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Abstract: Obtaining the digital characterization and representative elementary volume (REV) of
broken rock masses is an important foundation for simulating their mechanical properties and
behavior. In this study, utilizing the broken surrounding rock of the main powerhouse at the Liyang
pumped storage power station as an engineering background, a three-dimensional fracture network
generation program is first developed based on the theories of discrete fracture network (DFN) and
discrete element method (DEM). The program is then integrated with a distinct element modelling
platform to generate equivalent rock mass models for broken rock masses based on the DFN–DEM
coupling technique. Numerical compression tests are conducted on cylindrical rock specimens
produced using the proposed modelling approach, aiming to determining the REV size of the target
rock masses at the Liyang power station. A comparative validation is also performed to examine
the REV result obtained from the proposed approach, which adopted a REV measuring scale index
(RMSI) to determine the REV size. Results indicate that the organic integration of DFN simulation
techniques and DEM platforms can effectively construct numerical models for actual broken rock
masses, with structural surface distributions statistically similar to the real ones. The results also
show that the REV size of the investigated rock masses determined by the cylindrical rock models
is 5 m × 10 m, which aligns with the size determined by the cubic rock models, as the target cubes
show the same height as the cylindrical specimens. This study provides a model and parameter basis
for the numerical calculation of the mechanical behavior of broken rock mass.

Keywords: broken rock mass; statistics; DFN–DEM coupling; REV; Monte Carlo

1. Introduction

As a geological formation that has undergone prolonged natural processes, rock
masses preserve distinct traces of geological tectonic activities. Within various geological
regions, the rock masses manifest diverse quantities and types of structural surfaces. For
broken rock masses that are characterized by a high-dispersion structure due to extensive
jointing, fissuring, and faulting, the discontinuity and anisotropy of the structure become
more pronounced [1,2]. In engineering practices involving broken rock masses, such as
tunnels at near-fault regions and side slopes in highly weathered rock formations, the
randomness of discontinuities, the variability in rock mass parameters, and the uncertainty
associated with surrounding rock loads pose potential risks to the safety of the construction
projects [3,4]. Therefore, to enhance the construction safety of such engineering practices, it
is essential to conduct in-depth investigations on the mechanical properties and behavior
of broken rock masses.
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Due to the haphazard structural surfaces within the broken rock masses, their me-
chanical properties are particularly complex and challenging to be predicted quantitatively.
Even with the implementation of large-scale rock mechanics tests on-site, it is only possible
to obtain local mechanical parameters of limited-sized rock blocks or joint surfaces. Di-
rectly measuring the macroscopic or statistically meaningful mechanical properties and
parameters of larger-scale rock masses is unattainable through experiments [5,6]. Therefore,
building upon experiments and theoretical analyses, numerous researchers have employed
numerical methods to construct computational models of fractured rock masses and carry
out relevant numerical mechanical tests. For example, the equivalent rock mass technology,
which combines a three-dimensional fracture network simulation technique and discrete
element platform, has been extensively employed in the construction of fractured rock mass
models at both indoor and engineering scales [7–12]. Meanwhile, the parameters of the
equivalent rock masses, such as stiffness, deformation modulus, Poisson’s ratio, internal
friction angle, trace length, and fracture aperture, have also been adopted to estimate the
REV size of fractured rock masses [13–22]. However, for broken rock masses with a more in-
tricate distribution of fractures, limited research has been conducted on the determinations
of their digital characterization and REV. Moreover, such studies have not fully captured
the structural characteristics of the real rock masses. The random fracture network based
on the probabilistic model description is a local macro-fracture, which only reflects some of
the main structural features of the broken rock mass, and the structural surface simulation
technology, which is closer to the real rock mass structure, still needs to be developed.

With the continuous development of pumped storage power station projects in the
North and Southeast coastal regions of China, broken surrounding rock masses of large
underground cavern groups, which serve as the main structural component of pumped
storage power stations, have become increasingly prevalent in practical engineering projects.
In this paper, based on the relevant theories of discrete fracture network (DFN) and discrete
element method (DEM), the distribution characteristics of structural surfaces in the broken
surrounding rock masses of a specific hydropower station in Southeast China, i.e., the
Liyang pumped storage power station, is statistically analyzed. By employing the Monte
Carlo method, a three-dimensional fracture network automatic generation program is
developed based on the DFN–DEM coupling approach, which can construct the equivalent
rock mass models for broken rock masses at a certain site. Using the proposed program,
cylindrical rock mass models with different scales are generated to analyze the size of the
RVE of the broken rock mass at the Liyang pumped storage power station. The numerical
results are validated through a comparison with the results obtained from an equivalent
rock mass cubic model, employing the RMSI with identical parameters.

2. Characterization of Random Fracture Networks in Broken Rock Masses

The simulation technique for rock mass fracture networks was originally introduced
by the British scholar Samaniego [10]. This method allows the reproduction of the structural
surface of a realistic rock mass based on the statistical distribution of geometric parameters
measured from real rock surfaces, and the Monte Carlo method is employed to implement
this reproduction process on a computer platform [23]. In the past two decades, many
scholars have conducted in-depth research on this technique and developed corresponding
programs to reproduce the rock structural surface, such as the Fracman program, Blocks
program, and Geofrac program [24]. These programs are generally based on the Monte
Carlo method to generate rock mass fracture networks, and the basic process of Monte
Carlo random simulation technology can be summarized as (1) conducting on-site joint
geological surveys to obtain basic geological parameters of rock fracture samples, such as
fracture density, attitude, spacing, and aperture ratio; (2) performing statistically analyses
on the geological parameters of the fracture samples and fitting corresponding probability
density and distribution functions; and (3) using the Monte Carlo method to generate
random fracture networks that statistically match the actual distribution of the rock mass
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fractures based on specific distributions of random numbers. The implementation process
of random fracture network simulation is shown in Figure 1.
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Figure 1. Generation process of random fracture network.

Figure 1 summarizes the generation process of the random fracture network adopted
in this research to simulate broken rock masses, which contains three main steps, namely,
(1) the field acquisition of fracture geometry parameters, (2) statistical analysis of the
parameters, and (3) generation of random fracture network for the rock masses. In this
paper, the broken surrounding rock of the main powerhouse at the Liyang pumped storage
power station is adopted as the research object to provide fracture geometry parameters.
In step 2, a self-developed program is employed to conduct statistical analysis on the
fracture geometric parameters within a predefined range of the target rock (i.e., a statistical
window). In step 3, a three-dimensional fracture network automatic generation program
is developed to generate the random fracture networks for the target rock masses. The
obtained network diagram can be converted into a DXF file that is readable by 3DEC.

2.1. On-Site Research of Structural Surface

Geological parameters of the dominant structural surfaces in a research area are the
key sample data for simulating random fracture networks. In the literature, the methods
for experimentally obtaining the geological parameters mainly include manual precise mea-
surement methods (such as rock outcrop line measurement and statistical window meth-
ods), borehole core method, a photography or videography method, and three-dimensional
laser scanning technology.

In this study, the statistical window method [25] is adopted for on-site investigation
of structural surfaces. A “Geological Structural Surface Statistical Window” program is
developed to statistically analyze the geometric parameters of structural surfaces obtained
for the on-site investigation, which will be introduced in the following sections. Com-
pared to other methods, the primary characteristic of the statistical window method is to
designate a rectangular range on the rock outcrop surface as a “statistical window”; the
statistical relationship between the geometric parameters of the structural surfaces within
this window and the parameters of the window itself can thus be established. A schematic
diagram illustrating the collection of structural surface data on a target rock mass using the
statistical window method is shown in Figure 2.
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Figure 2. Schematic diagram of rock mass structural plane collected by statistical window method.

2.2. Mathematical Description of Stochastic Model for Geometric Parameters of Structural Surfaces

Previous studies showed that the geometric feature parameters of the structural surface
of rock mass obey a certain form of probability distribution. By fitting and analyzing the
collected data of the structural surfaces of the broken rock mass, a statistical probability
model for each geometric feature parameter of these surfaces can be established.

2.2.1. Shape and Size of Structural Surfaces

In the literature, most studies assumed a circular or elliptical shape for the structural
surfaces for simplicity. Nonetheless, some research considered a polygonal shape [25].
Zhao et al. [26] proposed the use of a circular shape to describe structural surfaces in blocky
rock masses and a rectangular shape for those in layered rock masses. In homogeneous
rock masses, it is reasonable to represent a single structural surface by a circle or an ellipse.
However, in broken rock masses, due to the criss-crossing and interacting cracks, the shape
of the structural surfaces is polygonal. Therefore, this paper uses planar quadrilateral
(rectangle) to simulate the shape of the structural surfaces in broken rock masses.

The dimensions of structural surfaces are generally described by the fracture trace
length, which is the intersection of the fracture surface with the exposed rock surface.
As of now, it is not possible to directly measure the size of fracture surface in three-
dimensional space under field conditions. The size can only be derived from the fracture
trace length obtained from a field survey based on relevant theories. From the perspective
of probability statistics, the distribution models of fracture trace length mainly include log-
normal distribution [27] and negative exponential distribution [28]. The density functions
of these two distributions are shown in Figure 3. It can be seen from Figure 3a that, when
adopting log-normal distribution to describe the fracture trace length, i.e., when x equals
the fracture trace length, the probability of occurrence for very short fracture trace lengths
approaches zero. This can be attributed to the limitations of existing observation methods in
measuring fine cracks, which may not accurately represent real cases, as a large number of
laboratory experiments have observed numerous micro-cracks in the rock masses. To better
describe the distribution of fracture trace length in broken rock masses, this study adopted
the negative exponential distribution, as illustrated in Figure 3b. The figure demonstrates
a notable increase in the number of cracks as the fracture trace length decreases, aligning
more closely with the experimental results.
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To establish the dimension of structural surfaces, a rectangular statistical window
a × b is first set up on the rock outcrop face (see Figure 2). Assuming that the numbers of
structural surfaces whose traces are in cutting, intersecting, and containing relationships
with the statistical window are N0, N1 and N2, respectively, and the angle between the
traces of this group of structural surfaces and the length direction of the statistical window
is θ, the average trace length of this group of structural surfaces, l, can be expressed as:

l = [ab(1 + N0/N) − N2/N]/[(1 − N0/N + N2/N) (aA + bB)] (1)

where N = N0 + N1 + N2, A =
∫ θu

θl
f (θ) sin θdθ, and B =

∫ θu
θl

f (θ) cos θdθ. f (θ) is the proba-
bility density function of θ, and θl and θu are the lower and upper values of θ, respectively.

Villaescusa and Brown provided a relationship between the structural surface trace
length and the diameter of circular structural surface [29]. Based on this relationship, the
mean and variance values of the structural surface diameter, denoted as D and σD

2, can be
expressed as the following equation.

D =
3
2

(
3
8

)6 (
πl
)5

/
[(

l
)2

+ σl
2
]2

, σD
2 = 3

(
3
8

)10 (
πl
)8

/
[(

l
)2

+ σl
2
] 3

(2)

There is also a conversion relationship between the diameter of the circular structural
surface and the length of the rectangular structural surface B, i.e., B =

√
π · D/2. However,

this relationship is subject to the prerequisite that the length and width of the rectangular
structural surface are independent of each other and both conform to the negative exponen-
tial distribution of parameter B. The substitution of the negative exponential distribution
parameter 1/λ = B into xi = −[ln(1 − Ri)]/λ yields the random distribution of rectangular
edge length, in which Ri is an obeyed (0, 1) interval on the uniform distribution. The side
lengths of the rectangular structural surface, ai and bi, can thus be calculated as:

ai = −
√

π/4D ln(1 − Ri), bj = −
√

π/4D ln
(
1 − Rj

)
(3)

2.2.2. Occurrence of Structural Planes

There are two main methods for describing the occurrence of structural planes [30].
One approach involves expressing the occurrence of structural planes in the normal di-
rection. The other uses the strike and dip to describe the occurrence. The latter uses dip
azimuth φd and dip angle θd to represent the occurrence of structural plane, which is widely
used in geological engineering, as shown in Figure 4.
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The commonly used probability distributions of structural plane occurrence (param-
eters including dip azimuth angle φd and dip angle θd) include Bingham distribution,
Fisher distribution, and bivariate normal distribution. Among these distributions, the
first two regard the azimuth and inclination of the structural plane as two independent
random variables, while the last one considers the correlation between the two parameters.
Consider a set of two-dimensional random variables φd and θd with sample means φd and
θd, variances σφ

2 and σθ
2, respectively, and a correlation coefficient ρ between the two

random variables. The probability density function is as follows:

f

(
φd − φd

σφ
,

θd − θd
σθ

, ρ

)
=

1
2πσφσθ

√
1 − ρ2

exp

 2ρ(φd−φd)(θd−θd)
σφσθ

−
(

φd−φd
σφ

)2
−
(

θd−θd
σθ

)2

2(1 − ρ2)

 (4)

The joint probability distribution of the two variables can be expressed as follows:

P(φd ≤ u, θd ≤ v) =
∫ v−θd

σθ

−∞

∫ u−φd
σφ

−∞
f

(
φd − φd

σφ
,

θd − θd
σθ

, ρ

)
d
(

φd − φd
σφ

)
d

(
θd − θd

σθ

)
(5)

When the dip azimuth angle φd and dip angle θd are independent of each other, i.e.,
ρ = 0, the bivariate normal distribution in Equation (4) degenerates into a one-dimensional
normal distribution. Substituting the mean and mean square deviation of the occurrence
parameters φd and θd into the one-dimensional normal distribution xi = σNi + µ, the azimuth
angle φdi and dip angle θdi of the structural plane that satisfy the normal distribution can
be obtained:

φdi = σφNi + φd, θdi = σθNi + θd (6)

2.2.3. Density of Structural Planes

The density of structural surfaces can generally be classified as line density, areal
density, and volume density based on spatial dimensions, with interconvertibility among
them. Line density of structural planes is the reciprocal of the spacing between structural
planes, while areal density and volume density refer to the numbers of centerpoints of
structural plane traces per unit area and unit volume of the rock mass, respectively. Among
them, areal density is more widely used to evaluate the density of structural surfaces in
geotechnical engineering, and the commonly used methods for estimating areal density
include the Kulatilake estimation method [31] and the Mauldon estimation method [32].

Based on the correlation between sample window traces and the window in the
statistical window method, as shown in Figure 2, Kulatilake and Wu [31] proposed a
formula for calculating the areal density E(ρa) of structural planes:

E(ρa) =

N2
∑

i=1
[P0(W)]i +

N1
∑

i=1
[P1(W)]i +

N0
∑

i=1
[P2(W)]i

ab
(7)



Appl. Sci. 2024, 14, 606 7 of 19

where a and b denote the length and width of the statistical window, respectively; N0, N1,
and N2 represent the number of structural plane traces in the cutting, intersecting, and
enclosing relationships with the statistical window, respectively; and P0(W), P1(W), and
P2(W) are the probabilities of the midpoint of surface trace corresponding to the above
three relationships being inside the statistical window.

Similarly, the expression of areal density of structural planes proposed by Mauldon [32],
λ, can be described by the following equation based on the statistical window method:

λ = (N − N2 + N0)/2ab = (2N0 + N1)/2ab (8)

By comparing Equations (7) and (8), it is evident that Mauldon’s method for estimating
the areal density of rock masses within a statistical window is more straightforward than
Kulatilake’s method, as the Kulatilake method necessitates calculations involving the
probability density functions of the trace length in the study area. Based on the statistical
analysis results from the Mauldon method, the study adopts the two-parameter negative
exponential distribution model as the probabilistic statistical model for the surface density
of structural planes in broken rock masses. The two-parameter negative exponential
distribution can be expressed as:

y = me−nx (x ≥ 0, m > 0, n > 0) (9)

where m and n are the model parameters.
As the density of structural planes increases, the spatial distribution of fractures

become more complex, which leads to more permutations and combinations of random
geometry parameters that can be generated by the Monte Carlo method.

2.2.4. Center Point and Vertex of a Rectangular Structural Surface

The position of a rectangular structural plane can be determined by the coordinates of
its center and four vertices. In the literature, it is generally assumed that the center point
of a structural plane to follow a three-dimensional Poisson distribution [28]. Based on the
principle of Poisson’s process, the determination of the spatial coordinates of the center
point of a structural surface can be outlined as follows: (1) divide the three-dimensional
space region V into N independent subregions Vi with equal volumes (i = 1, 2, 3. . ., N);
(2) assume the center points of the Ni-th structural surface are randomly and uniformly
distributed in the Vi subregion; (3) assume the range of the Vi sub-region to be xi1 ≤ x ≤ xi2,
yi1 ≤ y ≤ yi2, and zi1 ≤ z ≤ zi2, and assume a variable Ri following a uniform distribution
on the interval (0, 1). The coordinates of the structural plane’s center point, (xci, yci, zci), can
thus be expressed as:

xci = xi1 + (xi2 − xi1)Ri, yci = yi1 + (yi2 − yi1)Ri, zci = zi1 + (zi2 − zi1)Ri (10)

If the upper and lower sides of the rectangular structural plane have independent and
identically distributed lengths, the lengths ai and bi of the rectangular structural plane can
be obtained from Equation (3), the dip azimuth angle φdi and dip angle θdi of the structural
plane can be obtained from Equation (6), and the coordinates of the center point of the
structural plane (xci, yci, zci) can be obtained from Equation (10). Based on these conditions,
the vertex coordinates of the rectangular surface can be solved as follows.

In Figure 5, assuming that the unit vector of side AB of the rectangular structural
surface is N1, the unit vector of side BC is N2, and the unit normal vector to the structural
surface is Ni (perpendicular to plane ABCD), where Ni = (sinθdisinφdi, sinθdisinφdi, cosθdi)
can be calculated based on the relationship between the normal vector of the structural
plane and the occurrence (dip azimuth and dip angle). Since AB is perpendicular to both
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Ni and z-axis, and BC is perpendicular to both Ni and N1, the following relationships can
be established:

N1 = [(0, 0, 1) × Ni]/mod[(0, 0, 1) × Ni] = (−cosφi, sinφi, 0) (11)

N2 = (Ni × N1)/mod(Ni × N1) = (−sinφicosθi, −cosφicosθi, sinθi) (12)

where (0, 0, 1) represents the unit vector in the z-axis direction. In addition to these unit
vectors. the coordinates of vertex A, i.e., (xa, ya, za), can also be obtained from the vector
relations in Figure 5, which can be expressed as:

OA = (xa − xci, ya − yci, za − zci) = OE + EA (13)

OE = −biN2/2, EA = −aiN1/2 (14)

The substitution of Equations (11) and (12) into Equations (13) and (14) gives the
coordinate of vertex A(xa, ya, za) can be obtained. Similarly, the coordinates of the rest
vertices, namely B(xb, yb, zb), C(xc, yc, zc), and D(xd, yd, zd), can be calculated and expressed
as the following equation:

xj = xci + (bisinφicosθi + θicosφi)/2, yj = yci + (bicosφicosθi − θisinφi)/2, zj = zci − (bisinθi)/2 (15)

where j represents the four vertex indicators, a, b, c, and d.
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2.2.5. Degree of Aperture of a Structural Plane

The degree of aperture is the vertical distance between the rock walls on both sides of
an open structural surface. Due to the undulating nature of the fracture walls, the degree
of aperture of a structural plane is different at different points. By establishing a coordinate
system “xoy” on the mid-plane of a structural surface, as shown in Figure 6, the aperture
degree of a certain point with coordinates (x, y) can be expressed as a function, E(x, y).
Taking the average value of these E(x, y) for the points throughout the fracture surface gives
the average degree of aperture for the structural plane d. If the side lengths of a rectangular
fracture surface are Lx and Ly, respectively, d can be expressed as:

d =
1

LxLy

∫ Lx

0

∫ Ly

0
E(x, y)dxdy (16)

The aperture degrees of a structural plane mainly obeys a negative exponential distri-
bution [31] or a log-normal distribution [33]. If the average value of the aperture degrees
in a fracture group is d and obeys a negative exponential distribution, and the variable
Ri satisfies an uniform distribution within the interval (0, 1), the aperture degree of any
structural plane di can be expressed as:

di = −dln(1 − Ri) (17)
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2.3. Generation of Random Fracture Network Model

After obtaining the distribution model of the geometric parameters of a structural
plane through on-site rock mass investigation and statistical analysis, the random fracture
network for the structural plane can be generated using computer simulation techniques.
Such generation process is opposite to the on-site measurement and statistical process.
Specifically, based on the survey and statistical results, a probability function of the geomet-
ric parameters of the investigated structural plane is first established. A series of random
numbers that conform to specific distribution functions is then generated using approaches
including the Monte Carlo method to replace the geometric parameters of the structural
plane. A structural plane network diagram is finally generated to represent the rock mass
in the study area.

The Monte Carlo method is a widely employed numerical technique based on random
numbers in the simulation of fracture networks [26]. Its fundamental concept involves
approximating solutions to real-world problems through simulations and statistical experi-
ments on random variables. The key to this method lies in generating random numbers
based on specific probability distributions. Various method, such as displacement in-
struction addition, square-centering approach, and congruence method, can be used for
generating random numbers, typically following a uniform distribution [34]. To obtain
random numbers that adhere to the desired distribution, random sampling of uniform
distributed random numbers is required according to the established distribution functions.
Some commonly used methods to generate random numbers for different probability
density functions are summarized in Table 1.

Table 1. Random number generation of different probability density functions.

Distribution Type Probability Density Function Random Numbers Fissure Applications

Uniform distribution f (x) =
{

1/(b − a) a ≤ x ≤ b
0 x < a, x > b

x = a + (b − a)R
Midpoint
location

Negative exponents
distribution f (x) =

{
λ exp(−λx) a ≤ x > 0
0 x ≤ 0 λ> 0

x = −ln(1 − R)/λ Trace length

Fisher
distribution f (x) =

η sin θ exp(η cos θ)

exp η − exp(−η)
x = arccos

[
ln(1 − R)

η
+ 1
]

Dip angle

Log-normally distributed f (x) =
1√

2πσx
exp

[
− (ln x − µ)2

2σ2

]
u =

{
cos(2πR1)

√
−2 ln R2 R3 ≥ 0.5

sin(2πR1)
√
−2 ln R2 R3 < 0.5

x = exp(µ + σµ)

Trace length/Aperture

Poisson distribution P(x = k) =
λkek

k!
k = 0, 1, . . . λ> 0

F(n) =
n
∑

k=0

λke−λ

k!
i f F(n) ≤ R ≤ F(n + 1) then x = n

Density

Normal distribution f (x) =
1√
2πσ

exp
[
− (x−µ)2

2σ2

]
u =

{
cos(2πR1)

√
−2 ln R2 R3 ≥ 0.5

sin(2πR1)
√
−2 ln R2 R3 < 0.5

x = µ + σµ

Aperture
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3. Modeling of Broken Rock Masses Based on the Coupled DFN–DEM Approach

Based on the pertinent theories of DFN simulation and DEM, the fractured surround-
ing rock of the main powerhouse at the Liyang pumped storage power station is adopted
as an illustrative example. The actual geometric parameters of the structural surface of the
rock masses, as well as their respective probability distributions, are obtained first, and
the Monte Carlo method is then employed to simulate the corresponding random fracture
network. Finally, through the implementation of the coupled DFN–DEM approach, an
equivalent rock mass model is constructed.

3.1. Statistics of Structural Plane Geometric Parameters

To acquire the authentic geometric parameters of the fractured surrounding rock
in the main powerhouse of the Liyang pumped storage power station, we conducted
an exhaustive statistical analysis using on-site geological survey data. The data sources
encompassed the “Geological Sketch Display of the Roof Arch of the Main Powerhouse”,
“Geological Sketch Display of the Upstream Wall of the Main Powerhouse”, “Geological
Sketch Display of the Downstream Wall of the Main Powerhouse”, and “Geological Sketch
Display of the North End Wall and South End Wall of the Main Powerhouse”. Employing
the statistical window method allowed for a comprehensive statistical analysis. Figure 7a–c
show the placement of three geological statistical windows situated on the roof arch,
upstream sidewall, and downstream sidewall of the main powerhouse (excluding large
faults during this process).
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A custom program called “Geological Statistical Window Analysis” is developed based
on the quantitative relationship between the geological geometric parameters of structural
surfaces within the statistical windows. By importing a DXF file into the “Geological
Statistical Window Analysis” program, one can obtain geometric parameters such as the
count, dip angle, trace length, line density, areal density, and volume density of structural
surfaces within the statistical windows.
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Upon organizing the result files, the actual geometric parameters of structural surfaces
within the rock masses of the arch roof, upstream sidewall, and downstream sidewall of the
main powerhouse are collected, as presented in Table 2. The following can be observed from
the table: (1) In comparison to the upstream and downstream sidewalls, the fractures in the
arch roof rock mass exhibit the maximum length, averaging 4.99 m. However, they have the
fewest fractures per unit area of rock mass (i.e., 0.15 fractures per m2). (2) When contrasted
with the arch roof and downstream sidewall, the fractures in the upstream wall rock mass
display a more evenly developed length (variance of trace length equals 2.85 m2), and the
highest number of fractures per unit length of rock mass (0.87 fractures per meter). (3) The
average trace length and trace length variance of structural surfaces in the surrounding
rock of the main plant building are 4.30 m and 3.45 m2, respectively. The average dip and
dip variance of structural surfaces are 51.42◦ and (27.93◦)2, respectively. The number and
length of fractures per unit area of rock mass are 0.23 and 0.97 m−1, respectively. The
number of fractures per unit length of rock mass is 0.58 m−1, and the fracture area per unit
rock mass is 1.87 m−1.

Table 2. Analysis results of geological statistical window of surrounding rock of main powerhouse.

Geologic Statistics Window Locations Roof Arch Upstream
Wall

Downstream
Wall Average

Number of structural faces/strips 1049 1238 1421 1236
Average trace length of fractures/m 4.99 3.76 4.15 4.30

Trace length variance/m2 4.00 2.85 3.50 3.45
Fracture average dip angle/◦ 43.26 56.32 54.69 51.42

Dip angle variance/(◦)2 29.76 27.01 27.02 27.93
Quantity areal density (number of fractures per unit area)/m−2 0.15 0.29 0.26 0.23

Fracture density (length of fracture per unit area)/m−1 0.75 1.07 1.10 0.97
Fracture line density (number of fractures per unit length)/m−1 0.31 0.87 0.55 0.58

Three-dimensional fracture density (fracture area per unit volume)/m−1 2.40 1.22 1.99 1.87

3.2. Construction of Discrete Fracture Networks

Based on relevant theories in structural statistics of rock masses, this research devel-
ops a tool named “Random Fracture Network Simulation Program for Fractured Rock
Masses”. This program encompasses a fracture data input module, a fracture network
generation module, and a fracture network output module, offering the following features
and advantages: (1) Real-time selection of parameter distribution functions and genera-
tion of fracture networks based on the input geometric parameters of structural surfaces.
(2) The output result file can be inputted into some other software for further analysis,
providing ease of connection with program interfaces. (3) A user-friendly interface that
requires minimal compilation of data files, effectively reducing the likelihood of errors.
The existing approaches for simulating broken rock masses generally require numerical
simulations to obtain the probabilistic distributions of the structural surfaces’ geometric
parameters [30]. In the proposed method, the optimal probabilistic distribution functions
for the geometric parameters can be automatically acquired without additional simulations,
which can significantly accelerate the simulation process.

The simulation process of the program is illustrated in Figure 8. Initially, within the
fracture data input module, a database of geometric parameters for structural surfaces is
established. The number of structural plane groups, as well as the probability distribution
forms for the geometric parameters of each structural plane group, can thus be determined.
Next, employing the Monte Carlo principle, the program calculates the center point, vertex
coordinates, and geometric parameters for each fracture to complete the simulation for
each group of structural surfaces. To optimize the structural plane network, fractures that
are in close proximity or have very small angles are merged or deleted; fractures beyond
the model dimensions are truncated and removed. Finally, after completing the simulation
of the structural surface network, the program outputs result in required formats.
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Figure 8. Flow chart of random fracture network simulation of fractured rock mass.

A random fracture network with specified dimensions of a rock mass can be generated
by inputting the statistical data of geological features and model dimensions of the struc-
tural surfaces into the “Fracture Rock Random Fracture Network Simulation Program”.
However, the generated result files are not directly applicable. Therefore, a file conversion
interface program is developed to convert the generated random fracture network into
a DXF file that is readable by 3DEC. In this example, the structural surface geometric
parameters of the rock mass around the main powerhouse, as listed in Table 3, are inputted
into the “Fracture Rock Random Fracture Network Simulation Program”. The result files
are imported into the conversion program, which gives a 3DEC-readable random fracture
network, as illustrated in Figure 9.

Table 3. Physical and mechanical parameters of rock block.

Density
/g·cm−3

Bulk Modulus
/GPa

Shear Modulus
/GPa

Cohesion
/MPa

Internal Friction
Angle/◦

Tensile Strength
/MPa

2600 24.6 12.5 11.3 50 3.58
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3.3. Construction of Equivalent Rock Mass Models Using DFN–DEM Coupling Technique

The discrete element method [35], also known as the distinct element method, is
a numerical method based on the mechanics of discontinuous media. Its fundamental
principle, grounded in Newton’s second law, involves the consideration of contact surfaces
or interfaces between small blocks (particles) that constitute as system, allowing for a
more accurate simulation of the mechanical behavior of the blocks and contact interfaces.
Currently, widely employed programs for discrete element simulations include the two-
dimensional discrete element program UDEC (Universal Distinct Element Code), block
discrete element program 3DEC (3-dimensional Distinct Element Code), and particle flow
codes (PFCs). These program tools are particularly well-suited for analyzing the response
of fractured rock systems or assemblies of discontinuous blocks under static or dynamic
loading conditions.

The DFN–DEM coupling technique is a method that integrates DFN techniques for
modelling fractured rock masses with the DEM for numerical experiments to determine
the mechanical properties of fractured rock masses. In this study, the programs introduced
in Section 3.2 are utilized as the DFN generator, while the numerical discrete element
analysis is performed using the 3DEC 7.0 software, chosen for its efficiency in modeling
and analyzing large-scale systems. The integration of the DFN simulation tools with 3DEC
7.0 software facilitates the utilization of the DFN-generated random fracture network to
cut the discrete element blocks, constructing a numerical model with statistically similar
fracture distributions to the actual rock masses, as demonstrated in Figure 10.
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4. REV Size of Broken Rock Mass

Given the abundance of random fractures in broken rock masses, determining the
REV sizes and investigating the size effect on the mechanical parameters of the rock
masses become essential aspects in the analysis of broken rock masses. The fundamental
approach for obtaining the REV of a rock mass is to conduct numerical experiments on
cubic rock models at different scales, while in laboratory experiments, cylindrical rock
specimens with preset aspect ratios (height-to-diameter ratios) are often adopted [36,37]. In
the literature, there is relatively limited research on conducting REV size analysis using
cylindrical numerical models. Therefore, in this section, based on the equivalent rock mass
technology, we adopted cylindrical models of different scales to investigate the REV of
brokens rock masses.

4.1. Establishment of Numerical Models

In order to study the REV of broken rock masses, a series of uniaxial compression
numerical tests are carried out in this numerical example. While maintaining the same
aspect ratio, namely, a height-to-diameter ratio equal to 2, different cylindrical specimens
with varying diameters are used to analyze the trends of mechanical parameters (e.g., peak
compressive strength and elastic modulus) with changing diameter size. The required
geometric parameters of the structural surfaces can be found in Table 3. Based on the
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proposed DFN–DEM coupling method, numerical models for the cylindrical rock spec-
imens with diameters of 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 9 m, 10 m, 15 m, and
20 m are established. Figure 11 shows the equivalent rock mass numerical model for these
cylindrical models after one Monte Carlo experiment. Since each generation of the fracture
network requires a Monte Carlo experiment, the DFNs generated from the same statistical
model parameters of a structural surface are not exactly the same, even with the same
model size. Therefore, for each of these 12 models, the average values of the mechanical
parameters computed from five different simulations are adopted as indices for the REV
scale of the model.
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Figure 11. Equivalent rock mass numerical model generated by a Monte Carlo test with differ-
ent scales.

In the numerical models, the rock blocks are simulated using the Coulomb–Mohr
model, while the joints are represented by the Coulomb slip joint model. The physical
and mechanical parameters of both the rock blocks and joints are determined through
laboratory experiments [38], as summarized in Tables 3 and 4. Within the DFN models,
fractures represent real joints, whereas other joints are assigned with virtual properties,
simulating the mechanical behavior of intact rock blocks. To conduct uniaxial compression
numerical experiments using the numerical models, rigid bearing plates are applied to
the top and bottom of a model; the physical and mechanical properties of these plates are
summarized in Table 5. The bottom plate is set as a fixed constraint, and the top plate
applies axial compression to the model at a constant velocity (i.e., 0.001 m/s) until failure
occurs. The built-in “fish” language in 3DEC is utilized to monitor and record the variation
curves of axial stress and strain for the cylindrical rock model. Specifically, all nodes on
the top and bottom surfaces of the model are marked, and their axial forces and axial
displacements are recorded at each time step. The axial stress of the model is calculated
by summing the axial forces on the top and bottom surfaces, dividing by the surface area,
and calculating the average, while the axial strain of the model is computed by subtracting
the bottom displacement from the top displacement and dividing the result by the original
height of the cylinder.

Table 4. Physical and mechanical parameters of structural planes.

Normal
Stiffness/GPa

Tangential
Stiffness/GPa

Tensile
Strength/MPa Cohesion/MPa Tensile Strength

/MPa

30 15 0.3 1.1 30
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Table 5. Mechanical parameters of rigid bearing plate.

Density/g·cm−3 Bulk Modulus/GPa Shear Modulus/GPa

7800 300 250

4.2. Determination of REV

The numerical uniaxial compression tests provide stress–strain curves of the cylindrical
rock specimens with different scales. To illustrate the stress–strain curves, Figure 12 shows
the results from the uniaxial compression tests on the group of 3 m × 6 m cylindrical
specimens, from which it can be seen that the peak axial stresses for the five specimens
are 3.16 MPa, 4.46 MPa, 6.78 MPa, 3.43 MPa, and 3.84 MPa, respectively, and the elastic
moduli are 7.91 GPa, 9.17 GPa, 9.67 GPa, 6.94 GPa, and 7.21 GPa, respectively. Although
the parameters are not precisely identical, their close approximation to each other validates,
to a certain extent, the efficacy of the proposed method for modeling fractured rock masses.
The average peak compressive strength and the average elastic modulus of this group of
models are 4.33 MPa and 8.18 GPa, respectively.
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From this example, it is evident that the equivalent rock masses and their mechanical
parameters generated for the same model size and structural plane geometric parameters
are not identical, which can be attributed to the fact that the distributions of the simulated
structural planes are only statistically similar.

The variations in peak compressive strength and elastic modulus of the rock model
groups with specimen diameter of the groups are shown in Figure 13. The figure demon-
strates evident size effects on the uniaxial compressive strength and elastic modulus of
the broken rock masses. When the size of the equivalent rock mass is small (cylinder
diameter less than 5 m), the average uniaxial compressive strength and average elastic
modulus decrease rapidly with the increasing diameter of the specimens; when the diam-
eter of the equivalent rock mass is more than 5 m, the evaluated mechanical parameters
exhibit insignificant changes with increasing diameter. Therefore, the cylinder model size
of 5 m × 10 m is approximately the REV size of the investigated broken rock masses.
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Figure 13. Relationship between mechanical indexes of equivalent rock mass with different sizes
and diameter of cylinder model: (a) average uniaxial compressive strength vs. model size; (b) mean
modulus of elasticity vs. model size.

To verify the correctness of the numerical results, a REV measurement scale index
(RMSI) proposed by Zhang [39] is adopted to establish the relationships between these
indices and the size length of numerical cubic rock specimens for the same rock masses at
the Liyang pumped storage power station. The RMSI is defined as the projected area on a
section per unit volume of the rock mass, which can be expressed as the following equation:

RMSI =

m
∑

i=1
Si

(→
Ni•

→
Np

)
V

(18)

where Si is the area of the i-th structural plane, Ni is the unit normal vector of the structural
plane, Np is the defined unit normal vector, and V is the volume of rock mass.

Figure 14 shows the numerical cube-model for the equivalent rock masses and the
relationships between the examined RMSIs and the side length of cubic models. It can be
seen from the figure that, initially, when the side length is small, the REV measurement
scale indices of the rock masses increase rapidly with increasing side length of the models.
When the side length exceeds 10 m, the RMSIs stabilize to specific values, which indicates a
side length of 10 m of the numerical cubic rock model to be the correct size for measuring
the REV size of the target rock masses. This size agrees with that determined from the
cylindrical rock model, which verifies the correctness of the numerical results from the
proposed method.



Appl. Sci. 2024, 14, 606 17 of 19Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 20 
 

  
(a) (b) 

Figure 14. Size effect results of equivalent rock cube model: (a) cube-model of the equivalent rock 
mass; (b) the relationship between the REV size indices and the side length of the cube model. 

5. Conclusions 
In this paper, a numerical approach is developed for the effective generation of equiv-

alent broken rock mass models, allowing for the investigation of mechanical behavior and 
the determination of REV size of given broken rock masses. A statistical program is built 
first to evaluate the geometry parameters of the target rock masses; the parameters are 
then inputted into a self-development numerical program to generate the discrete fracture 
network based on the Monte Carlo method. A distinct element modelling platform, 
namely 3DEC, is applied in conjunction with the developed programs to form a complete 
DFN–DEM coupling network. The performance of the proposed approach is demon-
strated through a numerical example, which evaluates the mechanical parameters and 
REV size of the surrounding rock of the main powerhouse at the Liyang pumped storage 
power station using cylindrical rock models. The determined REV size is verified by the 
RMSI that evaluates the REV size using cubic rock model. The numerical study yields the 
following conclusions: 
(1) The average and variance values of the structural plane in the surrounding rock of 

the main powerhouse are 4.30 m and 3.45 m2, respectively, and the average and var-
iance of the structural plane dip angles are 51.42° and (27.93°)2, respectively. The 
count and length of fractures per unit area of the rock masses are 0.23 and 0.97 m−1, 
respectively; the number of fractures per unit length of the rock is 0.58 m−1; and the 
fracture area per unit length is 1.87 m−1.  

(2) The mechanical parameters evaluated from five cylindrical models generated using 
the proposed approach are quite close, which suggests good stability and effective-
ness of the method.  

(3) The REV size of the rock masses determined using the proposed approach is 5 m × 
10 m for the cylindrical rock models. This result is consistent with the REV size esti-
mated by the RMSI method using cubic rock models, which demonstrates the valid-
ity of using cylindrical models to evaluate the REV size of broken rock masses. 
In general, the numerical approach developed in this study exhibits/demonstrates 

desirable effectiveness in modelling broken rock masses. Once the geometrical parameters 
of the fracture in the engineered rock mass are obtained, a numerical model reflecting the 
structural characteristics of the fractured rock mass can be constructed by using the Ran-
dom Fracture Network Simulation Program to provide a basis for simulating and investi-
gating the engineering problems of the fractured rock mass. In addition to 3DEC, some 
other discrete element analysis platform, such as UDEC, can work in conjunction with the 
developed programs for modelling large-scale mass structures and analyzing correspond-
ing engineering problems. However, due to the difficulty in directly measuring the me-
chanical properties of larger-scale rock masses, the accuracy of the approach can only be 

0 5 10 15 20 25 30 35 40 45
0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56  y-axis section x-axis section

R
EV

 s
iz

e 
in

di
ca

to
rs

 (m
-
1 )

cube model edge length (m)

 z-axis section

Figure 14. Size effect results of equivalent rock cube model: (a) cube-model of the equivalent rock
mass; (b) the relationship between the REV size indices and the side length of the cube model.

5. Conclusions

In this paper, a numerical approach is developed for the effective generation of equiv-
alent broken rock mass models, allowing for the investigation of mechanical behavior
and the determination of REV size of given broken rock masses. A statistical program is
built first to evaluate the geometry parameters of the target rock masses; the parameters
are then inputted into a self-development numerical program to generate the discrete
fracture network based on the Monte Carlo method. A distinct element modelling plat-
form, namely 3DEC, is applied in conjunction with the developed programs to form a
complete DFN–DEM coupling network. The performance of the proposed approach is
demonstrated through a numerical example, which evaluates the mechanical parameters
and REV size of the surrounding rock of the main powerhouse at the Liyang pumped
storage power station using cylindrical rock models. The determined REV size is verified
by the RMSI that evaluates the REV size using cubic rock model. The numerical study
yields the following conclusions:

(1) The average and variance values of the structural plane in the surrounding rock of the
main powerhouse are 4.30 m and 3.45 m2, respectively, and the average and variance
of the structural plane dip angles are 51.42◦ and (27.93◦)2, respectively. The count and
length of fractures per unit area of the rock masses are 0.23 and 0.97 m−1, respectively;
the number of fractures per unit length of the rock is 0.58 m−1; and the fracture area
per unit length is 1.87 m−1.

(2) The mechanical parameters evaluated from five cylindrical models generated using
the proposed approach are quite close, which suggests good stability and effectiveness
of the method.

(3) The REV size of the rock masses determined using the proposed approach is 5 m × 10 m
for the cylindrical rock models. This result is consistent with the REV size estimated
by the RMSI method using cubic rock models, which demonstrates the validity of
using cylindrical models to evaluate the REV size of broken rock masses.

In general, the numerical approach developed in this study exhibits/demonstrates
desirable effectiveness in modelling broken rock masses. Once the geometrical parameters
of the fracture in the engineered rock mass are obtained, a numerical model reflecting
the structural characteristics of the fractured rock mass can be constructed by using the
Random Fracture Network Simulation Program to provide a basis for simulating and
investigating the engineering problems of the fractured rock mass. In addition to 3DEC,
some other discrete element analysis platform, such as UDEC, can work in conjunction
with the developed programs for modelling large-scale mass structures and analyzing
corresponding engineering problems. However, due to the difficulty in directly measuring
the mechanical properties of larger-scale rock masses, the accuracy of the approach can
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only be numerically evaluated. Future studies are expected to further validate the precision
of numerical modelling methods for broken rock masses.
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