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Abstract: Marine heatwaves (MHWs) refer to a phenomenon where the sea surface temperature
is significantly higher than the historical average for that region over a period, which is typically
a result of the combined effects of climate change and local meteorological conditions, thereby
potentially leading to alterations in marine ecosystems and an increased incidence of extreme weather
events. MHWs have significant impacts on the marine environment, ecosystems, and economic
livelihoods. In recent years, global warming has intensified MHWs, and research on MHWs has
rapidly developed into an important research frontier. With the development of deep learning models,
they have demonstrated remarkable performance in predicting sea surface temperature, which is
instrumental in identifying and anticipating marine heatwaves (MHWs). However, the complexity of
deep learning models makes it difficult for users to understand how the models make predictions,
posing a challenge for scientists and decision-makers who rely on interpretable results to manage
the risks associated with MHWs. In this study, we propose an interpretable model for discovering
MHWs. We first input variables that are relevant to the occurrence of MHWs into an LSTM model
and use a posteriori explanation method called Expected Gradients to represent the degree to which
different variables affect the prediction results. Additionally, we decompose the LSTM model to
examine the information flow within the model. Our method can be used to understand which
features the deep learning model focuses on and how these features affect the model’s predictions.
From the experimental results, this study provides a new perspective for understanding the causes of
MHWs and demonstrates the prospect of future artificial intelligence-assisted scientific discovery.

Keywords: sea surface temperature; marine heat waves; explainable artificial intelligence

1. Introduction

Since the beginning of the 21st century, there has been particular attention to extreme
weather and hydrological and oceanic events such as heatwaves, cold waves, storms, floods,
and tropical cyclones, which often lead to complex consequences and, in some cases, catas-
trophic outcomes [1]. Marine heatwaves (MHWs) [2] are extreme heat events that occur in
the ocean, resulting from the combined influence of atmospheric and oceanic processes. They
can persist for several days to several months and can span from a few square kilometers
to thousands of square kilometers. MHWs have significant destructive impacts on marine
environments, marine ecosystems, and socioeconomic development. Studies have shown
that MHWs can cause widespread coral bleaching and reductions in kelp forests and seagrass
meadows, thereby compromising marine biodiversity, fisheries, and aquaculture [3–5]. With
the warming of the ocean and climate [6], significant changes have been observed, from
large-scale ocean circulation [7–9] to mesoscale ocean processes [10,11]. Therefore, accurately
predicting marine heatwaves has become a current research focus.

MHWs are identified by SSTs that are unusually high for an extended period, typically
exceeding a predefined threshold such as the 90th percentile of historical SST data for
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a given area [12]. Therefore, SST prediction is the key to anticipating and mitigating
the impacts of these extreme events. In the field of marine science, deep learning has
shown remarkable potential, providing new perspectives and tools for understanding and
addressing ocean-related issues [13]. Compared to statistical methods, deep learning can
establish nonlinear mapping relationships between oceanic variables and other features
more conveniently, with adaptability and higher predictive accuracy. In recent years, the
application of deep learning in marine heatwave prediction has become a research hotspot.
Zhang et al. [14] proposed the use of LSTM models to address sea surface temperature
(SST) prediction, demonstrating the effectiveness of this method with small prediction
errors. Ham et al. [15] applied a CNN model to ENSO prediction, demonstrating that the
CNN model is an advanced approach for analyzing the complex mechanisms of ENSO
events. In 2021, an all-season CNN model was created, incorporating seasonality in climate
data [16]. Prasad et al. [17] used random forests and the N-BEATS model to predict sea
surface temperature at the seasonal scale, and then used the predicted SST data to forecast
the occurrence of marine heatwaves one year in advance.These studies have demonstrated
that deep learning models hold scientific significance in predicting marine heatwaves.

Currently, existing deep learning prediction models are entirely data-driven. The non-
linear elements implemented inside the model use activation functions like Sigmoid, tanh,
etc., which exhibit strong non-convexity. Internally, the network can be regarded as a “black
box”, lacking interpretability in dimensions such as time and space [18]. In recent years, the
research on the interpretability of deep learning has attracted widespread attention. Scholars
around the world have overviewed the field of explainable artificial intelligence from different
research angles and emphases [19]. Although there is a lack of specific mathematics and a
universally accepted definition of interpretability, this term typically pertains to the causal
relationship between inputs and outputs [20]. Guidotti et al. [21] provides a comprehensive
review and detailed categorization of methods for explaining machine learning models,
including various deep learning networks. Some new interpretability methods have been
developed to explain the predictive patterns captured by the machine within the recurrent
units of LSTM networks [22–24]. Most interpretability methods were initially designed
for symbolic sequences in natural language processing, which is different from analyzing
the relationships between oceanic variables with specific physical meaning and real-world
context. Explainable artificial intelligence aims to build more understandable models while
maintaining a high level of performance, making the decisions of deep neural network models
more transparent, interpretable, and trustworthy for humans. However, few studies have
explored the underlying principles behind LSTM network decisions, especially regarding the
exact role of the well-known memory mechanism in predicting oceanic variables. Therefore,
new methods are needed to address the heterogeneity of the data in multidimensional-level
prediction and make these predictions interpretable.

In this article, inspired by Jiang et al. [25], we introduce a novel interpretable artifi-
cial intelligence approach that focuses on the identification of marine heatwave patterns.
Particularly, understanding the causes of marine heatwave generation in the context of
climate change helps in identifying and mitigating the risks of flood disasters. We estab-
lish an LSTM-based model, selecting 13 coastal stations in China. Using two advanced
interpretability techniques, namely Expected Gradients and Additive Decomposition, we
analyze the variations of information hidden within the network to reveal the role of the
model in identifying marine heatwaves.

2. Methods

In this paper, we present the framework of predicting marine heatwaves, as depicted
in Figure 1. We establish a nonlinear predictive relationship between oceanic meteorological
factors and sea surface temperature (SST) using an LSTM model. The temporal importance
of meteorological input variables is explained using the Expected Gradients (EG) method.
Then, the types of heatwave events are revealed through cluster analysis. Additionally, we
investigate the memory mechanism of the LSTM network in simulating different types of
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heatwave events using the Additive Decomposition (AD) method. The specific workflow
is as follows:

Figure 1. The framework of using interpretive deep learning for marine heatwaves.

We first utilize the LSTM model to establish a nonlinear predictive relationship be-
tween oceanic meteorological factors and SST within the target marine heatwave region.
To predict the occurrence of heatwave events, we select daily sea surface temperature, sea
surface pressure, 10m zonal wind speed, and 10m meridional wind speed as input variables,
as they are closely related to the formation and development of marine heatwaves.

To explain the temporal importance of the meteorological input variables (sea surface
pressure, 10m zonal wind, and 10m meridional wind) in the model’s prediction of marine
heatwaves, we apply a state-of-the-art interpretability technique called Expected Gradients
(EG) [26]. By employing the EG method, we obtain importance scores for sea surface
pressure, 10m zonal wind, and 10m meridional wind for each target heatwave event.

By interpreting these feature importance scores, we can reveal the mechanisms of heat-
wave events. For this purpose, cluster analysis is employed in this study to group the pre-
dictive results of marine heatwave events based on similar patterns of feature importance,
with different clusters potentially associated with different heatwave event mechanisms.

To investigate the different behaviors of the LSTM network’s memory mechanism in
simulating different types of heatwave events, we employ another interpretability technique
called Additive Decomposition (AD) [27]. In contrast to the EG method, the focus of the
AD method is to study the detailed evolution of signals within the hidden units of the
LSTM network that influence predictions.

The experimental setup in this study incorporated the following hardware and en-
vironmental configurations. The hardware consisted of a CPU, the Intel Xeon Gold 6130;
graphics cards, with two NVIDIA GeForce RTX 2080 Ti, each having 11 GB of video mem-
ory; system memory with a capacity of 251 GB DDR4; and 3.6 TB of hard disk storage.
The software environment was based on the Ubuntu 16.04 LTS operating system, using
Python 3.7.0 as the programming language. Dependency libraries included the deep
learning library TensorFlow 1.13.1 and the interpretability toolkit Shap 0.42.1, with CUDA
version 11.3 installed. The model prediction evaluation metrics were MSE (Mean Squared
Error) and RMSE (Root Mean Squared Error). The operating principles and steps of each
module are introduced in the following sections.

2.1. Prediction Using the LSTM Network
2.1.1. Data

Table 1 summarizes the observation and reanalysis datasets used in this study. The
OISST V2 dataset provided by the National Oceanic and Atmospheric Administration
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(NOAA) of the United States is derived from remotely sensed SST by the Advanced Very
High-Resolution Radiometer (AVHRR), and estimates global high-resolution daily sea
surface temperature using an optimal interpolation (OI) method. The dataset resolu-
tion is 0.25° × 0.25°, spanning from 1982 to 2020. ERA5 is the fifth generation of atmo-
spheric reanalysis conducted by the European Centre for Medium-Range Weather Forecasts
(ECMWF). ERA5 provides hourly estimates of numerous atmospheric, land, and oceanic
variables from 1979 to the present. The variables used in this paper include sea surface
pressure (P), 10m zonal wind (U), and 10 m meridional wind (V), with the dataset resolu-
tion being 0.25° × 0.25°. The U and V can describe the wind motion state. Based on this, the
wind speed and direction can be calculated using vector direction and strength concepts.
The wind speed is calculated using the formula W =

√
U2 + V2, and the wind direction by

θ = atan2(U, V). The atan2 function is a four-quadrant inverse tangent operation, which
yields the azimuthal angle from the origin to a point in space. By inputting the components
U and V, the wind direction angle can be determined. The output is given in radians with
a range of (−π, π]. The obtained angle is measured counterclockwise from true north. If
measurement clockwise from true north is desired, it should be converted to θ = (450 − θ)
mod 360.

Table 1. The Observational and Reanalysis Data Sets Used in This Study.

Parameter
Analyzed Data Set Institute Spatial

Resolution
Period
Coverd Reference Webstation

SST OISST NOAA
ESRL 0.25◦ × 0.25◦ 1982–2020 Reynolds

et al. [28]
https://www.esrl.noaa.gov/psd, ac-
cessed on 20 July 2023

MSLP, 10 m
wind speed ERA5 ECMWF 0.25◦ × 0.25◦ 1982–2020 Hersbach

et al. [29]

https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-
datasets/era5, accessed on
20 July 2023

In this study, we chose datasets for different stations along the Chinese coast as our
research subjects. The Chinese coastal areas include the East China Sea, South China
Sea, and Yellow Sea, among others, with these areas having plenty of marine resources
and crucial ecosystems. Our dataset selection is based on the following considerations.
1. The geographical significance of the coastal sites to China’s marine biodiversity hotspots
and fishing grounds, which are vital for preserving species diversity and ensuring food
security. 2. The sensitivity of these regions to climatic anomalies and anthropogenic impacts,
which make them sentinel areas for detecting the early signs of climate change-driven
phenomena like marine heatwaves. 3. The potential socio-economic repercussions resulting
from changes in the marine ecosystem that could affect coastal communities, including
alterations in fisheries, tourism, and local livelihoods. We chose thirteen stations, and
Table 2 shows the latitudes and longitudes of these stations, with their positions on the
map depicted in Figure 2.

Table 2. The longitude and latitude information of the various stations taken in the coastal sea areas
of China.

Station Latitude Longitude Mean Pressure (Pa) Mean Wind
Speed (m/s) Mean SST (◦C)

Xiao Chang Shan (XCS) 39.2◦ N 122.7◦ E 101,588.068 4.883 13.023
Lao Hu Tan (LHT) 38.9◦ N 121.7◦ E 101,596.832 4.302 13.175
Zhi Fu Dao (ZFD) 37.6◦ N 121.4◦ E 101,612.341 3.554 13.637

https://www.esrl.noaa.gov/psd
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Table 2. Cont.

Station Latitude Longitude Mean Pressure (Pa) Mean Wind
Speed (m/s) Mean SST (◦C)

Lian Yun Gang (LYG) 34.8◦ N 119.4◦ E 101,620.127 3.463 15.472
Lv Si (LSI) 32.1◦ N 121.6◦ E 101,578.760 3.635 16.509

Sheng Shan (SSN) 30.8◦ N 122.8◦ E 101,548.275 5.869 18.484
Da Chen (DCN) 28.5◦ N 121.9◦ E 101,501.948 5.988 19.446

Dong Shan (DSN) 23.8◦ N 117.5◦ E 101,296.689 4.523 22.230
Nan Ji (NJI) 27.5◦ N 121.1◦ E 101,474.890 6.058 20.281

Bei Shuang (BSG) 26.7◦ N 120.3◦ E 101,443.244 5.337 20.814
Zhe Lang (ZLG) 22.7◦ N 115.6◦ E 101,238.041 3.938 24.022
Beibu Gulf (BBG) 20.62◦ N 109.37◦ E 101,060.593 5.225 25.244

Nansha Islands (NSI) 10.62◦ N 114.62◦ E 100,924.856 6.104 28.399

100°E 105°E 110°E 115°E 120°E 125°E 130°E

20°N

25°N

30°N

35°N

40°N
Xiao Chang Shan (XCS)Lao Hu Tan (LHT)

Zhi Fu Dao (ZFD)

Nansha Islands (NSI)

Lian Yun Gang (LYG)

Lv Si (LSI)

Sheng Shan (SSN)

Da Chen (DCN)

Beibu Gulf (BBG)

Dong Shan (DSN)

Nan Ji (NJI)
Bei Shuang (BSG)

Zhe Lang (ZLG)

China Coastal Area

Xiao Chang Shan (XCS)
Lao Hu Tan (LHT)
Zhi Fu Dao (ZFD)
Nansha Islands (NSI)
Lian Yun Gang (LYG)
Lv Si (LSI)
Sheng Shan (SSN)
Da Chen (DCN)
Beibu Gulf (BBG)
Dong Shan (DSN)
Nan Ji (NJI)
Bei Shuang (BSG)
Zhe Lang (ZLG)

Figure 2. The locations of the various stations taken in the coastal ocean areas of China.

2.1.2. LSTM Model

Due to the design of gating mechanisms and memory units, the LSTM model [30] is
able to flexibly store, forget, and update information in time series data. This allows LSTM
to effectively capture long-term dependencies in time series and demonstrate excellent
performance in tasks such as prediction and sequence generation. Additionally, this model
aids in decomposing internal signals. In the context of the marine heatwave problem,
the model used in this study consists of an LSTM layer and a dense layer to predict
sea surface temperature. The SST at each station is treated as time series data. The
model takes the daily [P,U,V] of the previous 180 time steps as the input sequence [xt]
(t ∈ [1, T], T = 180) to predict the sea surface temperature and identify occurrences of
marine heatwave events. The LSTM network operates in a chain-like manner, passing
information through recurrent units and performing long-term memory and nonlinear
transformations through the computation of cell states and hidden states. The LSTM
includes a cell state vector [ct] that maintains the network’s long-term memory and a



Appl. Sci. 2024, 14, 601 6 of 23

hidden state vector [ht] that serves as the non-linear transform output of the cell state. At
each time step t, the recurrent unit receives the cell state and hidden state from the previous
unit (ct−1 and ht−1) as well as the current input (xt), and computes the current cell state
and hidden state (ct and ht) for use by subsequent units. The hidden state of the last time
step is then mapped to a single neuron through the dense layer to obtain the prediction
result. Figure 3 illustrates the structure of a single LSTM unit.

Figure 3 presents the architecture of an LSTM unit, which includes four multilayer
perceptrons that are based on the prior hidden state and current input to calculate the
forget gate ( ft), candidate cell state (c̃t), input gate (it), and output gate (ot). It then linearly
updates the cell state (ct−1). Using the output gate and the new cell state (ct), a nonlinear
transformation is applied to produce the hidden state (ht).

σ σ tanh σ

× +

× ×

tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell Output

ht

Hidden Output

htOutput

Figure 3. This is an LSTM cell unit that includes a cell state vector [ct], a hidden state vector [ht], and
the current input xt.

The operations of the LSTM can be represented with the following mathematical
expressions:

ft = σ
(

W f xxt + W f hht−1 + b f

)
c̃t = tanh(Wc̃xxt + Wc̃hht−1 + bc̃)
it = σ(Wixxt + Wihht−1 + bi)
ot = σ(Woxxt + Wohht−1 + bo)
ct = ft ⊙ ct−1 + it ⊙ c̃t
ht = ot ⊙ tanh(ct)

(1)

where W□ and b□ are weights and biases that need to be determined during training, σ(·)
and tanh(·) denote the sigmoid function and the hyperbolic tangent function, respectively,
and ⊙ signifies element-wise multiplication. Within the model, three gates control the flow
of information; ct amalgamates prior and current information, while ht considers the input
across all time steps. The ct and ht of a multi-unit LSTM followed by a fully connected
layer are used to reduce dimensionality for predictions. The training process employs the
Adaptive Moment Estimation (Adam) algorithm [31] alongside an early stopping strategy
to prevent overfitting. The dataset is randomly divided into a training set and a validation
set, with 70% of the data used for training and 30% designated for independent evaluation
of the model’s performance. By independently training models at each site, the variations
in observed MHWs over different periods are captured, thereby enhancing the robustness
of the model’s evaluation and analysis.
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2.2. Marine Heat Waves (MHWs) Definition and Indices

Marine heatwaves are mutually discrete and persistent anomalous warming events
that occur in the ocean. In general, the determination of whether an extremely high SST
event is a marine heatwave is based primarily on whether SST exceeds the marine heatwave
threshold for multiple consecutive days [32]. Currently, there are two main types of marine
heatwave thresholds that are commonly used. One is a fixed SST threshold, called the
Absolute Threshold , and the other is a selected threshold that varies over time, named
Relative Threshold (or Comparative Threshold). The function in previous studies to find
MHW events includes absolute temperature threshold, cumulative threshold, temporally
fixed threshold, and high percentile threshold [32–34]. The absolute temperature threshold
is determined with reference to factors such as environmental elements and the upper
absolute temperature to which marine organisms can adapt, while the threshold determined
by accumulating the temperature difference above the absolute temperature threshold is
called the accumulation threshold [32,33].

For quantitative analysis of marine heatwaves, Hobday et al. [12] provided a stricter
definition considering the duration, intensity, rate of evolution, and spatial extent of
MHW events. Figure 4 illustrates several MHW events that occurred at the ZLG station
(115.625◦ N, 22.625◦ E) from March to September 2021, with a zoomed-in area showcasing
an MHW event in March–April 2021. From Figure 4, it can be observed that the MHW
event began when the sea surface temperature (SST) first exceeded the MHW threshold
after 24 March 2021. The SST reached its peak during the middle phase of the event.
Subsequently, it fell below the MHW threshold in early April and remained below the
threshold, indicating the end of the MHW event. The duration of this event corresponds to
the time span it covered, and the difference between the peak SST and the climatological
mean SST represents the intensity of the MHW event during that period.

The calculation formula for the climatological mean can be expressed as shown in
Table 3. Here, temperature T is expressed as a function T(t) of time t, as well as a function
T(y, d) of year y and day of the year d. Tm represents the climatological average temperature
calculated over a reference period. T% defines the seasonal threshold temperature value
for marine heatwaves (MHWs), and D signifies the duration over which the temperature
exceeds this threshold. Within the context of a MHW event, imax indicates the maximum
temperature anomaly, imean represents the mean temperature anomaly during the MHW,
and ivar signifies the variation in MHW intensity over the duration of the event.

2021-04 2021-05 2021-06 2021-07 2021-08 2021-09
Time

17.5

20.0

22.5

25.0

27.5

30.0

32.5

SS
T 

[
C

]

A MHW Event

MHWs Define

SST
Thresh
Seas

2021-03-24 2021-04-10

21

22

23

24

25

26

M
H

W
 In

te
ns

ity

MHW Duration End TimeStart Time

Figure 4. Several marine heatwave events occurred between March and August 2021 at coordinates
(115.625◦ N, 22.625◦ E). The marine heatwave events from March to April are used to define marine
heatwaves, and the specific definition and formula can be found in Table 4.
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Hobday et al. [12] classified MHWs based on the intensity of MHWs, using the
following definition:

N =
IMHW − ∆T

∆T
(2)

MHWs can be categorized into several classes based on the magnitude of N. The
term ∆T = Tthreshold − Tclim represents the temperature anomaly with Tthreshold as the
temperature threshold and Tclim as the climatological mean temperature. The intensity of
an MHW is denoted by IMHW . When N ≤ 2, the event is classified as a moderate-intensity
event (Category I); when 2 < N ≤ 3, it is classified as a strong MHW event (Category II);
when 3 < N ≤ 4, the event is considered severe (Category III); and when N > 4, the event
is classified as extreme (Category IV). After identifying MHW events, the following indices
are used to describe the characteristics of MHWs: the number of MHW events (MHWN) N,
the total number of MHW days (MHWT = ∑N

i=1 Di), and the average duration of MHWs
(MHWD = ∑N

i=1
Di
N ).

Table 3. Indicators characterizing marine heatwaves (MHWs). In the formula, j represents a specific
day within a year, ys and ye denote the start and end of the climatological baseline period, respectively,
and T is the daily Sea Surface Temperature (SST) for day d of year y. T90 = P90 represents the 90th
percentile, where P90(X) pertains to the set X = {T(y, d)|ys ≤ y ≤ ye, j − 5 ≤ d ≤ j + 5}. The term σ

denotes the standard deviation, and the time period is defined from ts to te, with the day j falling
within the window j(ts) ≤ j ≤ j(te).

Index Symbol or Formula Unit

Climatology Tm(j) = ∑
ye
y=ys ∑

j+5
d=j−5

T(y,d)
11(ye−ys+1)

◦C

Threshold T90(j) = P90(X) ◦C

Start and end of MHWs ts, te days

Duration D = te − ts days

Intensity(max/mean/variance)
imax = max(T(t)− Tm(j))

imean = T(t)− Tm(j)

ivar = σT(t)

◦C

Table 4. Perform four independent experiments at 13 stations, with the Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE) results for each experiment.

Exp Metric
Station

BBG BSG DCN DSN LHT LSI LYG NJI NSI SSN XCS ZFD ZLG

No. 1 MSE 0.082 0.053 0.046 0.060 0.037 0.042 0.039 0.053 0.229 0.038 0.034 0.034 0.075
RMSE 0.286 0.231 0.215 0.245 0.193 0.202 0.195 0.230 0.478 0.194 0.184 0.182 0.274

No. 2 MSE 0.079 0.055 0.053 0.065 0.040 0.045 0.041 0.051 0.208 0.039 0.064 0.032 0.082
RMSE 0.281 0.233 0.229 0.254 0.197 0.206 0.199 0.226 0.456 0.197 0.248 0.178 0.287

No. 3 MSE 0.073 0.047 0.056 0.061 0.038 0.034 0.051 0.054 0.233 0.048 0.038 0.051 0.083
RMSE 0.270 0.217 0.234 0.246 0.192 0.181 0.219 0.230 0.483 0.217 0.190 0.217 0.288

No. 4 MSE 0.074 0.047 0.044 0.063 0.042 0.051 0.039 0.050 0.222 0.039 0.034 0.024 0.080
RMSE 0.271 0.217 0.209 0.250 0.201 0.222 0.191 0.224 0.471 0.198 0.182 0.155 0.283

2.3. Expected Gradients for Feature Importance

To enhance the interpretability of decision-making by data-driven models, the Expected
Gradients (EG) method is employed for the attribution explanation. The EG method is derived
to address some issues with integrated gradients (IG) as described by Sundararajan et al. [35].
EG aims to assign an importance score to specific inputs. Large positive or negative scores
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indicate that the corresponding feature strongly increases or decreases the network’s output,
while importance scores close to zero suggest that the feature has little impact on the output.
Due to the high nonlinearity of data-driven models, local gradients of input features typically
have a small magnitude around the sample, even if the network relies heavily on these features.
EG is computed by integrating the local gradients along a path from a selected baseline input x
to a target input x

′
, which can be simplified as a path x

′
+ α(x − x

′
) from the baseline input

(α = 0) to the target input (α = 1). This method assumes that the baseline inputs follow a
distribution D sampled from a background dataset. Formally, given a baseline distribution D,
the EG score ϕEG

i for the ith feature is calculated as the weighted integral of gradients over all
possible baseline inputs x

′ ∈ D, with the weight being the density function pD. Hence, the EG
score ϕEG

i for the ith input feature can be expressed as:

ϕEG
i ( f , x) =

∫
x′

((
xi − x′i

)
×
∫ 1

α=0

∂ f (x′ + α(x − x′))
∂xi

dα × pD
(
x′
)
dx′
)

(3)

where the formula ∂ f (x′+α(x−x′))
∂xi

represents the local gradient of the network f at the
interpolated point between the baseline input and the target input. Formula (3) involves
two integrals. Erion et al. [26] suggests that both of these integrals can be viewed as
expectations. Therefore, this formula is referred to as the expected gradient, and Formula (3)
can be re-expressed as:

ϕEG
i ( f , x) = Ex′∼D,α∼U(0,1)

[(
xi − x′i

)
× ∂ f (x′ + α(x − x′))

∂x′i

]
(4)

In this study, the process of calculating ϕEG
i was performed using the SHapley Additive

exPlanations (SHAP) software package [36]. The SHAP package provides various post
hoc analyses for different neural networks. In this research, ϕEG

i was computed for each
determined start time of heatwave events in the experiment. The resulting ϕEG

i has the same
dimension as the corresponding input variables, indicating the time feature importance of
other oceanic elements.

2.4. Clustering of Marine Heatwaves by Feature Importance

The feature importance analysis described in the previous section was applied to
pre-identified marine heatwave events. Training the model at each station would result in
an equal number of ϕEG

i sequences, each containing two vectors representing the temporal
feature importance scores of mean sea-level pressure and 10 m wind speed. We trained
on seven different split datasets, obtaining seven feature importance sequences for every
heatwave occurrence. The sequences for each variable were averaged into a single sequence
to mitigate the effect of the randomness introduced during LSTM training. The average
sequences corresponding to each peak flow were normalized within the [0, 1] range and
further clustered into several groups with similar patterns.

The experiments made use of the K-Medoids clustering algorithm and Dynamic Time
Warping Barycenter Averaging (DBA), as proposed by Petitjean et al. [37]. KMedoids
appeared superior visually in the clustering of centers compared to KMeans, but the
silhouette coefficient was less so. However, in the case of just Euclidean distance, the
silhouette coefficient of KMedoids was slightly better than that of KMeans.

DBA is a method of centroid averaging based on Dynamic Time Warping (DTW) [38],
designed to iteratively optimize an initial sequence so that its squared DTW distance to
other sequences is minimized. Because the experiment requires comparing not a single
time series but a collection, the time series are compressed to make the comparison. DTW is
a distance measurement method that can perform similarity detection at different temporal
scales. The key process is stretching and shrinking one time series along the time axis,
essentially distorting one series to align with the other in temporal scale, before calculating
the desired path between the two series to achieve similarities discrimination at different
temporal scales.
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Consequently, the computation of the Dynamic Time Warping (DTW) distance between
two temporal sequences, [φ(1)

1 , φ
(2)
1 , . . . , φ

(n)
1 ] and [φ

(1)
2 , φ

(2)
2 , . . . , φ

(m)
2 ], is characterized as

an optimization problem which can be formulated as:

DTW = minπ

√
∑(i,j)∈π

(
φ
(i)
1 − φ

(j)
2

)2
(5)

Here, the path π = [π0, π1, . . . , πK] entails a sequence of index tuples πk = (ik, jk) that
adhere to the constraints 0 ≤ ik ≤ n and 0 ≤ jk ≤ m, in which the notation φ(i) signifies the
observational value at the specific time index i.

The experiment computes a normalization sequence for the trained ϕEG
i . The number

of clusters for all obtained feature sequences is then determined using the elbow method,
as reviewed in [39]. The formula for the elbow method can be represented as follows:

Dk = ∑K
i=1 ∑ dist(x, ci)

2 (6)

where, K is the number of clusters, and dist(·) is the Euclidean distance between each
data point and the center of the cluster. These feature sequences are measured with DBA
(Dynamic Time Warping Barycenter Averaging), and the K-Medoids algorithm is applied
to group these sequences into clusters by minimizing the square sum of the DTW (Dynamic
Time Warping) distance between the centroid in the class and all sequences in the class. The
optimal number of clusters is determined by evaluating the silhouette scores of different
numbers of clusters, where a higher value generally indicates a better choice of the number
of clusters [40]. Each cluster contains feature importance sequences with similar patterns,
which may further be associated with specific marine heatwave generation mechanisms.

2.5. Additive Decomposition to Assess LSTM Decisions

Decomposition methods can peek into the "black box" structure of the LSTM model
to ascertain how hidden information is processed, yet they do not directly attribute the
final output to the input features at each timestep nor provide insights into the internal
signals. Given that the model output y in this study is derived from the hidden state of
LSTM at the last time step (i.e., y = WdhT), we focus our attention on analyzing the signal
origins of hT . Considering the update rule of the cell state (i.e., ct = ft ⊙ ct−1 + it ⊙ c̃t) and
the transformation rule of the hidden state (i.e., ht = ot ⊙ tanh(ct)), the hidden state ht can
be approximated as the sum of the information obtained from the previous hidden state
ht−1 and the new information obtained at the current time step [27], represented as:

ht =
ft ⊙ ot

ot−1
⊙ ht−1 + h̃t (7)

where, ft⊙ot
ot−1

represents the proportion of the information to be retained, which depends on

the forget gate and the output gate. h̃t represents information acquired at timestep t, but
we do not need to know its exact form. Therefore, the hidden state at the last time step T
can be iteratively traced back and decomposed into:

hT =
fT ⊙ oT
oT−1

⊙ hT−1 + h̃T =
fT ⊙ oT
oT−1

⊙
(

fT−1 ⊙ oT−1

oT−2
⊙ hT−2 + h̃T−1

)
+ h̃T = · · · =

T

∑
t=1

[(
T

∏
k=t+1

fk ⊙ ok
ok−1

)
⊙ h̃t

]
(8)

In this way, hT can be decomposed into the sum of the contributions from each timestep
from 1 to T. The contributed information at timestep t can be considered as the product of
the initially obtained information from t − 1 to t (i.e., h̃t) and the retained proportion by the
forget gates in subsequent cells from t to T (i.e., ∏T

k=t+1
fk⊙ok
ok−1

). Based on Formula (8), the
decomposed form of hT can further be reconstructed as:

hT = ∑T
t=1

[(
∏T

k=t+1
fk⊙ok
ok−1

)
⊙
(

ht − ft⊙ot
ot−1

⊙ ht−1

)]
(9)
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The main advantage of using Formula (9) over Formula (8) is that it is sufficient for
analysis only knowing hidden state vectors [ht], forget gate vectors [ ft], and output gate
vectors [ot]. Finally, the output of the model y can be decomposed as:

y = WdhT = ∑T
t=1[W

(
ht − ft⊙ot

ot−1
⊙ ht−1

)
⊙
(

∏T
k=t+1

ft⊙ok
ok−1

)
] (10)

These formulas indicate that the final output of the model consists of information
accumulated over T timesteps. The contribution at each timestep is part of the information
obtained at that timestep, which is kept for the final timestep after “forgetting” by successive
cells. The decomposition algorithm is efficient, requiring only an extraction of related
vectors from the trained LSTM network and forward propagation operation.

3. Results
3.1. Predictive Performance and Identified Marine Heatwaves

Murdoch et al. [41] proposed that in interpretable models, reasonable and stable
prediction accuracy is a prerequistation for extracting meaningful information from the
model. Thus, in order to achieve meaningful information, a series of experiments must
be conducted. Table 3 presents four separate experiments conducted using different
partitioned datasets at each station. The initial experiment used a random seed of 100 with
a sliding time window of 180 time steps. In contrast, the second experiment used a random
seed of 200, also with a sliding time window of 180 time steps for consistency. To examine
the effects of different sliding time window scales, the third experiment was conducted
with a random seed of 100 and a sliding time window of 240 time steps, whereas the fourth
experiment employed a random seed of 200 and a sliding time window of 240 steps. Each
experiment calculates the mean value of both the Mean Squared Error (MSE) and Root
Mean Squared Error (RMSE). Each of these four experiments was individually trained
seven times, each time using a different split dataset. The results from the test set of each
experiment can be found in Table 4.

As shown in the Table 5, most of the MSE and RMSE values are relatively low, sug-
gesting that the network architecture accurately captures the latent dynamic relationships
among most variables occurring at the stations. Additionally, the results from separate ex-
periments conducted on different datasets displaying low standard deviations demonstrate
that our model possesses robustness when trained using different partitioned datasets.

Table 5. The number of events under different cluster categories.

Clustering Categories Num

Cluster 1 54
Cluster 2 211
Cluster 3 235
Cluster 4 318
Cluster 5 316

Total 1134

3.2. Distinctive Recognized Patterns

By clustering the normalized feature importance sequences generated from each
experiment, different feature importance sequences can be clustered. The number of
clusters for each feature’s feature importance sequence is confirmed using the elbow
method. According to the elbow theory, as the number of clusters continues to increase,
the rate of decrease will tend to stabilize. Thus, we generally select the end value of the
steepest segment as the real number of clusters [39]. By visualizing the Euclidean distances
obtained from the elbow algorithm at different numbers of clusters, as shown in Figure 5,
Figure 5 represents the elbow visualization results of four different experiments, and it can
be determined that the optimal number of clusters is 5.
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Comparing the number of categories causing marine heatwaves in the coastal areas of
China mentioned in the literature [42] and the number of clusters determined by the elbow
method, we find that they match the expert’s experience. The normalized feature importance
is clustered using the K-Medoids method, and the clustering results are shown in Figure 6.
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Figure 5. The determination results of the elbow clustering number under different independent
experiments. (a) presents the results with a random seed of 100 and a time step of 180. (b) displays
the results with a random seed of 200 and a time step of 180. (c) shows the results with a random seed
of 100 and a time step of 240. (d) depicts the results with a random seed of 200 and a time step of 240.
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Figure 6. The results under different cluster categories, where the first column represents the
clustering results of sea surface pressure feature importance, and the second column represents the
clustering results of 10m wind speed feature importance. Moreover, in each figure, the darkest curve
represents the cluster center of each category.

To summarize, we conducted an analysis of the experiment with a random seed of 100
and a time step of 180. The statistical results of 1134 marine heatwave events that occurred
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at 13 stations from 1982 to 2022 are shown in Table 6, and the number of categories at each
station is shown in Figure 7, and the visualization of clustering results on the map is shown
in Figure 8. The lighter color represents a greater number of marine heatwave events. From
the map, it can be observed that the majority of the first category of marine heatwaves
occur along the South China Sea coast, with a few along the other coastal regions of China.
The second category predominantly concentrates near the Bohai Strait, the third is focused
southwest of the East China Sea and northeast towards the South China Sea, and the fourth
category mainly occurs in the East China Sea region. The fifth category primarily takes
place near the Bohai Sea and the Yellow Sea.
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Figure 7. The number of events in different categories contained at different station.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

4 6 8 10 12 14 16 2 4 6 8 10 12 14 5 10 15 20 25 30 35 10.0 12.5 15.0 17.5 20.0 22.5 25.0 5 10 15 20 25 30 35 40

Figure 8. The number of each type of event in the sea areas of China.

Table 6. Comparing existing studies with the interpretable data-driven model shown in Figure 1 of
this article, the data used for the model in this article are reanalysis data. The five types of marine
heatwave patterns in the table respectively correspond to Nos. 1~5 as identified in experiments.

Research Data and Model
Pattern

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Hu et al. [43] Reanalysis Data and Numerical Model ✓
Yao and Wang [44] Reanalysis Data and Numerical Model ✓ ✓
Qi and Cai [45] Reanalysis Data and Numerical Model ✓
Wang et al. [46] Reanalysis Data and Numerical Model ✓ ✓
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3.3. Interpreted Ocean Mechanisms

By comparing the different clustering results of these 1134 heatwave events, among
numerous results, we found representative outputs in these five clustering categories.

We found a pattern in the marine heatwave event at the BSG station on 7 August 2020.
As shown in Figure 9, in the 180 days preceding the marine heatwave event, the persistency
of ϕEG

i for sea surface pressure and wind speed was consistently > 0. This suggests that the
long-term joint effect of sea surface pressure and wind speed induced the marine heatwave
event. Comparing with the clustered results, this marine heatwave event pattern belongs
to the first category.

The marine heatwave event on 12 August 1989 at the DSN station represents another
pattern. As shown in Figure 10, the significant increase in ϕEG

i of sea surface pressure and
wind speed occurred just before the marine heatwave event, suggesting that the event
was caused by the short-term combined effect of sea surface pressure and wind speed. A
comparison with the clustering results reveals that this marine heatwave event pattern
belongs to the second category.
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Feature importance for MHW on 2020-08-07 at BSG

Figure 9. The marine heatwave event that occurred at BSG station on 7 August 2020, and its
corresponding feature importance. The first and second row plots represent the historical data of
different points in the 180 days before the marine heatwave event, with colors indicating the feature
importance at different time points. The third row plot represents the predicted and observed sea
surface temperature values. The fourth and fifth row plots represent the feature importance of
pressure and 10 m wind speed, respectively.

The marine heatwave event on 3 June 1991 at the NJI station corresponds to a pattern
illustrated in Figure 11. During the training period, just before the marine heatwave event
was about to occur, a significant increase in the ϕEG

i of sea surface pressure occurred, with
some promoting effects seen in wind speed at more distant points in time. This suggests
that the marine heatwave event was caused by the short-term anomaly of sea surface
pressure and long-term convergence of the sea surface wind field. Comparison with the
clustering results shows that this pattern belongs to the third category.
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Feature importance for MHW on 1989-08-12 at DSN

Figure 10. The marine heatwave event that occurred at DSN station on 12 August 1989, and its
corresponding feature importance. The first and second row plots represent the historical data of
different points in the 180 days before the marine heatwave event, with colors indicating the feature
importance at different time points. The third row plot represents the predicted and observed sea
surface temperature values. The fourth and fifth row plots represent the feature importance of
pressure and 10 m wind speed, respectively.

A heatwave event at the ZFD station exhibits a pattern, with Figure 12 showing
significant feature analysis obtained for the heatwave event that occurred on 11 June 2004.
The ϕEG

i of pressure and wind speed remained significant for an extended period before
the event. This suggests that atmospheric forces and convergence of the sea surface wind
field act in concert, leading to significant changes in wind speed and pressure that trigger
the marine heatwave event. The combination of this data with the clustered results shows
this marine heatwave event belongs to the fourth category.

Figure 13 shows the results of feature importance scores for different features of the
heatwave event on 21 April 2019, at the ZLG station. The negligible influence of pressure on
the event compared with wind speed is evident, and only the ϕEG

i values of wind speed near
the event marked a significant upward trend, while ϕEG

i values of wind speed at other times
had hardly any noticeable effect. The pattern analysis indicates that this heatwave event
was likely triggered by recent convergence of the sea surface wind field, which can cause
convergence and intensification of warm surface water and Ekman downwelling, leading
to continued subsurface ocean warming and the subsurfacemarine heatwave phenomenon.
In this case, while the previous wind speed in the station area might more or less intensify
the heatwave event, the recent convergence of the sea surface wind field made an absolute
contribution to the event occurrence. Comparison with the clustering results reveals that
this marine heatwave event belongs to the fifth category.
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Feature importance for MHW on 1991-06-03 at NJI

Figure 11. The marine heatwave event that occurred at NJI station on 3 June 1991, and its correspond-
ing feature importance. The first and second row plots represent the historical data of different points
in the 180 days before the marine heatwave event, with colors indicating the feature importance at
different time points. The third row plot represents the predicted and observed sea surface tempera-
ture values. The fourth and fifth row plots represent the feature importance of pressure and 10 m
wind speed, respectively.
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Figure 12. The marine heatwave event that occurred at ZFD station on 11 June 2004, and its corre-
sponding feature importance. The first and second row plots represent the historical data of different
points in the 180 days before the marine heatwave event, with colors indicating the feature impor-
tance at different time points. The third row plot represents the predicted and observed sea surface
temperature values. The fourth and fifth row plots represent the feature importance of pressure and
10 m wind speed, respectively.
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Feature importance for MHW on 2019-04-21 at ZLG

Figure 13. The marine heatwave event that occurred at ZLG station on 21 Apirl 2019, and its
corresponding feature importance. The first and second row plots represent the historical data of
different points in the 180 days before the marine heatwave event, with colors indicating the feature
importance at different time points. The third row plot represents the predicted and observed sea
surface temperature values. The fourth and fifth row plots represent the feature importance of
pressure and 10m wind speed, respectively.

3.4. Decomposing Internal Signals of LSTM with AD

The previously introduced AD method was used for exploring the internal behavior
of the LSTM model. As an illustrative example, Figure 14 and Figure 15 respectively plot
the internal signals in the LSTM model when predicting the marine heat wave events at the
NJI station on 3 June 1991, and at the ZLG station on 21 April 2019. In these figures, the
first column visualizes the sea surface pressure and wind speed 180 days prior, which are
used to predict the sea surface temperature. The second column visualizes the evolution
of six internal variables within the corresponding LSTM model, including the input gate,
candidate vectors, forget gate, output gate, cell state, and hidden state. However, the
visualization of these hidden signals is quite chaotic, making it difficult to obtain effective
information. The third column shows the information extracted from the second column
using the AD method, providing clearer clues to the behavior of the LSTM model.
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Figure 14. Performed AD analysis on the marine heatwave event that occurred at the NJI station on
3 June 1991.
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Figure 15. Performed AD analysis on the marine heatwave event that occurred at the NJI station on
21 April 2009.

The first two images in the third column of Figures 14 and 15 show the breakdown
of the information contributing to the final model decision at each timestep, that is, the
original information obtained at each step and the proportion to be retained towards the
final step. The zero values in the middle image mean that the initial information obtained
by the unit at the corresponding timestep will be completely forgotten. The image below
represents the weighted sum of the element-wise multiplication of the above two items,
indicating the information ultimately contributed at each timestep. The total contribution of
information across all timesteps is the final output (i.e., sea surface temperature prediction).

The analysis of internal signals shown in Figure 14 reveals that for the sea surface tempera-
ture prediction at the NJI station, the long-term memory in several hidden units is activated. As
a result, previous sea surface pressure is partially retained to assist the prediction.

Furthermore, as shown in Figure 15, previous inputs can have a relatively long-term
impact, principally due to memory retained in a hidden unit, the degree of which partly
depends on the magnitude of the sea surface pressure. In contrast, the contribution of
the recent wind speed to the output may be triggered by information obtained near the
final timestep, as evidenced by the last segment of the line representing temperature
observations in the first image of the third column of Figure 15.

4. Discussion
4.1. Interpretation of Results

In Experiment One, our aim was to validate our hypothesis and evaluate the perfor-
mance of the new method. First, we collected a dataset consisting of 1000 samples. Each
sample had a set of input features and corresponding labels. We used this dataset to train
our models and used traditional methods as a benchmark for comparison. To validate our
hypothesis, we used the Expected Gradient (EG) method and Additive Decomposition
(AD) method to interpret and analyze the model’s decision-making process. We obtained
the interpretation results of the EG method by calculating the gradient of each input feature,
and we analyzed the flow of information in the LSTM network using the AD method.
Through these methods, we gleaned some insights and conclusions about the model’s
behavior. To evaluate the performance of the new method, we conducted both quantitative
and qualitative assessments. In the quantitative assessment, we compared the performance
of the EG and AD methods in interpretation and prediction accuracy. We calculated their
scores on various metrics and performed statistical analyses. In the qualitative assessment,
we invited some domain experts to evaluate the interpretation results of the new method
and collected their feedback and opinions. The experimental results showed that the EG
and AD methods performed well in interpreting model decisions and predicting accuracy.
The EG method provided a clear explanation of the contribution of each input feature,
revealing the importance of features. The AD method delved deep into the workings
of the LSTM network, revealing the model’s mechanisms when dealing with sequential
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information. The experts’ evaluations also corroborated the interpretability and credibility
of these methods. In summary, No.1 experiment validated our hypothesis and proved the
effectiveness of the Expected Gradient method and Additive Decomposition method in
interpreting neural network behavior. These methods provided us with deep insights into
the model’s decision-making process and offered potential for improving interpretability
and credibility. In subsequent experiments, we will further explore the application and
advancement of these methods to achieve superior interpretability.

4.2. Compared with Existing Research

Hu and Li [42] discovered several patterns in the coastal areas of China. The first is
that marine heatwave events in the South China Sea primarily occur in the Nansha Islands
and the Gulf of Tonkin, related to the weakening of the East Asian winter monsoon and
the strengthening of the West Pacific subtropical high pressure and South China Sea high
pressure. The second pattern involves an abnormal strengthening of the Northwest Pacific
subtropical high-pressure system in summer, an increase in solar shortwave radiation, a
weakening of Walker circulation, a reduction in latent heat release at the sea surface, an
increase in net heat flux, an extension of the cyclone westward leading to an anomaly in
the low-latitude easterlies, the weakening of the southwest summer monsoon, and a reduc-
tion or even disappearance of upwelling in the central and western regions of the South
China Sea, forming strong basin-scale marine heatwaves in summer. The third pattern
appears during El Niño events when the winter cyclonic anomaly in the Northwest Pacific
weakens the East Asian winter monsoon; the south wind is relatively strong, increasing the
northward transport of warm surface water and reducing the cold surge west of Hainan
Island, resulting in marine heatwaves in the Gulf of Tonkin. The fourth is that the South
China Sea’s high pressure extends westward during El Niño warm events, inhibiting the
evaporation process, enhancing the shortwave solar radiation received by the ocean surface,
and weakening the wind field, thereby forming marine heatwaves. The fifth pattern is in
the East China Sea and Southern Yellow Sea regions, where marine heatwave events are
mainly influenced by anomalies in the East Asian summer monsoon, Northwest Pacific
anomalous anti-cyclonic circulation, and local ocean dynamic processes. Another pattern
involves an anomalous anti-cyclonic circulation over the Northwest Pacific leading to
increased sea surface temperatures in the Eastern Indian Ocean equatorial region and the
Western Pacific equatorial region, which, due to strong adiabatic sinking motion and solar
shortwave radiation, causes extreme high-temperature events in the East China Sea; on
the other hand, it also leads to extreme high-temperature events in the East China Sea by
enhancing the transport of warm Kuroshio water towards the East China Sea region. It can
be observed that there is an overlap between the patterns found in the research and the
models discovered by the article. Table 6 lists some studies that coincide with the marine
heatwave mechanisms identified in this experiment.

Research has shown that the South China Sea is dominated by the East Asian monsoon,
with a warm and humid southwest wind in the summer [47]. Blocked by the mountains on
the eastern coast of the Indo-China Peninsula, the southwest wind surges past the southern
end of this range, forming a strong wind jet near southeastern Vietnam [48]. Driven by the
early summer monsoon wind, offshore Ekman transport brings up cold subsurface water
to the surface near the coast [48,49]. As the wind stress extends eastward, the cold sea
surface area continues to expand in July and August into the central part of South China
Sea; this phenomenon is known as the midsummer cooling effect. Notably, the cold water
range in the upwelling zone of the western–central South China Sea continues to expand,
reaching its maximum area in August, while the upwelling zone in the northern South
China Sea displays the oppositional trend. In addition, the warm sea surface range in the
Gulf of Tonkin enlarges from June to August.

As shown in Figure 16, the significance of wind speed features markedly increases
near the occurrence of marine heatwaves, which verifies our hypothesis and illustrates the
pertinence of the Northern Bay marine heatwave generation pattern studied.
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Figure 16. The marine heatwave event that occurred at NSI station on 29 May 2010, and its corre-
sponding feature importance. The first and second row plots represent the historical data of different
points in the 180 days before the marine heatwave event, with colors indicating the feature impor-
tance at different time points. The third row plot represents the predicted and observed sea surface
temperature values. The fourth and fifth row plots represent the feature importance of pressure and
10m wind speed, respectively.

4.3. Limitations of the Model

Although this study assessed the interpretability of different input features for marine
heatwave patterns, it is difficult to discern some complex information using existing expert
experiences. Some evidence suggests that LSTM (Long Short-Term Memory) models can
effectively interpret results [50], but we believe that directly associating the LSTM network’s
memory with marine heatwave patterns may not necessarily be reliable. Marine heatwaves
are discrete, persistent abnormal warming events occurring in the ocean, and there are
certain teleconnections. Current research shows that the occurrence of marine heatwaves is
often closely related to large-scale ocean climate modes, especially low-frequency climate
modes (such as ENSO). Therefore, different from the concept of how marine heatwaves
form, the internal dynamics in LSTM units may have their own principles to reproduce
the nonlinear relationships and time dependence in the variables related to marine heat-
waves. We hope that future research will apply advanced interpretability and visualization
techniques to unveil the mystery of LSTM memory, such as fully understanding the reac-
tions between input features and hidden memories, which might possibly reveal causal
relationships we have yet to recognize.

5. Conclusions

In this paper, we propose an innovative approach to explore marine heatwave patterns
through deep learning. We have successfully combined the robustness of complex deep
learning models with interpretive tools to provide a deeper and more interpretable under-
standing of marine heatwave patterns. In this paper, a LSTM model identifies nonlinear
relationships between 10m wind speeds, sea surface pressure, and sea surface temperatures
at 13 coastal sites in China. Then, using 10m wind speeds and sea surface pressure, the
model predicts sea surface temperatures. The efficacy of the model is assessed through
the MSE and the RMSE of these predictions, which indicate good predictive performance.
Following the definition of marine heatwaves, the paper identifies marine heatwave events
and applies feature importance score clustering analysis to characterize the events. This
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analysis has revealed five patterns contributing to the occurrence of marine heatwaves
along the Chinese coast. In addressing these marine heatwave events, we employ two
interpretable methods for explanation and compare the outcomes with existing theoretical
research, finding a congruence. We demonstrated that the expected gradient method men-
tioned in the paper reveals different patterns of feature importance and reveals different
performances of the LSTM networks in retaining and discarding information when simu-
lating different types of marine heatwaves through additive decomposition methods. This
deep learning framework can effectively reveal complex and non-linear patterns of marine
heatwaves. The critical breakthrough of this method is that the features and parameters
used to generate predictive results can be explained easily, making it a powerful tool for
researchers to fully understand such initially intricate phenomena.

We observed that due to the dynamic and adaptive nature provided by deep learning,
this method shows a robust capability in dealing with the vulnerability and anomalies of ma-
rine heatwaves, which are aspects that traditional models fail to grasp. This breakthrough
method has opened new possibilities in analyzing and simulating the complexity and
uncertainty of marine heatwaves. However, we recognize that there are some challenges
and limitations in the development of models, including the quality and representation
of data, and the transparency and interpretability of deep learning models. These issues
require further research to increase the application value and practicality of the model.

In summary, our research indicates that deep learning-based predictions on marine
heatwave patterns provide a tool with enormous potential. In future research, we look
forward to further optimizing the model and applying this framework to larger environ-
mental datasets to more accurately predict and understand marine heatwaves and their
impact on the global climate. Moreover, this framework also provides a new, interpretable
model for applying deep learning to other complex issues in environmental science and
climate research. Although our method yielded good results, it still has limitations. Since
EG feature importance scores are mostly chaotic and unordered, they may not provide a
good explanation method, and the fact that the patterns that the experiment generated are
uninterpretable also poses directions for future research in marine heatwave patterns in
Earth science. Next, we anticipate extending this research method to predictions and analy-
sis of other marine phenomena and climate patterns, further promoting the application of
deep learning in environmental science.
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