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Abstract: This paper investigates the application of genetic programming (GP) for dynamic symbolic
regression (SR), addressing the challenge of adapting machine learning models to evolving data in
practical applications. Benchmark instances with changing underlying functions over time are defined
to assess the performance of a genetic algorithm (GA) as a traditional evolutionary algorithm and
an age-layered population structure (ALPS) as an open-ended evolutionary algorithm for dynamic
symbolic regression. This study analyzes population dynamics by examining variable frequencies and
impact changes over time in response to dynamic shifts in the training data. The results demonstrate
the effectiveness of both the GA and ALPS in handling changing data, showcasing their ability to
recover and evolve improved solutions after an initial drop in population quality following data
changes. Population dynamics reveal that variable impacts respond rapidly to data changes, while
variable frequencies shift gradually across generations, aligning with the indirect measure of fitness
represented by variable impacts. Notably, the GA shows a strong dependence on mutation to avoid
variables becoming permanently extinct, contrasting with the ALPS’s unexpected insensitivity to
mutation rates owing to its reseeding mechanism for effective variable reintroduction.

Keywords: genetic programming; dynamic optimization; symbolic regression

1. Introduction

The integration of machine learning and artificial intelligence into various production
systems, where data are continuously accumulated throughout the course of production
processes, has become very common. This has led to the implementation of prediction
models for various purposes, including estimating product qualities for accelerated product
development, estimating the remaining useful lifetime of machines to facilitate timely
maintenance scheduling, and acquiring comprehensive insights into production processes.

In the conventional paradigm of static machine learning scenarios, the process involves
obtaining training data, training a prediction model using a machine learning algorithm,
and subsequently utilizing the trained model, as illustrated in Figure 1. This approach
involves aggregating data over an extensive time frame and applying it to machine learning
algorithms to generate fixed prediction models. However, in scenarios where prediction
models need to be adapted during the ongoing production process to account for shifts
and regime changes, it becomes imperative to re-fit these models to the most recent data.

Training Data Machine Learning
Algorithm Prediction Model

Figure 1. In traditional static data modeling, the machine learning algorithm processes the training
data once, yielding a singular output model.
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This necessitates a shift from static modeling to dynamic modeling, where the data
are inherently dynamic, changing over time. Despite this dynamic nature, the modeling
process remains essentially static, repeating over changing data, as illustrated in Figure 2.
While faster classical machine learning algorithms like Random Forests [1] or Support
Vector Machines [2] can be employed in such scenarios by simply re-executing them,
slower algorithms like genetic programming (GP) [3,4] or training deep neural networks
(NNs) [5] are often deemed impractical due to the runtime implications associated with
their re-execution.

Training Data
(Epoch 1)

Machine Learning
Algorithm

Prediction Model
(Epoch 1)

Training Data
(Epoch 2)

Machine Learning
Algorithm

Prediction Model
(Epoch 2)

Training Data
(Epoch 3)
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Algorithm

Prediction Model
(Epoch 3)

Training Data
(Epoch n)

Machine Learning
Algorithm

Prediction Model
(Epoch n)

Figure 2. In scenarios with evolving data over time, one may need to re-run the entire machine
learning algorithm to obtain a newly adapted model.

Rather than resorting to the complete re-execution of machine learning algorithms,
a more efficient approach involves incorporating previous results to leverage existing
knowledge, thereby reducing the runtime significantly. For instance, when using neural
networks, one can optimize the network by seeding the re-optimization process with the
weights of the latest model, rather than seeding it with new, random weights. In the
realm of population-based evolutionary algorithms, these can operate in an open-ended
fashion, continually evolving and adapting to changing datasets. In this dynamic modeling
scenario, the training data are perceived as dynamic, changing over time, with the machine
learning algorithm continuously running and outputting prediction models dynamically,
as illustrated in Figure 3.

Training Data Machine Learning
Algorithm

Prediction Model
(Epoch 1)

Prediction Model
(Epoch 2)

Prediction Model
(Epoch n)

Figure 3. In dynamic modeling, the training data undergo changes throughout the machine learning
algorithm, enabling continuous model output that adjusts to evolving data or improves with the
discovery of more effective models.

In industrial applications, the deployment of certain models is constrained due to their
black-box nature. Notably, deep neural networks are often undesired as their predictions
lack transparency, making it challenging for experts to comprehend the underlying predic-
tion processes. This complicates the validation and interoperability of such models. On the
contrary, white-box models, represented as symbolic models, are easily interpretable by
humans, enabling validation by experts and enhancing the overall acceptance of machine
learning models. The advantage of symbolic models lies in their simplicity, as they can
be easily implemented in any system or programming language, given their nature as
mathematical expressions. Additionally, symbolic models allow for various mathemat-
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ical transformations such as simplifications and the definition of derivatives, providing
additional benefits in specific scenarios.

In industrial use cases and production systems, the application of several models is
sometimes limited due to their black-box nature. The aforementioned deep NNs are often
undesired because experts do not want to rely on predictions where they do not understand
the underlying prediction processes, and thus the validation and interoperability of a
prediction model is difficult. On the other hand, white-box models, in the form of symbolic
models, are easily readable by a human and can therefore be validated by an expert, which
greatly improves the acceptance of a machine learning model. Having a symbolic model
also allows for easy implementation in any system or programming language because
it is, in essence, only a mathematical expression. Also, symbolic models allow for many
mathematical transformations such as simplifications, or even the definition of a derivative,
which can also be very useful in certain scenarios.

Symbolic regression (SR) via genetic programming (GP) emerged as a widespread
approach for generating symbolic models. The underlying algorithm, a genetic algorithm
(GA), evolves a population of symbolic models represented as expression trees [4]. While
various forms of SR exist, this paper predominantly focuses on GP due to the suitability of
population-based evolutionary algorithms in handling dynamic changes in datasets, align-
ing with their inspiration drawn from natural evolution and the adaptation of individuals
to changing environments [6].

This paper centers its attention on two critical aspects: first, the consideration of a
dynamic environment where training data evolve over time, and second, the exploration of
symbolic models through GP as a promising means to address the evolving underlying
optimization problem. In this context, the following research questions are addressed in
this paper:

• How can changing training data be modeled within the context of a dynamic opti-
mization problem?

• Can a dynamic symbolic regression problem be effectively solved using genetic pro-
gramming?

• Which variants of genetic programming prove effective for dynamic symbolic regres-
sion problems?

• How do the population dynamics of GP evolve in the context of dynamic symbolic
regression problems?

The term “dynamic” in the context of GP holds various meanings in different scientific
papers. Noteworthy examples include the work of Macedo et al. [7] on the dynamic Santa
Fe Ant Trail problem and that of Yin et al. [8], who applied GP in a dynamic real-world
pricing environment. In these scenarios, the environment in which a GP solution operates is
dynamic, but the solution itself remains unchanged. The aim is to find a single generalizing
solution that performs well across various states of a dynamic system. This differs from the
dynamicity explored in this paper, where different solutions emerge over time, tailored to
short periods and becoming obsolete with system changes. Another aspect of dynamicity
involves identifying dynamic systems as demonstrated by Quade et al. [9]. Here, GP is
used to derive differential equations that best capture system measurements. Yet another
dynamic facet includes GP’s self-adaptation, such as dynamically adjusting the population
size during a run. However, these applications, while noteworthy, do not form the primary
focus of this paper.

The exploration of GP for dynamic symbolic regression is still in its early stages,
with limited attention. For instance, Macedo et al. [7] provides only a brief exploration of
symbolic regression, while O’Neill et al. [10] concentrates on accelerating evolution in dy-
namic environments. This paper seeks to extend the scope of dynamic symbolic regression
with GP, both in terms of the benchmark instances employed and the depth of analysis
conducted, providing valuable insights into the inner workings of GP in dynamic contexts.

This paper is structured as follows. In the remainder of this section, we provide an
introduction to the relevant concepts from the literature on genetic programming, symbolic
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regression, dynamic optimization problems, and open-ended evolutionary algorithms.
Section 2 outlines the definition of dynamic symbolic regression used in this paper, offers a
detailed description of the benchmark data, and explains the method for evaluating the
results, including the experiment setup and variations for an in-depth analysis of GP aspects.
Section 3 presents the results of the experiments, accompanied by detailed explanations,
discussions on potential interpretations, and conclusions for each experiment. In Section 4,
we discuss the findings and their implications and highlight the novel discoveries. Finally,
Section 5 provides a brief summary of the findings and suggests future research activities.

1.1. Genetic Programming for Symbolic Regression

Symbolic regression (SR) is a subset of supervised machine learning, where regression
models are expressed as symbolic mathematical representations [4]. Analogously, linear
regression (LR) can be viewed as a subset of supervised machine learning, with a require-
ment that the model’s prediction remains linear in its parameters. While LR is efficiently
solvable using least linear squares [11], achieving optimal models for symbolic regression
proves to be a more intricate challenge.

The complexity stems from the dual challenge in symbolic regression (SR) where
both the structure and numerical parameters of the symbolic model undergo optimization.
Notably, optimizing the structure of symbolic models is recognized as an NP-hard problem,
as the latest research suggests [12]. Additionally, optimizing the numerical parameters
within a specific model structure is frequently framed as a real-vectored optimization
problem. Although genetic programming (GP) is a prevalent choice for optimizing the
model structure, enhancing the numerical parameters is often more effectively achieved
through gradient-based numerical optimization methods [13].

The predominant approach for solving symbolic regression (SR) and acquiring sym-
bolic models lies in the application of genetic programming (GP) [4]. GP, essentially an
extension of genetic algorithms (GAs) [6], represents individuals as evolving expression
trees over multiple generations. The fitness of an individual is assessed by an error metric,
such as the mean squared error, calculated against a specific dataset. The genetic operators
play instrumental roles in shaping the evolution of expression trees. The selection operator
determines which individuals are chosen to become parents for the next generation based
on their fitness. This ensures that genetic material from individuals with higher fitness
contributes to the next generation, guiding the algorithm toward more favorable solu-
tions. Crossover facilitates the interchange of subtrees between individuals. This process
introduces diversity by combining genetic material from different individuals, potentially
creating more adaptive and effective models. Moreover, the mutation operator introduces
random changes to the numeric parameters, mathematical operators, or variables within
an expression tree. This stochastic element allows for exploration of the solution space,
preventing the algorithm from converging prematurely and promoting adaptability to the
dynamic nature of the optimization problem.

Given the expansive nature of genetic programming beyond basic genetic algorithms,
this paper does not delve into exhaustive reviews of GP, symbolic regression, or fundamen-
tal machine learning concepts. Interested readers are encouraged to explore other literature,
such as the concise yet comprehensive Field Guide to Genetic Programming by Poli et al. [4].
For a more in-depth understanding, the initial work by Koza [3] and further exploration
by Banzhaf et al. [14] provide additional insights into GP.

While alternative algorithms and variants for SR exist, such as stack-based GP [15],
grammatical evolution [16], or non-evolutionary approaches [17], this paper deliberately
focuses on GP.

As mentioned earlier, SR can be deconstructed into sub-problems for identifying a
structure and optimizing numeric parameters. In our experiments, GP operates on both
the structure and numeric parameters. However, numeric optimization is also employed to
complement GP, as it often yields superior results compared to GP alone [18]. Generally,
GP can be hybridized with various local optimization methods. For example, in scenarios



Appl. Sci. 2024, 14, 596 5 of 24

where acquiring derivatives for gradient-based optimization is impractical or not feasible,
derivative-free optimization methods like differential evolution could be employed.

To further guide GP and enhance efficiency, we impose constraints on the search
space, including a maximum size for expression trees defined by the maximum number
of nodes and the tree depth, along with restrictions on the allowed symbols through
the defined grammar [19]. Detailed settings, including the population size, maximum
generations, and other essential parameters, are outlined in subsequent sections detailing
the experimental design.

While GP serves as the primary evolutionary algorithm for SR, other variants, such as
the offspring-selection GA (OSGA) [20] and Age-Layered Population Structure (ALPS) [21],
present alternative options. In this paper, we focus mainly on a basic GA and on the
ALPS, because the ALPS seems to be especially suited to tackle dynamic optimization
problems due to its reseeding mechanism. Multi-objective GA variants like NSGA-II [22]
or SPEA2 [23] could also be considered, although they fall beyond the scope of this paper.

1.2. Dynamic Optimization Problems

Dynamic optimization can be understood as an extension to classic, static metaheuristic
optimization that considers a time-dependent series of objective functions that have to be
solved consecutively [24].

The general underlying assumption required for dynamic optimization is that so-
lutions that performed well in previous iterations can either be adapted to the current
objective or provide useful information to the optimizer. For GP on dynamic datasets,
this assumption appears to be reasonable, as the introduction of singular new data points
is unlikely to favor completely new expression trees with respect to most of the usual
objective measures, like the RMSE, R2, or MAE.

Most academic benchmarks like the generalized Moving Peaks [25], the generalized
dynamic benchmark generator [26], or the XOR-DOP generator [27] focus on vectors of
decision variables [28] with occasional extensions toward robustness, constraints, large
scales, or different types of changes with respect to predictability, impact, repetition, or
whether or not the occurrence of the change is communicated to the optimizer. As an
alternative, time-dependent versions of several popular combinatorial problems like the
traveling salesman problem have been proposed [29,30].

To identify various states in a dynamic optimization problem, an identifier or counter
is often used to denote the currently active version. This counter operates independently of
inherent algorithmic counters such as iterations or generation counters, highlighting the
autonomy of dynamic problem changes. To avoid potential naming conflicts with existing
counters, we use the term epoch, signifying that usually numerous generations occur before
an epoch change [31].

Epochs, representing the state of the dynamic optimization problem, and generations,
indicating the algorithm’s progression, operate independently. In scenarios where dynamic
optimization problems change slowly, the algorithm advances through multiple generations
before an epoch change occurs. This is typical, as algorithms usually need time to converge.
In contrast, in rapidly changing dynamic optimization problems, epochs may change
faster than algorithm generations, resulting in multiple problem versions within a single
generation. Consequently, evaluating an individual twice within a single generation could
yield different fitness values if the epoch changes during the process.

The decision on when to implement an epoch change into the algorithm lies with the
developer. To streamline the algorithm, epoch changes might be deferred to the beginning
of the next generation, ensuring that all individuals within a generation are assessed under
the same problem state. Alternatively, epoch changes could take effect immediately. For this
paper, synchronization occurs at the start of a generation to avoid complications associated
with fitness values stemming from multiple problem states, which could complicate the
parent-selection process.
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In practical scenarios, epoch changes are typically linked to real-world events, such as
machine breakdowns or the introduction of new items. To synchronize the progression of
dynamic optimization problems in benchmark instances, we utilize an epoch clock that
interfaces with the algorithm to initiate an epoch change. Common epoch clocks include
the following:

• Runtime clocks, where the epoch changes based on the algorithm’s elapsed duration;
• Generational clocks, which trigger an epoch change after a predetermined number

of generations;
• Evaluation clocks, which initiate an epoch change after a predefined number of

solution evaluations.

This paper employs generational clocks to avoid the challenge of altering the problem
during the evaluation of individuals within a single generation.

1.3. Open-Ended Evolutionary Algorithms

Because continuous benchmark problems are quite prevalent in academic literature,
a sizable portion of algorithms meant to tackle these are variations of particle swarm
optimizations (PSOs) or differential evolution (DE) algorithms that are restricted or heavily
geared toward those specific encodings [28,32].

A more flexible option that has been successfully employed is evolutionary algorithms
that have been extended with features to address the dynamicity of the problem.

While evolutionary algorithms and especially GAs for static optimization are designed
to converge toward a good solution, fully converged populations may have trouble adapt-
ing to new circumstances. Ideas to alleviate this issue range from change responses that
generate new individuals [33], increase the mutation rates [34], or perform local searches to
adapt current solutions. More refined approaches involve the self-adaptation of algorithm
parameters in order to adapt to new situations [35].

Recently, research has indicated that simplistic, simple restarts of the optimizer or
plainly specialized optimization algorithms might be sufficient to solve many dynamic
optimization problems [36]. We therefore include a GA geared toward static optimization
problems in our analysis.

Another feature of several dynamic optimization algorithms is the inclusion and
explicit [37] memory structures like archives of solutions that are updated every few
generations [38] or implicit [39] memory strategies that include structured and multi-
populations or multiploid encodings with dominant or recessive genes [40].

The ALPS in this regard presents a fairly advanced combination of self-adaptive
approaches and implicit memory via multiple populations, as it self-governs the number
of populations it uses. These populations (layers) are additionally separated by age, and
the solutions are periodically moved to higher (older) layers while the lowest (youngest)
layer is re-initialized. This re-initialization involves reseeding the lowest layer with newly
generated individuals, introducing a continuous stream of fresh genetic material. It serves
as an additional mechanism, complementing mutation, to introduce diversity into the
population. This structure avoids the issue of full convergence as new solutions are
continuously generated and introduced, allowing the optimizer to store older solutions in
higher layers and avoid having the new solutions directly compete with their seniors, giving
them a chance to be refined before deciding whether the older solutions still outperform
the new ones [21].

2. Materials and Methods
2.1. Dynamic Symbolic Regression

In standard regression problems, the relationship between independent variables Xi
and the dependent variable yi is established through a known or unknown generating
function f that may involve certain parameters β:

yi = f (Xi, β) + ei, (1)
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where ei represents error terms like noise, and i denotes an observation. For static regression
tasks, both the generating function f and the characteristics of independent features Xi
remain constant within reasonable margins.

However, in dynamic regression tasks, either the characteristics of the independent
variables Xi (such as their value range) or the generating function f can change over
time. While alterations in the characteristics of independent variables may only impact the
extrapolation behavior of a model, changes in the generating function f can disrupt any
previously learned relationship between independent and dependent variables.

In this paper, we specifically explore dynamicity in regression tasks concerning
changes in the generating function f while keeping the characteristics of independent
variables fixed. We introduce a time-dependent hidden-state parameter ht to account
for the time-dependent modification of the generating function. For instance, a dynamic
regression instance might be characterized by the generating function:

f (X, ht) = X1 · ht + X2, (2)

where ht ∈ [0, 1] controls the influence of variable X1 while variable X2 remains static.
The hidden-state variable ht serves as a control parameter for the speed of the shift,

allowing for the simulation of abrupt concept changes if altered quickly or gradual concept
drift if changed over an extended period. To facilitate the progression of the hidden-state
variables for the evolutionary algorithm, we tie it to the epoch, which is increased after a
predefined number of evaluations or generations are passed, as outlined in Section 1.2.

Adapting machine learning models to changes in the underlying data of a regression
task is crucial, as changes may render previously significant variables less important or
entirely irrelevant. Variables might also interact differently, affecting the model’s ability to
predict the target. Also, the learned relationship between old inputs and targets may no
longer hold. In the realm of evolutionary algorithms, particularly genetic programming
(GP), this translates to a probable decline in the quality of individuals after data changes,
resulting in an overall decrease in population quality.

The magnitude of this quality drop depends on the nature of the data change. Limited
changes or additions to observations might lead to a relatively small drop in quality, while
alterations in variable interactions can cause more pronounced drops. Following such
drops, the algorithm’s task is to adapt, identifying new individuals that align better with
the new data. Depending on the extent of the data change, GP can leverage genetic material
from the previous generation rather than entirely rebuilding the population. This adaptive
approach enables GP to efficiently navigate dynamic data scenarios.

2.2. Benchmark Data

To investigate the performance of various algorithms, we provide different benchmark
instances. These synthetic benchmarks not only serve as a means of evaluation but also
provide the base for a detailed analysis of the algorithmic behavior in dynamic scenarios.

In this paper, we use five different problem instances drawn from two sources. In
all cases, the distributions for the independent variables remain fixed, and the generating
function comprises various terms of these independent variables. Depending on the hidden-
state variable, certain terms are consistently present, while others may be gradually or
abruptly enabled and disabled over time.

The first three benchmark instances are adapted from the work of Winkler et al. [41] to
suit a dynamic optimization environment. These instances are defined as follows:

W1(x, h) = x1(hx2 + (1 − h)x3), (3)

W2(x, h) = α2(x1x2 + x3x4) + β2(hx5x6 + (1 − h)x7x8) and (4)

W3(x, h) = α3(x1x2x3 + x4x5x6) + β3(hx7x8 + (h − 1)x9x10), (5)

where α and β scale the respective terms to have equal variance. All input variables
x1 . . . x10 are drawn from a uniform distribution U between 1 and 10.
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To enable gradual transitions between states, as outlined in the original paper, we
employ a substantial number of epochs, progressively adjusting the hidden-state variable
h in each epoch. The state changes unfold over multiple epochs, featuring abrupt, fast,
and slow transitions from zero to one, and vice versa. This dynamic evolution is precisely
defined by the following sequence:

[1]100 [1�0]10 [0]100 [1]100 [1�0]50 [0]100 [0�1]20 [1]50 [0]100 [0�1]10 [1]10

Here, [a]n denotes a constant value of a for a duration of n epochs, while [a � b]n
indicates linearly spaced values between a and b over the course of n epochs. The visual
representation of this progress is depicted in Figure 4.

0.0

0.5

1.0

0 200 400 600
epoch

h

Figure 4. Hidden-state changes over epochs for the Winkler-based benchmarks.

The next two benchmark instances draw inspiration from the benchmark generation
procedure proposed by Friedman [42], adapted for dynamic optimization. Unlike the
single hidden state employed in the previous benchmarks, the Friedman-based bench-
marks involve three states (ht,a, ht,b, ht,c) = ht ∈ [0, 1]3, each independently controlling
specific terms.

The data for each term i are generated independently using the random function gen-
erator described by Friedman [42], denoted as Xi and F∗

i (Xi), representing the calculated
target by the generator. The final target is derived as the weighted sum of the term targets,
with their state factors incorporated:

y = F(X, h) =
i≤3

∑
i=1

(F∗
i (X)hi − µi)/σi, (6)

where i represents the terms, and the mean µi and standard deviation σi of the generated
targets for each term are utilized to normalize the generated targets before summation. The
inputs per term are concatenated, and the variable names are assigned according to the term,
with a letter and a number denoting the nth variable of the term (e.g., a1, a2, . . . , b1, . . . ),
resulting in the total training inputs.

The Friedman benchmark-generating procedure enables the control of the number of
input features per term and the amount of noise. A higher number of features increases the
instance’s difficulty due to the increased size of each term. For this paper, we omitted the
use of any noise, setting the noise parameter to 0.0.

In the case of Friedman-based benchmarks, we only implement abrupt state changes
with a limited number of epochs. This deliberate choice ensures a slower epoch clock,
allowing ample time for evolution before each epoch change. The progression unfolds
as follows: 1

0
0

0
1
0

0
0
1

0
1
1

1
0
1

1
0
0

1
1
1


This sequential progression ensures that the machine learning algorithm encounters

individual terms first (epochs 1 to 3), explores combinations of two terms (epochs 4 and 5),
briefly reverts to a single term (epoch 6), before finally activating all terms (epoch 7), as
illustrated in Figure 5. The rationale behind this strategy is to provide the algorithm with
opportunities to analyze individual terms initially and assess its ability to remember them
when activated later. Additionally, the last epoch serves as a test of the algorithm’s capabil-
ity to handle two new terms simultaneously, resulting in the presence of all three terms.
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Figure 5. Hidden states over epochs for the three terms, a, b, and c, for the Friedman-based benchmarks.

The combination of benchmark sources, comprising the Winkler-based benchmarks
and Friedman-based benchmarks, includes a total of 5 instances, each presenting distinct
levels of difficulty. The details of these instances, along with the training and test sizes, are
summarized in Table 1.

The complexity is a qualitative measure that provides a rough description of the
generating functions’ complexity, considering the number of variables and the complexity
of the employed mathematical operators and their interactions. It is worth noting that,
while the number of training and test rows might appear relatively modest for the Winkler-
based benchmarks, the design compensates with a relatively high number of epochs that
facilitates the gradual shifts. This design choice is similar to a mini-batch training paradigm,
where the same generating function is employed for each mini-batch.

Table 1. Overview of the parameters of the used benchmark instances.

Name Type Train. Size Test Size Features Complexity

W1 Winkler et al. [41] 100 10 3 low
W2 Winkler et al. [41] 100 10 8 low
W3 Winkler et al. [41] 100 10 10 medium
F1 Friedman [42] 1000 100 3 high
F2 Friedman [42] 1000 100 6 high

2.3. Population Dynamics

Given that benchmark instances are generated based on a sum of weighted terms, our
aim is to analyze the presence and significance of these terms within the current popula-
tion. While an exact occurrence analysis using subtree matching would be challenging,
especially for complex generating functions such as those in Friedman-based benchmarks,
we approach our analysis based on the known variables for each term. Our focus lies on
two aspects:

Variable frequency, measuring the relative occurrence of a variable within the entire popu-
lation.
Variable impact, measuring the importance of a variable, based on Breiman [1]’s permuta-
tion feature importance.

The variable frequency is computed across the entire population, while variable
impacts are defined on an individual basis. The impact of a variable is determined by
measuring the reduction in a model’s accuracy when the variable is absent from the dataset.
This absence is simulated by shuffling the variable, disrupting its relationship with the
target and other correlated inputs. To obtain variable impacts for the entire population,
we calculate the mean impact over all individuals for each feature. Importantly, we
bear in mind the fact that individual feature importance essentially measures the drop in
model accuracy, and low-accuracy models will contribute less to the overall impact. Thus,
the impact calculated over the population is not inflated by models with low accuracy.
Alternatively, scaling the impact with model accuracy is possible, but it could lead to a
doubly scaled measure.

In summary, variable frequency indicates the presence of terms in the population, irre-
spective of their relevance to the regression task. On the other hand, variable impacts assess
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the importance of terms for the current regression task. In a well-behaved GP scenario,
the population should converge toward solutions with high impacts, maintaining a steady
frequency for variables of high impact while dropping out variables with no importance.

The interplay between the variable frequency and impacts allows us to analyze
whether GP can initially identify useful variables and subsequently adapt to changing
scenarios. Adaptation may involve the following:

• Increasing the frequency of variables gaining importance due to different scenarios;
• Decreasing the frequency of variables no longer relevant due to a change in the scenario.

Considering the correct usage of variables in terms of the model structure, we hypothe-
size that variable impacts tend to increase slowly over time during GP convergence but can
drop instantly in the face of an abrupt shift in the dynamic problem. In contrast, variable
frequencies should change slowly, either gradually increasing for relevant variables or
decreasing for variables that are no longer relevant.

2.4. Experiment Setup

The dynamism in the dynamic regression problem is controlled through the progres-
sion of epochs, necessitating careful configuration of the epoch clock in alignment with the
algorithm. This configuration is crucial for accommodating the different characteristics
of different benchmark instances. For instance, in the case of Winkler-based benchmarks,
which conceptually embody only a few states, we employ a substantial number of approx-
imately 700 epochs to facilitate the transition between two states, allowing for gradual
shifts. In contrast, the Friedman-based instances incorporate only 7 epochs, each spanning
an extended duration. To illustrate, the Winkler-based benchmarks may adopt an epoch
clock synchronized with each generation, allowing for a finely tuned paradigm shift. On
the other hand, the Friedman-based instances might opt for an epoch clock setting of
100 generations or more for a single epoch change. The algorithm parameters for each
benchmark instance are detailed in Table 2. While specific experiments presented later
involve variations in certain parameters, the foundational configurations are outlined in
the base experiment parameters.

We intentionally opted for a generational clock rather than an evaluation clock, even
though the overall population size for the ALPS changes during the run, leading to an
increase in the number of evaluations per generation over the algorithm’s duration. This
choice was made to facilitate a more straightforward comparison. In most cases, the ALPS
begins with a smaller overall population than the GA but increases as new layers open.
Consequently, the total difference in the number of evaluations for the GA and ALPS
varies to some extent for each epoch but tends to average out over the entire algorithm
run. For instance, consider the F2 instance, which is solved by a GA with a population
of 500 for 2000 generations, resulting in approximately 1,000,000 evaluations. In contrast,
the ALPS starts with 100 individuals and allows for a maximum of 10 layers that open
dynamically, totaling around 1,600,000 evaluations. While the authors acknowledge this
difference, we believe that our conclusions remain valid without extensively parameterizing
the algorithms to precisely match the number of evaluations.

2.5. Experiment Variation

In the subsequent sections, we introduce variations of the previously described experi-
mental setup to analyze specific facets of GP for dynamic SR. These experiment variations
will also be referenced later in distinct result sections corresponding to their respective
experiment variants. Although these experiments were conducted and analyzed inde-
pendently of the base experiments, their motivations frequently trace back to research
questions that emerged during the analysis of other experiments.
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Table 2. Experiment parameters for all algorithms and instances.

W1 W2 W3 F1 F2

G
A

an
d

A
LP

S

Epoch Clock
(Generational Interval)

1 1 1 150 250

Max Tree Length 25 50 70 70 100
Creator Probabilistic Tree Creation
Mutation Change Node Type, Full Tree Shaker, One Point Shaker, Remove Branch, Replace Branch [4]
Mutation Probability 15%
Crossover Subtree Swapping [4]
Crossover Probability 100%
Function Set +,−, ∗, /, var, const
Local Numeric Opt. Levenberg–Marquardt, 10 iterations [43]

G
A

Population Size 100 200 500 200 500
Elites * 1 1 1 1 1
Selector Prop. Tour. (k = 3) Tour. (k = 4) Tour. (k = 3) Tour. (k = 4)
Maximum Generations 700 700 700 1500 2000

A
LP

S

Max Layers 10 10 10 10 10
Population Size (per Layer) 100 100 100 100 100
Elites * (per Layer) 1 1 1 1 1
Selector Generalized Rank (Pressure = 4)
Age Gap 20 20 20 20 20
Aging Scheme Poly Poly Poly Poly Poly
Maximum Generations 700 700 700 1500 2000

* Elites are reevaluated every generation because their quality may change as a result of an epoch change.

2.5.1. Faster Epoch Changes

The findings from the base experiment that will be discussed in Section 3.1 indicate
that GP generally performs well in handling changes in epochs when given sufficient
time to adapt. This variant experiment seeks to investigate whether faster epoch changes
pose a greater challenge for GP. In addition to the “Normal” speed, we introduce two
new speeds, namely, “Fast2” and “Fast3”, for each benchmark instance, accompanied by
adjusted configurations to accelerate the epoch changes, as listed in Table 3. On one hand,
we reduced the frequency of the generational clock to hasten the epoch changes, and on
the other hand, we adjusted the population size to indirectly accelerate the epoch changes.

Table 3. Experiment parameters for analyzing the impact of fast epoch changes. The table lists only
the modifications from the base experiments, with the three values separated by “/” indicating the
configurations for Normal speed and the Fast2 and Fast3 variants.

W1 W2 W3 F1 F2

G
A

Epoch Clock
(Generational Interval)

1/1/1 1/1/1 1/1/1 150/75/50 250/100/67

Population Size 100/50/33 200/100/67 500/250/167 200/200/200 500/500/500
Maximum Generations 700/700/700 700/700/700 700/700/700 1500/750/500 2000/1000/670

A
LP

S Epoch Clock
(Generational Interval)

1/1/1 1/1/1 1/1/1 150/75/50 250/100/67

Population Size (per Layer) 100/50/33 100/50/35 100/50/33 100/100/100 100/100/100
Maximum Generations 700/700/700 700/700/700 700/700/700 1500/750/500 2000/1000/670

2.5.2. Mutation Rate

Analyzing the variable frequencies in the overall results in Section 3.1 reveals that
GP retains genetic material for all the relevant variables, even when they are not actively
used at certain points in time. It appears that mutation plays a crucial role in maintaining
diversity and reintroducing dormant variables when needed later in the evolutionary
process. This experiment seeks to examine the extent to which mutation is necessary to
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enable GP to rediscover relevant variables or if mutation is indispensable for this purpose.
The modified experiment and the adjusted mutation rates are given in Table 4.

Table 4. Parameters for the experiment analyzing varied mutation rates. The table contains only
modifications made to the base experiments.

W1 W2 W3 F1 F2

Mutation Probability 15%/10%/5%/1%/0.5%/0.1%/0.05%/0.01%/0.005%/0.001%/0.0%

3. Results

The following results are grouped based on the distinct experimental configurations,
each aimed at analyzing various facets of GP for dynamic SR. We begin with the genera
outcomes derived from the base experimental setup detailed in Section 2.4.

3.1. Base Experiment Results

We initially assess the algorithms’ effectiveness over the runs. In contrast to static
optimization problems, a singular conclusive metric for the best solution is not provided,
given the dynamic nature of the problem, where older metrics become obsolete with
changes to the problem. The most relevant metric is the quality of the current best individual
within the population at a specific generation, offering insight into the algorithm’s optimal
performance given the current state of the dynamic optimization problem. Additionally,
we present the current mean quality of the population, providing an overview of the
algorithm’s general state and its convergence status.

Figure 6 illustrates the mean population quality and best quality (measured in Pearson
R2) over time for each algorithm across different problem instances. It is evident that, for
all instances, the best solution over time predominantly reaches 1.0 R2 exactly or very
close, indicating that the algorithms consistently discover high-quality models. Notably,
regular dips in the average quality coincide with epoch changes. This pattern is particularly
noticeable in the Friedman-based instances (F1 and F2), where the data transition abruptly
compared to the more gradual changes in the Winkler-based instances (W1, W2, and
W3). For the Friedman-based instances, variations in the difficulty among the epochs are
apparent, with a lower average quality indicating greater challenges in obtaining good
models. In these cases, even the best solutions found do not consistently achieve a perfect
1.0 R2.

For the ALPS, recurring drops in the average quality align with the reseeding of layer
zero. Due to this reseeding mechanism and the population growth over time, the ALPS
exhibits a lower overall population quality compared to the GA. Although comparing only
the top layer of the ALPS to the GA might yield similar results, we deliberately opted
to analyze the total ALPS population to more accurately reflect the actual dynamics of
the ALPS.

The results suggest that, for the presented problem instances, the algorithms quickly
adapt to changes in the training data within a few generations. This rapid adaptation could
imply that the difficulty for individual epochs was generally low. However, challenges
persist in the last phase for both Friedman-based instances, where the algorithms struggle
to fully solve the problem. It is worth considering that these challenges may also arise from
imposed limitations on the tree size, potentially rendering the problem unsolvable within
the given constraints.

Figure 7 depicts the average variable frequencies within the population across all
runs for each algorithm and instance. This visualization offers insights into the variables
retained in the population and how their relative frequencies change in response to epoch
variations. The shifts in the population composition are clearly observable in all instances,
aligning well with the epoch changes.
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Figure 6. The figure depicts the mean and best quality of the population, measured in Pearson’s
R2, over time. The light-shaded lines represent individual runs, while the darker lines represent the
mean values across all runs. Subplots are organized column-wise by the algorithms indicated at the
top and instances noted on the right.
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Figure 7. The variable frequencies over time, averaged across all runs for each generation, with
distinct variables represented by different colors. Subplots are arranged column-wise by algorithm
and row-wise by benchmark instance.
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Similar to the quality dynamics, we can readily observe the reseeding pattern in
the ALPS, which aims to normalize the overall frequencies by evenly distributing newly
generated individuals in layer zero. However, the impact of reseeding typically normalizes
after a few generations.

Beginning with the W1 instance, we observe that all the variables are initially equally
distributed in the population, adjusting over time in response to the dynamic nature of the
benchmark. While variable x1 maintains a relatively constant frequency, x2 and x3 undergo
cycles corresponding to the changing relevance dictated by the benchmark’s underlying
function and epoch shifts (as defined earlier in Figure 4). The variable frequency changes
exhibit different speeds, reflecting the gradual or abrupt nature of the state changes over
epochs. However, these changes occur steadily and slowly, spanning multiple generations
rather than happening instantaneously.

The overall patterns for instances W2 and W3 closely resemble W1, albeit with slightly
more fluctuations due to the increased number of variables. In cases where multiple
variables of a single term are tuned down during epoch progression, their occurrences in
the population decrease concurrently.

In the F1 instance, we observe a mix of relevant variables. For the initial three epochs,
the variables operate independently, as defined in Figure 5. The subsequent epochs intro-
duce combinations of two terms, and the last epoch displays an equal distribution of the
variables when all the terms are relevant. A similar observation holds for the F2 instance
but with two variables per term.

Similar to the variable frequencies over time, Figure 8 illustrates the impacts (as
defined in Section 2.3), representing the usefulness of the variables in predicting the target.
A notable observation is that the impacts do not all start at the same initial value, reflecting
instances where the generating function does not use all the variables in the first epoch.
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Figure 8. The variable impacts of the populations over time, averaged across all runs for each
generation, with distinct variables represented by different colors. Subplots are arranged column-
wise by algorithm and row-wise by benchmark instance.
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Another significant difference from variable frequency is the rapid change in impacts,
reflecting how quickly solutions change their behavior with new problem data after an
epoch change. For example, in benchmark W1, the drop in variable impact at generation
210 and around 540 is abrupt, while the shift from generation 310 to 350 occurs more
gradually, leading to slower changes in the variable impacts.

In the Friedman benchmarks, where all the epoch changes are abrupt, this characteris-
tic is even more evident. However, due to the nature of the underlying function generating
the target value for the benchmark instances, it is observed that the impacts of the variables
differ, even when all are relevant for the model. This discrepancy arises when different
terms or subtrees contributing to the target value have varying value ranges, contributing
to the final target to different degrees. Consequently, benchmarks with a higher number of
features, especially F2 and F3, become challenging to interpret due to the variables having
different maximum impacts.

Even in the separated figures for the variable frequency and impacts, there is a clear
indication of a close relationship between the two. This aligns with the intuitive under-
standing of these measurements, where variable impacts assess the immediate usefulness
of variables, while the variable frequency reflects the consequence of the model’s fitness,
with the fitness closely related to identifying variables with a high impact.

To better analyze the relationship between these two measurements, we focus on a
single problem instance where we can plot the variable frequency and variable impact
of individual variables for closer inspection. Figure 9 illustrates the relation between the
frequency and impact over time for the instance W1. It is evident for variables x2 and x3 that
the variable frequency (red) typically follows the variable impacts (blue). While this result
is not surprising, it reaffirms the intuitive notion of the general behavior of evolutionary
algorithms, where fitness drives the composition of the overall population. In this specific
case of GP, we can clearly observe this fact with variable frequency serving as a surrogate
for population composition and variable impact as a surrogate for fitness measurement.
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Figure 9. Variable frequency and impact plotted over time for the instance W1, differentiated by color.
The subplots are organized column-wise by algorithm and row-wise by variables of the benchmark
instance. Due to the generally different value ranges of variable frequency and variable impacts, they
are displayed on different scales on different y-axes for better alignment.
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Additionally, one can observe again that while the impact can change very rapidly,
especially when dropping after an epoch change, the frequency behaves more steadily and
follows the impact. Similar behavior can also be observed for other individual problem
instances, with their respective figures located in the Supplementary Materials.

3.2. Faster Epoch Results

Figure 10 illustrates the quality of the best individuals for each generation under
different epoch speeds (population average qualities are omitted for brevity). The results
suggest that the algorithms can effectively handle increased epoch speeds, with only
minimal improvements in the convergence speed and an overall better quality observed in
the normal speed for some instances.
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Figure 10. The quality of the best solution candidate for each generation, distinguished by different
epoch speeds represented in different colors. Subplots are arranged column-wise by algorithm and
row-wise by benchmark instance. Due to variations in their configuration, the number of generations
differs among the speeds, particularly for the Friedman-based benchmarks; consequently, the x-axis
representing the number of generations was normalized based on the total number of generations.

However, it is important to consider the diverse mechanisms used to introduce the
epoch speedup. In the Winkler-based instances, the increased speed primarily resulted
from a smaller population size, which still proved sufficient in solving the problem instance.
This implies that the original configuration might be further optimized for efficiency, given
that the smaller population size also performed well. For the Friedman-based instances, the
number of generations passing until an epoch change was reduced, while the population
size remained constant. This means that the actual time (in terms of generations) became
faster, allowing the algorithm less time to adapt. This effect is particularly noticeable in
the F2 instance, where faster speeds, especially Fast3, consistently lagged. We speculate
that with an increasing epoch clock speed, the algorithm would face challenges in solving
the problem.
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In summary, increasing the epoch clock speed or decreasing the runtime budget per
epoch is expected to yield similar effects. However, we did not design the experiments
specifically for this comparison to validate this assumption.

Figure 11 displays the variable frequencies across different speeds for the single
instance F1 to assess the impact of the epoch speed on population adaptation. It is evident
that when the epoch clock is accelerated, the variables have less time relative to the next
epoch change, resulting in a slower change in frequencies. Consequently, some variables
are still saturating the entire population before the next epoch occurs. This suggests that the
overall diversity is higher during an epoch change, potentially benefiting GP as variables
for the new epoch remain present in higher numbers in the initial population after an epoch
change. This may also indicate that further acceleration of the epoch clock could lead
to variables relevant for multiple epochs persisting throughout, guiding the population
toward generalizing over multiple epochs. However, definitive conclusions would require
additional research.
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Figure 11. The variable frequencies over time for the F1 instance, depicted with different epoch
speeds. The x-axis is normalized to accommodate the varying maximum number of generations
for the different epoch speeds. Subplots are organized column-wise by algorithm and row-wise
by variable.

The F2 benchmark exhibits a similar pattern to F1, but the Winkler-based instances
show no significant difference in variable frequencies for varying speeds, and thus these
results are not included in this paper for brevity. This can be attributed to the nature of
the epoch clock speed increase through a smaller population size, where the number of
generations between epoch changes remains the same, allowing variables sufficient time
to evolve.

The variable impacts yield similar results, with an apparent slower increase in popula-
tion variable impacts for the Friedman-based instances due to faster epoch progression,
while no notable differences are observed for the increased epoch speeds in the sliding
window-based benchmarks, leading us to omit those results here.
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3.3. Mutation Rates Results

When evaluating the impact of algorithm parameters, the usual focus is on identifying
the best solution and assessing the convergence speed. However, this approach is not
directly applicable to dynamic problems where multiple convergence phases and multiple
best solutions occur within a single run.

Instead of solely reporting the overall best solution of individual runs, we adopt a
more general analysis by examining the average quality over time. This involves calculating
the mean of the best individual per generation and the mean of the average population’s
quality per generation. The resulting insights into the algorithm’s overall performance
across multiple epochs are illustrated in Figure 12. Lower average qualities in this context
indicate suboptimal algorithm performance.
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Figure 12. The figure displays the mean quality of the current best solution per generation over
all generations (depicted in red) and the mean quality of the population per generation over all
generations (depicted in blue) for different mutation rates on the x-axis. Each individual dot represents
the average qualities of a single run, with the overlaid box indicating the distribution over all runs.
Subplots are arranged column-wise by algorithms and row-wise by instances.

The results reveal that for the GA, mutation rates between 0.5% and 15% are effective,
while the average quality drops significantly when the mutation rates are lower than 0.1%.
This decline can be attributed to the fact that variables may disappear from the population
and become unavailable when needed in later epochs. The GA heavily relies on mutation
to maintain diversity and reintroduce lost variables. It is noteworthy that high mutation
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rates (5–15%) lead to a reduction in the average quality of the population. This decline is
attributed to the increased disruptive impact associated with higher mutation rates.

In contrast, the ALPS leverages the reseeding mechanism as a potent tool to reintroduce
lost diversity, reducing the dependence on mutation. However, it is essential to highlight
that this success with the ALPS without mutation may be contingent on the application of
local optimization to all numeric parameters of symbolic models using gradient descent.
Without this local optimization, algorithm convergence would likely be slow or nonexistent,
emphasizing the significance of mechanisms for changing numeric parameters in the
absence of mutation.

As a next step, we aim to conduct a more detailed analysis of the impact of mutation
rates on both the GA and ALPS. This involves focusing on a specific variable within a
benchmark, closely examining the variable frequency of the population over time for each
individual run. Additionally, we will distinguish cases in which a variable becomes extinct,
i.e., it drops out of the population at some point. This loss of relevant building blocks and
the subsequent ability to reintroduce them into the population is typically associated with
mutation; therefore, we hypothesize that lower mutation rates may lead to more frequent
instances of variables becoming extinct, which could explain the inferior results observed
at lower mutation rates. Regarding the extinction of variables, we classify three distinct
cases of extinction:

Never: The variable is consistently present in the population at all times.
Momentarily: The variable drops out of the population at a specific time but is later
reintroduced, typically through mutation.
Permanently: The variable drops out of the population at a specific time but is not reintro-
duced, remaining absent for the rest of the run.

Figure 13 shows the variable frequencies for the individual runs of variable x3 from
benchmark W1 across various mutation rates. The color code indicates whether the variable
was never extinct (consistently present), momentarily extinct, or permanently extinct.
Please note that the entire run is color-coded based on the extinction case of the variable,
rather than the specific time frame in which the extinction occurred. With very high
mutation rates, variables consistently avoid extinction, as mutation continually reintroduces
the variable. As mutation rates decrease, variables may experience momentary extinction,
but they are regularly reintroduced through mutation. However, with very low mutation
rates, as observed in the GA, variables tend to become permanently extinct more frequently.
In such cases, a variable is considered irrelevant for the current epoch and may drop out
of the population. The probability of mutation reintroducing it and being selected during
parent selection, however, is overall too low to reliably reintroduce the variable when
needed later.

For the GA, it can also be noted that as the mutation probability decreases, especially
at 0.1%, the time required for reintroducing an extinct variable extends. Lower mutation
rates generally extend the expected duration for the reintroduction of a variable.

Conversely, the ALPS never experiences the permanent extinction of a variable, even
when momentary extinctions occur with lower mutation rates. This once again highlights
the low dependence of the ALPS on mutation as a crucial genetic operator for maintaining
population diversity.

An analysis of other variables and problem instances produced consistent results;
however, these findings are not explicitly detailed in this paper for the sake of brevity.
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Figure 13. Variable frequency of a specific variable, x3, from the W1 benchmark tracked over time for
various mutation rates. The color distinguishes whether the variable becomes extinct during the run.
Subplots are organized column-wise by algorithms and row-wise by mutation rates.

4. Discussion

In the previous section, we examined the behavior of the GA and ALPS across various
instances of dynamic symbolic regression problems. Our analysis focused on the overall
capability of the algorithms to uncover accurate solutions (symbolic models) during the
run and adapt to changes in the dataset. The results suggest that both the GA and ALPS
can effectively handle dynamic changes. Following an epoch change, there is an initial dip
in the average quality due to the alterations in the dataset. However, both algorithms show
their adaptability to recover and to find good solutions for the modified scenario.

We also investigated the population dynamics by examining variable frequencies
and variable impacts over time. The results reveal that, as anticipated, variable impacts
experience an immediate drop with regime shifts in the data, while population frequency
adapts more gradually in response to the changes in the fitness landscape after the change.
Increases occur gradually in both variable frequencies and impacts, and these measures
typically show concurrent growth. In terms of the differing behavior between the GA
and ALPS, we did not observe any significant differences in this aspect. Instead, we
mainly observed higher fluctuations in the measurements for the ALPS, attributable to its
reseeding mechanism.

An interesting insight into population dynamics is that neither the GA nor the ALPS
appear concerned with memorizing variables or subtrees for potential later use when they
might become relevant again. For instance, retaining a variable that was highly relevant
after an epoch change in anticipation of its future importance. While this lack of explicit
memory retention was expected, creating a dedicated memory mechanism or tweaking
algorithm parameters to facilitate memory functions could be explored. Options include
employing a larger population size and a parent-selection mechanism with low selection
pressure to prevent the loss of high-quality subtrees from past epochs. Alternatively,
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keeping track of parents’ old qualities from previous epochs and incorporating this past
quality in the current selection of parents could be investigated. This could be achieved
through a quality inheritance scheme that prioritizes offspring from parents with high
quality in older epochs.

The experiments investigating faster epoch clocks suggest that, for the existing bench-
marks, the available evaluation budget until the next epoch change proved to be sufficient.
Consequently, the algorithms demonstrated effective adaptation to faster epoch changes.
Nevertheless, we anticipate that with even faster epoch clocks, the quality at the end of an
epoch would likely decrease. However, the observed drop in quality at the start of a new
epoch is expected to remain comparable to that of slower epoch clocks. To effectively han-
dle faster epoch changes, a feasible approach could be to adjust the algorithm parameters,
emphasizing higher selection pressure.

In our initial findings, we consistently observed that variable frequencies rarely fell be-
low a critical threshold. By systematically adjusting the mutation rates, we gained valuable
insights into how mutation affects different algorithms. For the GA, the results show the im-
portance of mutation in addressing dynamic problems and retaining all relevant variables
in the population. Insufficient mutation rates lead to the loss of variables that may become
crucial in subsequent epochs. As mutation serves as the only mechanism for reintroducing
extinct variables, a low mutation rate reduces the likelihood of their reintroduction. In the
absence of mutation, the GA often loses variables without the opportunity for reintroduc-
tion when needed. In contrast, the ALPS relies on its reseeding mechanism to reintroduce
variables that have become extinct. Surprisingly, our results strongly suggest that the ALPS
is neither sensitive to mutation rates nor reliant on mutation at all. It is essential to note
that our experiments involved local optimization of numeric parameters through gradient
descent, which also reduces the reliance on mutation. Without local optimization, mutation
typically serves as the sole mechanism for adapting numeric parameters.

A noteworthy consideration regarding the findings of the conducted experiments is
related to the definition of the benchmarks. All presented benchmarks essentially consist
of weighted sums of terms, where the weights change dynamically over the epochs, and
variables within the terms are exclusively used therein. This implies that the relevance
of terms and their building blocks is independent of other terms. Introducing different
benchmarks where terms share common subtrees or variables could alter the population
dynamics. However, we suspect that having common building blocks across multiple terms
might simplify the problems, as relevant building blocks could be preserved to some extent
across epoch changes. Therefore, the benchmarks in this paper represent a worst-case
scenario where no information carries over into another epoch for some terms.

In the conducted experiments, we exclusively employed generational epoch clocks.
Using evaluation-based epoch clocks would require an adapted tuning of the algorithm
parameters to achieve faster convergence up until the next epoch change.

When analyzing the performance of algorithms in dynamic environments, it showed
that we currently lack a standardized approach. For instance, in comparing the overall
performance in the mutation rate experiment, we resorted to simply averaging the qualities
over time due to a lack of better alternatives. In contrast to static optimization problems,
where standardized methods like run-length distributions and expected runtime analy-
sis provide a statistically sound approach for analyzing performance and convergence
speed [44], dynamic problems currently lack such a framework. In scenarios where epoch
changes are known in advance, one could treat each epoch as an isolated run and observe
run-length distributions within that epoch. This approach could yield valuable insights into
algorithm performance on individual epochs. However, this method requires predefined
epochs, which are often unknown in practical applications. Additionally, for gradual shifts
in the data, as seen in the Winkler-based benchmarks, different considerations would be
needed for analyzing such shifts.

In this study, we exclusively compared a standard genetic algorithm (GA) as a baseline
with the ALPS chosen as a representative of open-ended evolutionary algorithms. Despite
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differences in the dependency on mutation, both algorithms yielded comparable results
and demonstrated similar population dynamics. A potential direction for future research
involves exploring the adaptation of alternative algorithms. For instance, an offspring-
selection GA (OSGA), known for its effectiveness in non-dynamic problems, encounters
challenges in dynamic scenarios, due to the offspring-selection mechanism relying on
the parent qualities, which may become obsolete after an epoch change. Strategies for
reevaluation post-epoch changes, akin to the reevaluation of elites in the GA and ALPS,
would be essential. Exploring multi-objective algorithms, such as NSGA-II, also presents
an interesting line of research. Considering the quality of previous epochs as an addi-
tional objective could motivate the algorithm to preserve valuable building blocks from
past epochs.

In summary, the insights derived from this paper are not limited to symbolic regres-
sion problems alone. Various metrics exist for quantifying relevant building blocks in
different problem domains, for example, relevant edges in a traveling salesman problem.
Investigating the applicability of the findings in this paper to other dynamic problems is
also a potential research question for the future.

5. Conclusions

This study investigated the application of genetic programming for dynamic sym-
bolic regression, addressing challenges posed by dynamically changing training datasets.
Both the genetic algorithm and Age-Layered Population Structure demonstrated notable
adaptability, effectively responding to dynamic changes throughout the algorithm run.

This paper examined population dynamics, considering variable frequencies and
variable impacts over time. Notably, variable frequencies exhibited a gradual shift, trailing
behind variable impacts that could drop instantly when the variables were no longer
relevant. Surprisingly, neither the GA nor the ALPS displayed a tendency to construct
a memory for successful individuals from preceding epochs, inviting future research for
refining algorithms in dynamic optimization.

Accelerating the epoch clock, the population frequency often failed to converge fully
before the next epoch change. However, this did not significantly alter the algorithms’
capacity to discover good solutions, underlining their robustness in dynamic scenarios.

This study explored the role of mutation in maintaining and reintroducing genetic
diversity, which is crucial in dynamic settings where variables face temporary extinction.
Moderately lower mutation rates led to the momentary extinction of variables, but both the
GA and ALPS mostly demonstrated resilience by reintroducing variables even with low
mutation. In scenarios with minimal or no mutation, the genetic algorithm’s reliance on
mutation to reintroduce variables differs from the age-layered population structure’s, which
shows no significant dependence on mutation, thanks to its internal reseeding mechanism.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app14020596/s1.

Author Contributions: Conceptualization, P.F. and M.A.; methodology, P.F.; software, P.F. and B.W.;
validation, P.F. and M.A.; formal analysis, P.F.; investigation, P.F.; resources, P.F.; data curation, P.F.;
writing—original draft preparation, P.F. and B.W.; writing—review and editing, P.F., B.W. and M.A.;
visualization, P.F.; supervision, M.A.; project administration, P.F.; funding acquisition, P.F. and M.A.
All authors have read and agreed to the published version of the manuscript.

Funding: The financial support from the Austrian Federal Ministry for Digital and Economic Affairs
and the National Foundation for Research, Technology and Development and the Christian Doppler
Research Association is gratefully acknowledged.

https://www.mdpi.com/article/10.3390/app14020596/s1
https://www.mdpi.com/article/10.3390/app14020596/s1


Appl. Sci. 2024, 14, 596 23 of 24

Data Availability Statement: All data-generating scripts and used software for modeling and
conducting experiments are open-sourced and freely available. Algorithms and problem definitions
are provided by HeuristicLab, with the source code for this available at https://github.com/heal-
research/HeuristicLab/tree/dynamic-gp (accessed on 29 November 2023). Further scripts for data
generation and data used in the experiments are also located at https://dev.heuristiclab.com/trac.
fcgi/wiki/AdditionalMaterial (accessed on 29 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
2. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
3. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112.

[CrossRef]
4. Poli, R.; Langdon, W.B.; McPhee, N.F. A Field Guide to Genetic Programming; Lulu Enterprises UK Ltd.: Egham, UK, 2008. Available

online: http://gpbib.cs.ucl.ac.uk/gp-html/poli08_fieldguide.html (accessed on 29 November 2023).
5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
6. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992.
7. Macedo, J.; Costa, E.; Marques, L. Genetic programming algorithms for dynamic environments. In Proceedings of the

Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, 30 March–1 April
2016; Proceedings, Part II 19; pp. 280–295.

8. Yin, Z.; Brabazon, A.; O’Sullivan, C.; O’Neil, M. Genetic programming for dynamic environments. In Proceedings of the
International Multiconference on Computer Science and Information Technology, Wisła, Poland, 15–17 October 2007; pp. 437–446.

9. Quade, M.; Abel, M.; Shafi, K.; Niven, R.K.; Noack, B.R. Prediction of dynamical systems by symbolic regression. Phys. Rev. E
2016, 94, 012214. [CrossRef]

10. O’Neill, M.; Nicolau, M.; Brabazon, A. Dynamic environments can speed up evolution with genetic programming. In
Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July
2011; pp. 191–192.

11. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,
2, 559–572. [CrossRef]

12. Virgolin, M.; Pissis, S.P. Symbolic regression is np-hard. arXiv 2022, arXiv:2207.01018.
13. Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006.
14. Banzhaf, W.; Nordin, P.; Keller, R.E.; Francone, F.D. Genetic Programming: An Introduction: On the Automatic Evolution of Computer

Programs and Its Applications; Morgan Kaufmann Publishers Inc.: Cambridge, MA, USA, 1998.
15. Perkis, T. Stack-based genetic programming. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE

World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June 1994; pp. 148–153.
16. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
17. McConaghy, T. FFX: Fast, scalable, deterministic symbolic regression technology. In Genetic Programming Theory and Practice IX;

Springer: Berlin/Heidelberg, Germany, 2011; pp. 235–260.
18. Kommenda, M.; Burlacu, B.; Kronberger, G.; Affenzeller, M. Parameter identification for symbolic regression using nonlinear

least squares. Genet. Program. Evolvable Mach. 2020, 21, 471–501. [CrossRef]
19. McKay, R.I.; Hoai, N.X.; Whigham, P.A.; Shan, Y.; O’neill, M. Grammar-based genetic programming: A survey. Genet. Program.

Evolvable Mach. 2010, 11, 365–396. [CrossRef]
20. Affenzeller, M.; Wagner, S. Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In Adaptive and

Natural Computing Algorithms, Proceedings of the International Conference, Coimbra, Portugal, 21–23 March 2005; Springer: Vienna,
Austria, 2015; pp. 218–221.

21. Hornby, G.S. ALPS: The age-layered population structure for reducing the problem of premature convergence. In Proceedings of
the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 815–822.

22. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

23. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK Rep. 2001, 103, 1–22.
24. Nguyen, T.T.; Yang, S.; Branke, J. Evolutionary dynamic optimization: A survey of the state of the art. Swarm Evol. Comput. 2012,

6, 1–24. [CrossRef]
25. Yazdani, D.; Omidvar, M.N.; Cheng, R.; Branke, J.; Nguyen, T.T.; Yao, X. Benchmarking continuous dynamic optimization: Survey

and generalized test suite. IEEE Trans. Cybern. 2020, 52, 3380–3393. [CrossRef]
26. Li, C.; Yang, S.; Nguyen, T.T.; Yu, E.L.; Yao, X.; Jin, Y.; Beyer, H.; Suganthan, P.N. Benchmark Generator for CEC 2009 Competition

on Dynamic Optimization. Technical Report. 2008. Available online: https://bura.brunel.ac.uk/bitstream/2438/5897/2/Fulltext.
pdf (accessed on 29 November 2023)

https://github.com/heal-research/HeuristicLab/tree/dynamic-gp
https://github.com/heal-research/HeuristicLab/tree/dynamic-gp
https://dev.heuristiclab.com/trac.fcgi/wiki/AdditionalMaterial
https://dev.heuristiclab.com/trac.fcgi/wiki/AdditionalMaterial
http://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00175355
http://gpbib.cs.ucl.ac.uk/gp-html/poli08_fieldguide.html
http://dx.doi.org/10.1103/PhysRevE.94.012214
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1007/s10710-019-09371-3
http://dx.doi.org/10.1007/s10710-010-9109-y
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.swevo.2012.05.001
http://dx.doi.org/10.1109/TCYB.2020.3011828
https://bura.brunel.ac.uk/bitstream/2438/5897/2/Fulltext.pdf
https://bura.brunel.ac.uk/bitstream/2438/5897/2/Fulltext.pdf


Appl. Sci. 2024, 14, 596 24 of 24

27. Yang, S. Non-stationary problem optimization using the primal-dual genetic algorithm. In Proceedings of the 2003 Congress on
Evolutionary Computation, Canberra, ACT, Australia, 8–12 December 2003; Volume 3, pp. 2246–2253.

28. Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A survey of evolutionary continuous dynamic optimization over
two decades—Part B. IEEE Trans. Evol. Comput. 2021, 25, 630–650. [CrossRef]

29. Tinós, R.; Whitley, D.; Howe, A. Use of explicit memory in the dynamic traveling salesman problem. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 999–1006.

30. Hansknecht, C.; Joormann, I.; Stiller, S. Dynamic shortest paths methods for the time-dependent TSP. Algorithms 2021, 14, 21.
[CrossRef]

31. Branke, J. Evolutionary Optimization in Dynamic Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2012; Volume 3.
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