for l1 and l5, by using our model and FEM.
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Table 1. Fundamental frequencies in Hertz obtained with our model and FEM, m = 0.2 kg, a = 0.01 m.

l1 = 0.2 m l1 = 0.3 m l1 = 0.4 m l1 = 0.5 m

Model FEM Model FEM Model FEM Model FEM

l5 = 0.2 m

45.5 48.6 36.9 39.0 29.2 30.9 26.5 28.2
72.3 73.0 51.8 53.4 38.7 40.7 35.0 36.9
75.7 77.2 71.4 74.9 66.7 71.2 65.6 70.3
124.1 103.5 109.9 115.3 131.5 140.1 136.1 146.9

l5 = 0.3 m

42.0 44.9 35.3 37.4 28.6 30.3 26.1 27.7
72.8 73.5 52.7 54.3 39.4 41.3 35.5 37.5
75.5 76.9 69.6 72.7 63.6 67.7 62.2 66.6
99.3 105.6 110.2 115.7 127.4 135.8 130.0 139.5

l5 = 0.4 m

39.3 42.0 34.0 36.1 28.1 29.8 25.8 27.4
73.2 73.8 53.5 55.1 39.9 41.9 36.0 38.1
75.2 76.4 66.8 69.6 59.6 63.4 58.0 61.9
104.3 110.4 112.7 118.2 137.0 145.3 141.7 152.0

l5 = 0.5 m

38.4 41.0 33.5 35.6 27.9 29.6 25.7 27.3
73.3 74.0 53.8 55.4 40.2 42.1 36.3 38.3
75.1 76.2 65.7 68.3 58.0 61.6 56.3 60.1
106.9 113.0 113.8 119.3 143.6 151.0 153.0 164.3

Table 1 shows a good approximation of the values obtained with our model, for the case
m = 0.2 kg, a = 0.01 m. Computing the mean absolute proportional error of the four funda-
mental frequencies, we obtain e1(0.01, 0.2) = 0.058, e2(0.01, 0.2) = 0.035, e3(0.01, 0.2) = 0.046
and e4(0.01, 0.2) = 0.058, meaning 5.8% of error for the first frequency, 3.5% of error for the
second frequency, 4.6% of error for the third frequency and 5.8% for the fourth frequency.

After simulating for all the combinations of the considered parameters, the results
shown in Table 2 were obtained.

Table 2. Errors obtained for the first four fundamental frequencies for all the parameters combinations.

m = 0 kg m = 0.2 kg m = 1 kg

a = 0.01 m

e1 0.064 0.058 0.059
e2 0.043 0.035 0.038
e3 0.052 0.046 0.054
e4 0.063 0.058 0.058

a = 0.03 m

e1 0.082 0.073 0.073
e2 0.032 0.035 0.035
e3 0.053 0.050 0.053
e4 0.071 0.062 0.063

a = 0.1 m

e1 0.084 0.099 0.198
e2 0.074 0.075 0.236
e3 0.085 0.093 0.078
e4 0.031 0.170 0.164

Finally, Table 3 shows the average errors for each combination of a and m, considering
the first four fundamental frequencies.

Table 3. Average errors considering the first four fundamental frequencies.

m = 0 kg m = 0.2 kg m = 1 kg

a = 0.01 m 0.056 0.049 0.052

a = 0.03 m 0.060 0.055 0.056

a = 0.1 m 0.069 0.109 0.169
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From Table 3, it can be seen that the errors were around 5.5% for all the cases in which
a = 0.01 m and a = 0.03 m, independently of the values for l1, l3 and m. The largest errors
were obtained for a = 0.1 m with attached masses, i.e., with m = 0.2 kg and m = 1 kg. These
results are coherent with the theory, since the Bernoulli–Euler formulation is valid for thin
beams, i.e., when a is small.

Moreover, in the case of a = 0.01 m and a = 0.03 m, the mode shapes are also well
approximated. For instance, Figures 4–7 show the modes associated with the first four
fundamental frequencies for the case a = 0.01 m, m = 1 kg, l1 = 0.5 m and l5 = 0.5 m,
computed with the proposed methodology and Ansys (computed modes with our model
were scaled to make the highest displacements to coincide with those of FEM, note that
other displacements also coincide).

Figure 4. First mode for a = 0.01 m, M = 1 kg, l1 = 0.5 m and l5 = 0.5 m, computed with proposed
Model (left) and with FEM (right).

Figure 5. Second mode for a = 0.01 m, M = 1 kg, l1 = 0.5 m and l5 = 0.5 m, computed with proposed
Model (left) and with FEM (right).

Figure 6. Third mode for a = 0.01 m, M = 1 kg, l1 = 0.5 m and l5 = 0.5 m, computed with proposed
Model (left) and with FEM (right).
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Figure 7. Fourth mode for a = 0.01 m, M = 1 kg, l1 = 0.5 m and l5 = 0.5 m, computed with proposed
Model (left) and with FEM (right).

4.2. Model Validation through Experiments

Experimental validation was performed using the experimental setting shown in
Figure 8. Considering a segmentation as in Figure 1, the total lengths of segments are
such that l1 + l2 = 1 m, l3 + l4 = 1 m and l5 + l6 = 0.8 m. The structure is built with stan-
dard 20 mm × 20 mm aluminum profile with the following properties: A = 1.6 × 10−4 m2,
I = 0.7 × 10−8 m4, ρ = 2700 kg/m3, and E = 70 GPa. A 30 W vibration BLDC motor with a
speed controller was used to induce vibrations. The minimum speed of the controller is
450 RPM. An accelerometer MPU9250 was used as a sensor device, having a bandwidth
of 200 Hz. Thus, the experimental setting is able to produce and detect damped resonant
frequencies in the range of 7.5 Hz–40 Hz. Consequently, only the first damped resonant fre-
quency was investigated. Second, third, and larger resonance frequencies are not analyzed
in this experiment due to practical phenomena. First, the second and larger fundamental
frequencies correspond to actuator speeds larger than 4000 RPM, which are not excited
in practical CNC router machines. Moreover, magnitudes associated with the second and
larger fundamental frequencies are several times smaller than that of the first fundamental
frequency. Furthermore, when damping exists (i.e., when considering real structures),
second and larger resonance frequencies tend to vanish, thus making it impractical to
detect those frequencies in experimental settings. Different simulations were performed,
characterized by the combinations of values l1 ∈ {0.2, 0.3, 0.4, 0.5} and l5 ∈ {0.2, 0.4}. For
instance, Figure 9 shows the vertical accelerations obtained (in g units) for different load
frequencies (motor speed). The first damped resonant frequencies are shown in Table 4
(indicated as exp.)

Simulations based on the proposed model were performed for the same combinations,
applying harmonic loads with a frequency in the interval 0 Hz–50 Hz to estimate the first
damped resonant frequency. For this, a damping coefficient of γ = 0.3 was considered.
Masses were considered as m1 = m2 = 0.45 kg and m3 = 2.9 kg, with r1 = r2 = 0 and
r3 = 0.035 m, associated to the motor and other accessories. The obtained first damped
resonant frequencies are shown in Table 4, together with the resulting absolute percentage
errors. The error of the first frequency is below 0.05 for the cases with l1 = 0.4 m and
l1 = 0.5 m. Similarly, the error is below 0.15 in all the cases in which l5 = 0.4 m. The largest
error (0.375) was obtained with the configuration (l1 = 0.2 m, l5 = 0.2 m). Notice that the
error becomes larger when the structure reaches a position with larger rigidity (where
the motor is closer to a corner), in which vibration amplitudes are expected to be smaller.
The average error is 0.108. In this way, we consider that the experiments validate that the
proposed model provides a fair approximation of the first resonance frequency, specially at
the less rigid positions in which vibration amplitudes are expected to be more relevant.
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Figure 8. Structure for experimental validation (left) and detail of the aluminum profile (right).
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Figure 9. Experimental results for the case l1 = 0.4 m, l5 = 0.2 m. The peak acceleration occurs at
27.33 Hz.

Table 4. First damped resonant frequency in Hertz obtained with the experimental setting (exp.) and
our model. The average error is 0.108.

l1 = 0.2 m l1 = 0.3 m l1 = 0.4 m l1 = 0.5 m

l5 = 0.2 m
exp. 32.58 28.30 27.33 24.96

model 44.8 34.0 26.8 24.4
error 0.375 0.201 0.019 0.022

l5 = 0.4 m
exp. 29.08 28.46 25.80 24.83

model 33.4 29.4 25.4 23.6
error 0.148 0.033 0.015 0.049

5. Discussion

In order to illustrate different applications of the proposed model, we perform an
analysis of a CNC structure similar as the structure shown in Figure 1. The frequencies
and modes depend solely on the material and geometry parameters. These parameters
are sourced from the manufacturer of the CNC router type being modeled. If not available,
they can be easily measured. For amplitudes, damping is required. The damping can
be adjusted from experimentation. We assume that the structure is built with standard
40 mm × 20 mm aluminum profiles as shown in Figure 10, having the following parame-
ters: A = 3.405 × 10−4 m2, I = 5.4113 × 10−8 m4, ρ = 2700 kg/m3, E = 70 GPa. A damping
coefficient of γ = 0.04 was considered.
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Figure 10. Standard aluminum profile, 40 mm × 20 mm.

Considering the structure decomposition as in Figure 1, attached masses are consid-
ered at the coupling endpoints of e1 and e3, representing motors NEMA23 with masses
m1 = m2 = 1.15 kg and a vertical distance between the mass centers and the neutral axis
of r1 = r2 = 0.06 m. Moreover, a third mass is attached at the end of e5, representing the
Z-axis displacement mechanism and a spindle, involving a total mass of m3 = 12.5 kg with
r3 = 0.06 m. In this way, the masses, material, and cross-section parameters are defined.

Notice that the length of the beam elements depends on the X–Y spindle position,
which changes according to the manufacturing program. The total length of the X-axis
profiles is 1 m, and the total length of the Y-axis profiles is 0.8 m, i.e., l1 + l2 = l3 + l4 = 1 m
and l5 + l6 = 0.8 m.

The first analysis approach is to compute a map of fundamental frequencies, as shown
in Figure 11. These maps are computed by building the model for different values of l1
and l5, representing the X–Y position of the spindle, and computing the corresponding
fundamental frequencies. As expected, the lower frequencies are found when the spindle
is at the center of the CNC range, i.e., when m3 is farthest from the fixed endpoints. On
the other hand, the fundamental frequencies are larger when l1 is near 0 m or 1 m, i.e.,
when the spindle is near the CNC supports, since the structure becomes more rigid at
these configurations.

These maps could be used by open-loop control strategies to avoid excessive vibrations.
For instance, the spindle speed may be shifted away from the fundamental frequencies,
depending on the spindle position. Moreover, when working on a small piece, this could
be placed in the region where the first frequencies are high (the higher the frequency, the
lower the vibration displacement).

In a second analysis, a map of vertical displacements is performed, as shown in
Figure 12 (left). This map indicates the vertical displacement of the spindle for different
X–Y positions (i.e., for different values of l1 and l5), when a load of f (t) = −100N is applied
on the spindle. This map is computed by building the model for different values of l1 and
l5, including their state space representations of the modal amplitudes for the first four
fundamental frequencies, and computing the steady state of the corresponding models.
The map can be used at a design stage, in order to analyze the magnitude of the vertical
deflection at a constant load (for instance, the weight of the tool) and determine whether the
difference between the minimum and maximum deflections is permissible. In this case, the
difference was over 3 mm, which would affect the piece quality. Figure 12 (right) shows the
steady-state displacements of all the structures for the case in which l1 = 0.1 m, l5 = 0.45 m,
which was computed by using the steady-state modal amplitudes and the mode shapes.
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Figure 11. First four fundamental frequencies. X–Y axis represents the coordinate of the spindle.

Figure 12. (Left) steady- state displacement at the spindle, for different positions of this. (Right) steady-
state displacement displacements of the structure for the case l1 = 0.1 m, l5 = 0.45 m. In both results, a
constant load of f (t) = −100N was applied at the spindle position.

In a third analysis, the behavior of the structure is studied when a harmonic load
of f (t) = −100sin(2π fct) N is applied, where the load frequency is varied in the range
fc ∈ [0, 300] Hz. Figure 13 (left) shows the amplitude of the displacement at the spindle,
for the different values of fc, for the case in which l1 = 0.5 m and l5 = 0.4 m. This type of
analysis allows us to detect the frequencies of maximum displacements (damped resonant
frequency) at particular configurations (which are expected to be near the fundamental
frequencies, depending on the damping coefficient), and the displacement differences
between different damped resonant frequencies. In this case, we only need to consider the
first frequency (near 35 Hz), since the displacement magnitudes at the others are negligible.
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Figure 13. (Left) displacement amplitude at the spindle for the periodic load f (t) = −100sin(2π fct) N,
for the case l1 = 0.1 m, l5 = 0.45 m. (Right) transient displacement at the spindle for the case fc = 35 Hz.

Finally, Figure 13 (right) shows the transient behavior of the displacements at the
spindle for the case fc = 35 Hz, i.e., at the first damped resonant frequency. This dis-
placement plot was obtained by a simple simulation of the modal amplitude state space.
The simulation was performed in discrete time using the Euler rule with a sampling of
0.5 ms. This model would be useful for designing and implementing model-based control
algorithms for reducing vibrations (e.g., using a piezoelectric actuator to slightly move the
working piece to suppress the displacement).

6. Conclusions

In this study, an analytical methodology to calculate the vibration modes of coupled
thin beams is presented. This methodology is applied to estimate the vertical vibrations
of a CNC router type machine. It is of interest to obtain analytical models for the vertical
vibrations of this machine type to avoid problems with the tool and the machined surface.
The validation results reveal a small error for the first fundamental frequencies using
the method compared with FEM simulations, whenever the cross-sectional areas of the
beams are small with respect to their lengths (Bernoulli–Euler hypothesis). Furthermore,
the qualitative behavior of the first four vibration modes is similar using both methods.
Moreover, experimental validation was performed with a small cross-sectional area beam
structure, obtaining an average error of 0.10 considering different positions, and exhibiting
greater accuracy at less rigid positions where vibration amplitudes are expected to be more
relevant. To illustrate the application of the method, this was applied to model vertical
vibrations in a CNC router type geometry. As such, the first natural frequencies were
computed for different positions of the tool. Moreover, displacements were computed for a
constant and a dynamic load. Application of the obtained analytical model for control and
predictive maintenance remains a topic for future work.
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