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Abstract: Electrical impedance tomography (EIT) is a non-invasive imaging method that allows for
the acquisition of resistivity distribution information within an object without the use of radiation. EIT
is widely used in various fields, such as medical imaging, industrial imaging, geological exploration,
etc. Presently, most electrical impedance imaging methods are restricted to uniform domains, such as
pixelated pictures. These algorithms rely on model learning-based image reconstruction techniques,
which often necessitate interpolation and embedding if the fundamental imaging model is solved
on a non-uniform grid. EIT technology still confronts several obstacles today, such as insufficient
prior information, severe pathological conditions, numerous imaging artifacts, etc. In this paper,
we propose a new electrical impedance tomography algorithm based on the graph convolutional
neural network model. Our algorithm transforms the finite-element model (FEM) grid data from the
ill-posed problem of EIT into a network graph within the graph convolutional neural network model.
Subsequently, the parameters in the non-linear inverse problem of the EIT process are updated by
using the improved Levenberg—Marquardt (ILM) method. This method generates an image that
reflects the electrical impedance. The experimental results demonstrate the robust generalizability
of our proposed algorithm, showcasing its effectiveness across different domain shapes, grids, and
non-distributed data.

Keywords: electrical impedance tomography; graph neural network; image reconstruction;
Levenberg–Marquardt

1. Introduction

Pulmonary EIT is a non-invasive technique that involves the application of safe,
low-amplitude, high-frequency alternating current to the human chest. It utilizes a data
acquisition system to collect voltage data at the boundary of the chest and employs image
reconstruction algorithms to generate images of various tissues and organs within the chest,
providing structural and impedance information [1]. However, EIT image reconstruction
involves complex non-linearity, severe ill-posedness, and underdetermination. An ill-posed
problem refers to a situation where a small perturbation in the solution of the problem can
cause a significant change in the solution [2]. The sensitivity of the solution to even the
slightest modifications in the input is apparent. Within the realm of EIT, the introduction of
conductivity uncertainty significantly increases the level of unpredictability. As a result,
even small errors in measurements can result in substantial deviations in the reconstructed
electrical impedance distribution. This phenomenon is commonly known as an ill-posed
problem [3].

Currently, most solution methods employ a first-order linear approximation of the
non-linear problem, followed by the utilization of sensitivity matrix theory for numerical

Appl. Sci. 2024, 14, 595. https://doi.org/10.3390/app14020595 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020595
https://doi.org/10.3390/app14020595
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0000-0103-8033
https://orcid.org/0000-0002-9929-8163
https://doi.org/10.3390/app14020595
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020595?type=check_update&version=1


Appl. Sci. 2024, 14, 595 2 of 17

solution. Regularization methods are then employed to enhance the accuracy of the solu-
tion. Despite these efforts, the reconstructed image still suffers from numerous artifacts
and exhibits low spatial resolution. Consequently, this technology has attracted significant
attention and has been widely researched by numerous scholars [4]. Solving the recon-
struction process of EIT involves addressing a challenging inverse problem that lacks a
definitive solution [5,6]. In the field of electrical impedance, even slight changes in local
resistivity result in minimal alterations in electrode potential, commonly referred to as the
soft field effect. Moreover, the limited amount of available data compared to the number
of grids following field division further exacerbates the ill-posed nature of the inverse
problem in EIT. Improving the spatial resolution of EIT imaging and reducing artifacts are
pressing concerns in the field of EIT research.

EIT is a scientific technique used in the field of biomedical imaging, with the purpose of
obtaining valuable insights into the physiological and pathological conditions of the human
body. This is achieved by measuring the electrical properties and tracking alterations in
tissues and organs.

Research on inverse problems is extensive and has applications in various fields, such
as mathematics, engineering, physics, and earth science. Depending on the approach taken
to solve the inverse problem of EIT, current algorithms for its image reconstruction can be
divided into two categories: non-intelligent algorithms and intelligent algorithms [7]. With
advancements in computer technology and numerical calculation methods, the solutions
to the inverse problems have become more accurate and efficient [1]. Modern research on
inverse problems typically involves techniques such as numerical simulation, inversion
algorithms, and machine learning to analyze and derive known results and discover the
underlying causes of problems [8]. However, researchers also face challenges in solving in-
verse problems in the presence of information interference and noise. Therefore, continuous
improvements in the research on inverse problems are necessary.

This study demonstrates the high adaptability of GCNM with ILM, requiring fewer
iterations compared to traditional optimization-based methods. The findings of this study
also demonstrate the effective generalization of the enhanced algorithm to novel shapes
of regions and noise patterns, eliminating the necessity for training transfer. Furthermore,
we conduct a comparative analysis between our approach and conventional techniques
relying on Hopfield neural networks (HNN) [9], Tikhonov [10], and TV [11], emphasizing
the importance of iteratively integrating model information in every iteration.

Contributions. To address these concerns, we propose an innovative algorithm for
electrical impedance tomography. Our algorithm leverages a graph convolutional neural
network (GCNN) model. Specifically, we convert the finite-element model (FEM) grid data
related to the positive problem into a network graph. Subsequently, we employ the ILM
method to update the parameters in the non-linear inverse problem associated with the
EIT imaging process. Overall, we make the following three main contributions:

• Solving the problem of inadequate previous knowledge in EIT experiments is com-
monly dependent on simulation data, which are obtained from the ACT3 and the
KIT4 system. With these systems, we carry out finite element calculations to generate
prior data for solving the EIT forward problem. Acquiring a training set by training
on public datasets will enhance the understanding and adaptability of the training
model to various EIT problems.

• We presents an enhanced LM graph neural network algorithm for EIT imaging. The
proposed algorithm utilizes the ILM algorithm to update the parameters of the ill-
conditioned non-linear inverse problem in the EIT process. The presented algorithm
effectively addresses the limitations of the inverse problem, successfully suppressing
or removing artifacts, ultimately enhancing its overall effectiveness.

• The proposed algorithm’s accuracy is assessed through experiments, and the feasibility
of the algorithm is validated using the ACT3 and KIT4 datasets. Experimental findings
indicate that the physical models of ACT3 and KIT4 display superior performance.
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Organization. The organization of this paper is as follows. Section 2 will present
the mathematical model of EIT. Section 3 will provide a comprehensive overview of the
GCNN and the enhanced Levenberg–Marquardt algorithm used in EIT. In Section 4, the
training data will be discussed and the experiment will be thoroughly analyzed. Ultimately,
Section 5 will derive conclusive remarks.

2. Related Work

In recent years, researchers have tried to overcome these shortcomings, and the it-
erative regularization method for approximating the solution of the inverse problem has
become widely used [12]. This method involves solving linear or non-linear equations itera-
tively and includes stopping criteria to control the number of iterations. Another method is
the double iterative optimization algorithm, which constructs a new regularization matrix
based on the delayed-sum beamforming algorithm and cross-spectrum operation [13]. In
tandem with the iterative method, the algorithm optimizes the new regularization matrix
and beam output. As a result, two iterations with fewer steps effectively improve the
accuracy and stability of sound source recognition. Xu et al. introduced a new approach to
solving the inverse problem by combining model solving and example learning [14]. They
illustrate this approach using compressed sensing nuclear magnetic resonance imaging as
an example. The authors demonstrate how to combine the model solving of the compressed
sensing model with deep learning based on example learning [15], forming a new method
for solving CS-MRI problems. Kong utilized the alternating direction multipliers method
in L1 regularization [16], comparing and analyzing the reconstructed image and evaluation
parameters of simulated and measured data using the Gauss–Newton (GN) method, back-
projection algorithm [17], GREIT algorithm [18], direct sampling method (DSM) [19], and
imaging algorithm based on Structure-Aware Sparse Bayesian Learning [20]. The results
show that this approach has good anti-interference performance, with minimal impact
on reconstruction and the slightest change range of evaluation parameters. The authors
in [21,22] suggest a brand-new approach to model-based image reconstruction that fits well
and needs fewer iterations than traditional optimization-based techniques.

After conducting extensive investigation into algorithms for reconstructing EIT tech-
nology, it has come to light that conventional methods such as the back-projection technique
and Gauss–Newton (GN) [23] approach are inadequate when it comes to addressing the
ill-conditioned and underdetermined issues associated with the inverse problem of EIT [24].
As a result, the resulting image is significantly distorted. Although regularization algo-
rithms partially improve the ill-conditioned nature of the EIT inverse problem [25], the
quality of the reconstructed image remains unsatisfactory due to the inherent soft field char-
acteristics of EIT. On the other hand, swarm optimization algorithms used as inverse EIT
problem solutions can address ill-posed and underdetermined problems, but they are prone
to becoming stuck in local minima, and the solution process often takes a long time [26].
Neural networks [27] and deep learning algorithms [28], with strong non-linear fitting capa-
bilities, offer a more suitable solution. Deep learning techniques have a significant impact
on enhancing the resolution of EIT reconstructed images. These algorithms play a vital role
in enhancing the contrast of such images and effectively reducing noise interference.

3. Background
3.1. EIT Forward Model

The principle of operation of EIT is demonstrated in Figure 1. When conducting
scientific investigations, EIT is commonly studied from two primary perspectives: the
forward problem and the inverse problem [29], as depicted in Figure 1c. The forward
problem involves the computation of changes in the voltage observed on the object’s surface
by considering the distribution of conductivity within the object of interest and the applied
excitation current. In medical imaging, the excitation current frequency typically falls
within the range of 10–100 kHz for EIT. The objective of EIT image reconstruction centers
on estimating the distribution of conductivity within a sensing region by administering
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electric currents and measuring the resulting variations in the boundary voltage [30].
The Dirichlet-to-Neumann (DtN) map, which forms a crucial part of the mathematical
model utilized in EIT, is at the core. It is an essential element for investigating elliptic
partial differential equations, thereby having a substantial impact on the classical Calderon
problem [31].

Figure 1. The principle of EIT. (a) The basic working principle of EIT involves taking voltage
measurements at every electrode for each current injection. (b) Diagram illustrating the subdivision
of finite elements on a 2D circular domain. (c) Typical schematic of forward and inverse problems
in EIT.

The physical meaning of EIT aligns with Maxwell’s equations and electromagnetic
field theory. The complete electrode model (CEM) of EIT is depicted below.

∇× (σ(x)∇ϕ(x)) = 0, x ∈ Ω (1)

Here, ∇ is a spin degree operator, Ω represents the measuring field, σ(x) represents the
conductivity distribution, and ϕ(x) represents the potential distribution in the measuring
field. The forward problem in EIT involves calculating the electric potential, denoted as ϕ,
within a specific volume of interest, denoted as Ω. This calculation requires two pieces of
information: First, the values of ϕ on the boundary surface of Ω, denoted as ∂Ω. Second,
the conductivity distribution, denoted as σ(x), for all points x within Ω. To solve this
problem, FEM is commonly used to obtain the solution to the partial differential equation
governing the electric potential in the forward model.

∇ · (σ∇u) = 0, in Ω

σ
∂u
∂n

∣∣∣∣
∂Ω

= g∫
∂Ω

u = 0

(2)

Let V meas ∈ Rm represent the voltage measurement value and σ ∈ Rn denote the
conductivity change. Then, n ≫ m indicates that the number of pixels is significantly larger
than the measurement value. Furthermore, the measurement vector b is always affected by
noise. Hence, the problem of image reconstruction involves recovering the conductance
image σ from measurements with Vmeas noise [32].
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arg min
σ

{
1
2
∥Jσ − Vmeas∥2

2 + λ∥Lσ∥2
2

}
(3)

where J ∈ Rm×n is the Jacobian matrix representing the linearization relationship between
the measured theoretical value and the target conductance σ, L is the regularization matrix,
and λ is the hyperparameter. The second term, the regularization term, penalizes variations
in σ based on prior knowledge. The hyperparameter evenly distributes the regularization
term’s and residual term’s contributions to picture reconstruction. The aforementioned is
the linear least squares approach according to the GN method

σ =
(

JT J + λLTL
)−1

JTVmeas (4)

Different regularization methods are used for different L outcomes. The EIDORS
toolbox, citeeidors, may also calculate this Jacobian matrix of elements [33].

3.2. Graph Convolutional Neural Networks

In recent years, the field of GNNs [34] has experienced rapid growth and development.
The primary aim of GNNs is to utilize graphs to transfer learning information and compute
the properties of nodes and edges in the diagram. The fundamental principle entails
creating a computational graph composed of nodes and expanding it to encompass all
feasible nodes. A specific aggregation technique is utilized to map the structural data
within the graph, allowing the model to grasp the relationships between nodes and the
characteristics of edges [35]. This approach empowers the model to provide a more
comprehensive portrayal of the node associations and interactions within the graph. The
advancement of GNNs holds considerable potential for applications in diverse fields [36].

The GCNM, as opposed to conventional neural networks (CNN) that exclusively
function in Euclidean spaces, is a deep neural network that effectively handles input that
adheres to a graph structure [21]. The GCNM has recently garnered significant attention
owing to its versatility in various industries [37]. To perform edge prediction, graph
classification, and node classification, the GCNM offers a technique for extracting features
from graph data. Graph convolution signifies a feature propagation methodology in
semi-supervised learning, surpassing a mere label propagation technique. Gulakala et al.
integrate a GN and finite element technique to expedite finite element simulations [38].
The graph is constructed using the discretized geometry derived from a finite element
pre-processor, and the GNN is deployed to address the boundary value problem in the
discretized domain.

The finite element grid is utilized in this study to approach the optimal solution
through the utilization of the iterative Newton-type optimization method. Usually, the
image of x is obtained through the solution of an inverse problem from impedance data
acquired from measurements. Still, the combination of the current iteration xk and its
updated ϕxk is changed. The classical method obtains the next iteration as xk+1 = xk + ϕxk,
where ϕxk is calculated by a particular optimization technique, such as the LM method or
the GN method. Then, the trained network block Λθk and the adjacency matrix A are used
for computing the next iteration, where ϕx is the conventional update, such as GN, LM, etc.

xk+1 = Λθk ([xk, ϕxk],A) (5)

The graph convolution block takes as input the concatenated terms xk and ϕxk. As
seen in Figure 2, the output of the GCN block delivers xk + 1 for the following iteration.
In this study, the topology of the network block Λθ remains constant between iterations;
however, each block has a unique set of trainable parameters θk. We use the LM algorithm
in the experiment for iterative solutions without explicit data priors since we want the
network to be able to learn features from the training set.
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Figure 2. Graph convolution structure based on Newton’s method. The initial two iterations of
GCNM are depicted in the top left. An individual block within the network is illustrated in the
top right, where Λθ represents a NN with parameters θ. Both GCNM and GResNet utilize the same
block structure. In the GCNM, the input H(0) is created by concatenating xk and ϕxk, while the
output H(0) corresponds to x(k + 1). In GResNet, H(0) represents x1 in the first block, and in the
subsequent blocks, it represents the sum of the input and output from the previous block. The bottom
part showcases GResNet, which includes the first iteration of a traditional Newton method as input
in the first block, followed by a total of kmax blocks.

As with previous model-based methods [39,40], there are two alternatives for training
the network: end-to-end training of the complete system consisting of kmax blocks, or
sequential training of each block. Nevertheless, for our scenario, conducting end-to-
end training is not feasible because of two primary factors. Initially, performing back-
propagation through the updates ϕxk would be necessary to update the network parameters.
To carry out plagiarism checking, adjustments can be made to the text to avoid consecutive
identical words. Firstly, it is not possible to compute these updates by assessing the model
equations using a FEM solver. Secondly, the evaluation of the model equations consumes a
considerable amount of time and leads to extensive training periods. Hence, our approach
is to adopt a sequential training method where each block is trained separately. In order
to achieve this, a loss function is utilized that necessitates iterative-based optimality. This
function is applied to a training set containing pairs of true xt ,(i) and current iterate xk,(i)
for i ranging from 1 to N.

Loss(θk) =
1
N

N

∑
i=1

(
Λθk ([xk, ϕxk],A)(i) − xt ,(i)

)2
(6)

To evaluate the duplication of a given text, the assessment involves analyzing a
quantity x on a finite element method (FEM) mesh consisting of M elements and updating
δx. To ensure plagiarism detection, we must consider two vital elements in this evaluation:
an adjacency matrix and a feature matrix. The feature matrix, denoted as H ∈ RM× f ,
primarily comprises rows that correspond to the nodes of the graph, while the columns
embody the features defined across these nodes. On the other hand, the adjacency matrix,
denoted as A ∈ RM×M, is a sparsely populated matrix that depicts the interconnectedness
of graph nodes. Only the non-zero entries Aij = 1 indicate the connectivity between graph
nodes i and j. In the given context, every component of the network functions as a node
in the graph, and two components are deemed linked if they possess at least one shared
mesh node. Alternatively, employing the FEM nodes as the graph nodes would be the most
suitable selection if the resolution is established at that level.

The problem domain is divided into a discrete FEM, where each element represents a
specific region. These elements consist of nodes, discrete points within the region. To extract
relevant features from the FEM solution, we consider various factors such as node values,
element properties, boundary conditions, and material properties. These features are then
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used as input for the GNN. The architecture of the network is designed by specifying the
number of layers, the type of activation function, and how the layers are interconnected.
The input layer of the GNN corresponds to the extracted features from the FEM solution,
while the output layer corresponds to the desired output or prediction. To train the GNN,
we generate a dataset by selecting a set of FEM problems, solving them using an FEM solver,
and recording the input–output pairs. The input consists of the extracted features, while the
output represents the desired solution or prediction. The training process involves feeding
the input–output pairs to the network, calculating the loss or error between the predicted
output and the desired output, and optimizing network parameters using techniques such
as back-propagation and gradient descent. Once the network is trained, its performance
is evaluated on a separate validation or test dataset. Finally, the trained network can be
used to predict the output or solution of a new FEM problem by providing the extracted
features as input to the network.

4. Method

We present a groundbreaking strategy to enhance the excellence of EIT imagery by
implementing a pioneering algorithm for EIT reconstruction. Initially, we employ the FEM
to address the forward problem and obtain crucial FEM grid data. Subsequently, these
data are transformed into a network graph within the framework of the GCNM model.
To tackle the ill-conditioned non-linear inverse problem in EIT, we employ the improved
Newtonian LM method to update the parameters. Ultimately, the algorithm generates a
comprehensive EIT image.

4.1. EIT Inverse Model

The process of reconstructing the EIT image involves the solution of an inverse prob-
lem. Its objective is to form an image representing the distribution of resistivity/conductivity
within the sensitive field W of the medium. This reconstruction is accomplished by utilizing
the measured values of boundary voltage in the sensitive field. Resistance tomography
is the established method for EIT and serves as the fundamental imaging technology. In
electrical impedance imaging, the primary goal of inverse problem-solving is to extract the
model parameters from observational data.

To convert the FEM grid data into graph data, we aim to employ GCNM instead of
traditional CNNs.

F(σ) =
1
2
∥Λ(σ)− Vmeas∥2 + Reg(σ) (7)

where Vmeas =
(

V(1)
1 , . . . , V(1)

L , . . . , V(M)
1 , . . . , V(M)

L

)T
in RML denotes a vector of mea-

sured voltages at each L electrode in a k-linearly independent current pattern, and then,

the vector Λ =

(
Λ(1)

1 (σ), . . . , Λ(1)
L (σ), . . . , Λ(M)

1 (σ), . . . , Λ(M)
L (σ)

)T
in RML rep-

resents the simulated voltages obtained from L electrodes. These voltages are generated by
applying the same K-current pattern with the conductivity σ. The Reg(σ) denotes potential
regularization factors.

The best constant conductivity was chosen in the experiment to match the data for the
first assumption σ0. Then, Equation (6) may be changed to

F(σ0 + ϕσ) =
1
2
∥Λ(σ + ϕσ)− Vmeas∥2 + Reg(σ + ϕσ) (8)

By solving (7) iteratively, the following update equation is

σk+1 = σk + ϕσk (9)

Given an estimate of σk, this process is iterated until a satisfactory solution is found.
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4.1.1. Improved Levenberg–Marquardt Method

LM algorithm has recently been utilized in the adaptation of arbitrarily connected
neural (ACN) networks [41]. These ACN networks are capable of tackling more intricate
problems while employing fewer neurons [42]. The LM algorithm is particularly effective
for minimizing the loss function of the sum of squares error type. As a result, it offers fast
training for neural network models that involve this type of error [43]. Implementations
of the LM algorithm necessitate the computation of the Jacobian matrix, which is directly
related to the total number of training patterns.

Due to its rapid local convergence rates, the LM algorithm and its variations find
extensive applications in solving non-smooth equation systems. It proves invaluable in
addressing various concerns, including but not limited to non-linear complementarity,
variational inequality, Karush–Kuhn–Tucker (KKT) non-linear programming, as well as
mechanics and engineering problems [44]. By combining the advantages of stable gradient
descent (GD) and the fast convergence near the extreme point of the GN, the LM algorithm
overcomes their respective drawbacks. Specifically designed for solving the non-linear
inverse problem, the LM method follows a two-step approach, involving the linearization
of the non-linear inverse problem and the regularization of the iterative scheme [45].

Our proposed ILM algorithm is improved by the method in [46–48]. At the beginning,
this method was employed to solve the non-linear least squares multiplication problem [49].

For regular issues of non-linear

F(x) = 0 (10)

where F(x): Rn −→ Rm, and the diagram of proposed LM algorithm is shown in Figure 3.

Figure 3. The diagram of the ILM algorithm.

The results obtained from running the Broyden–Fletcher–Goldfarb–Shanno (BFGS),
LM, and improved LM algorithms simultaneously are shown in Figure 4. Figure 4a
displays the iteration time required to achieve the same termination condition for the
objective function value. Figure 4b reveals that the ILM algorithm is similar to the classic
LM algorithm in the early iterations but significantly diverges after a certain number of
iterations. The ILM algorithm converges each parameter to the target value faster, resulting
in faster running speed and significantly fewer iteration steps to reach the same termination
condition. In summary, the ILM algorithm provides a search direction closer to the target
descent direction, with faster convergence speed and fewer iteration steps.
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Figure 4. Iterations for each parameter value obtained by running the three algorithms simultaneously
once. (a) Number of iterations for each algorithm. (b) Average computation times for each algorithm.

The following objective function can be minimized in order to generate the inverse
EIT problem:

min
x∈X=Rn

∥F(x)− y∥2 (11)

Assuming that F is Frechet differentiable and denoting its derivative as F(x), the
adjoint operator is F′(x)∗, and the algorithm follows a basic form. We start with an initial
guess value x0 ∈ X, in the k-th step, let

xk+1 =

{
xk + dk k = 0, 1, . . .
xk otherwise

(12)

where dk is the result of performing the proposed Newton step.

dk =
(

F′(xk)
∗F′(xk) + µk I

)−1F′(xk)
∗(y − F(xk)) (13)

where µk > 0 is called the LM parameter. The selection of the parameter µ is the most
crucial stage in the LM algorithm.

When the objective function (15) does not contain explicit regularisation, Reg(σ) = 0.
The quadratic term of Equation (17) has a Taylor expansion that is given by

F(σ0 + ϕσ) = F(σ) + F′(σ)(ϕσ) +
1
2

F′′(σ)(ϕσ)2 (14)

To facilitate the substitution of GCNs for CNNs in the model-based learning method
aimed at addressing non-linear inverse problems, the data represented on the finite element
grid are converted into graph data. Graph data consist of nodes connected by edges. This
study focuses on undirected, unweighted homogeneous graphs. Graph convolutions,
specifically designed for graph data, offer similar advantages as regular CNNs, such as
translation variation, localization, and shared weights.

We employ the ILM algorithm to optimize the objective function (7). When the regu-
larization is not explicitly incorporated into the objective function, Equation (8) illustrates
the Taylor expansion of the quadratic term of Reg.

F(σ0 + ϕσ) = F(σ) + F′(σ)(ϕσ) +
1
2

F′′(σ)(ϕσ)2 (15)

We can find the minimum value by setting the ϕσ gradient to 0. We then obtain the
updated equation

ϕσ = −F′′(σ)−1F′(σ) (16)
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The gradient and Hessian matrix of the objective function F are denoted by F′(σ) and
F′′(σ), respectively. It is defined as Reg(σ) = 0 when the following two equations hold.

F′(σ) = J(σ)T(Λ(σ)− Vmeas) (17)

F′′(σ) = J(σ)T J(σ) + ∑
i

Λ′′
i (σ)(Λi(σ)− Vi) (18)

The Jacobian matrix of the analog voltage Λ(σ) is denoted by J(σ). The Hessian matrix
is computed precisely by the Newton technique as Equation (12). However, because of
its significant processing cost, the second component in the GN method—which involves
calculating the second derivative Λ′′

i (σ)—is disregarded. Rather than using this term, the
LM algorithm substitutes it with a scaled identity matrix λILM I, where the regularization
term for ill-posed problems is λILM ∈ R+. In cases where the rank of the Jacobian matrix is
inadequate, this regularization helps increase the condition number of the matrix, which
can be found in Equation (16). This method is able to determine the approximate answer to
Equation (7).

δσILM = −
(

J(σ)T J(σ) + λILM I
)−1

J(σ)T(λ(σ)− Vmeas) (19)

The ILM optimization method obtains an iterative reconstruction algorithm by the
update rule (16) and an appropriate stopping criterion.

4.1.2. Regularized Gauss–Newton

To ensure effective plagiarism checks, it is suggested to utilize specific assumptions,
such as giving preference to EIT reconstructions with piecewise constant conductivity
rather than smooth reconstructions. This objective can be accomplished by utilizing TV
with Reg(σ) = λTV ∑i|Miσ|, where the matrix M represents the discrete gradient in a
sparse form [11]. A common practice involves considering a smooth estimation of TV

regularization by employing Reg(σ) = λTV ∑i

√
(Miσ)

2 + ω. The approximated solution
for minimizing (8) can then be obtained.

δσTV = −
(

J(σ)T J(σ) + λTVMTE−1M
)−1 (

J(σ)T(U(σ)− V) + λTVMTE−1Mσ
)

(20)

where ω ∈ R+ represents the smoothing parameter that can be adjusted in order to achieve
optimal results. In addition, E = diag

(√
(Mσ)2 + ω

)
denotes a diagonal matrix. To

evaluate the quality of the GCNM reconstructions, we will make a comparison with the TV
reconstructions using Equation (20).

4.2. Metrics

Image evaluation indicators encompass a wide range of content and are approached
from various perspectives. Each evaluation standard has its own strengths and weak-
nesses. Full reference image quality evaluation involves selecting an ideal reference image,
comparing it with the image to be evaluated, and analyzing the level of distortion in the
evaluated image to obtain a quality assessment. Objective evaluation methods for full
reference image quality commonly focus on three aspects: pixel statistics, information
theory, and structural information. Pixel statistics form the basis for evaluation methods
such as peak signal-to-noise ratio (PSNR), mean square error (MSE), mean absolute error
(MAE), and signal-to-noise ratio (SNR). These methods assess image quality by quantify-
ing the differences in grayscale values between corresponding pixels in the evaluated and
reference images. PSNR and MSE specifically measure image quality by calculating the
overall magnitude of pixel errors. Higher PSNR values indicate less distortion and better
image quality, while lower MSE values indicate better image quality. These methods are
straightforward to implement and widely used in areas such as image denoising.
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In the field of EIT, the examination of reconstructed images typically encompasses the
assessment of image quality and measures of error. In order to observe the resemblance
between the reconstructed image and the original image, it is possible to conduct an evalu-
ation of indicators pertaining to image quality by means of visualization. A comparison
between the two images allows for the identification of small discrepancies, which suggests
a high-quality reconstruction. Two commonly used measurement indicators for image
quality are PSNR and SSIM, both of which are significant in assessing the quality of
reconstructed images (PSNR, SSIM). On the contrary, error indicators enable a numerical
assessment of the accuracy of the reconstruction results. MSE and MAE are widely utilized
error indicators. While measuring the error output between the reconstructed image and
the original image, MSE evaluates the deviation. In contrast, MAE assesses the difference
between the actual pixel value and the reconstructed value. Therefore, a comprehensive
consideration of these indicators is crucial when evaluating the quality of reconstructed
images in EIT (MSE, MAE).

We assess the level of variation at the pixel level between the restored image I and the
original image K via the MSE defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (21)

The MSE value is calculated based on the total number of pixels in images I and
K, denoted as M and N, respectively. A smaller MSE value indicates a higher similarity
between the images.

The PSNR, which denotes the ratio between the maximum power of a signal and the
power of noise that negatively impacts its accuracy in representation, is an engineering
term. To assess PSNR, logarithmic decibel units are often employed, owing to the extensive
dynamic ranges exhibited by numerous signals.

PSNR = 10 · log10
L2

MSE
(22)

L is a constant denoting the maximum dynamic range of the image data type, signify-
ing the upper limit of the value range. For instance, in the case of image data represented
by the float type, where the value range lies between 0 and 1, L is assigned a value of 1.
Conversely, for image data representing uint-8 type, where the value range spans from
0 to 255, L takes the value of 255. The PSNR formula presents MSE in the denominator,
implying that a higher PSNR value indicates superior image quality during evaluation,
contrary to MSE’s interpretation.

The SSIM index is a widely employed measure for quantifying the resemblance of
two images. To directly evaluate meshes, the SSIM index has been appropriately adapted.
The range of the SSIM value extends from 0 to 1, with a greater value denoting a lesser
disparity between the output image and the undistorted image, thereby signifying superior
image quality. The calculation of SSIM relies on three comparative metrics pertaining to
the samples α and β—luminance, contrast, and structure.

l(α, β) =
2µαµβ + c1

µ2
α + µ2

β + c1
, c(α, β) =

2σασβ + c2

σ2
α + σ2

β + c2
, s(α, β) =

σαβ + c3

σασβ + c3
(23)

where µα and µβ are the average of α and β. σ2
α and σ2

β are the variance of α and β. σαβ is
the covariance of α and β. The calculation formula of SSIM is as follows.

SSIM(α, β) = l(α, β)λ1 · c(α, β)λ2 · s(α, β)λ3 (24)

The proportion of different features in SSIM measurement is typically represented by
λ1, λ2, λ3. To avoid instability problems caused when the denominator is 0, we introduce
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three constants: C1, C2, C3. It is common to take λ1 = λ2 = λ3 = 1, and then C2 = C3/2, so
we can obtain

SSIM(α, β) =

(
2µxµβ + C1

)(
2σαβ + C2

)(
µ2

α + µ2
β + C1

)(
σ2

x + σ2
β + C2

) (25)

where C1 = (K1L)2 and C2 = (K2L)2.

5. Experiment and Analysis

First, we use simulated data to visually test the quality of the GNN method. The
experiment used Python version 3.8, PyTorch version 1.13, and EIDORS version 3.10. The
simulated data include 200 training and 100 test samples, as shown in Figure 5. Each
simulated model contains 1–4 ellipses with constant resistivity. The model defines these
ellipses on the same circular grid with a radius of 140 mm. The circular grid consists
of 32 electrodes, each with a width and height of 20 mm, placed at equal intervals. The
excitation mode used in the experiment is the adjacent current mode of 2 mA.

Figure 5. Some simulation samples.

The data collected for this study come from two different systems: the 32-electrode
ACT 3 system and the 16-electrode KIT 4 system [50]. The ACT 3 system utilized a triangular
current mode with a maximum amplitude of 0.2 mA and a frequency of 28.8 kHz. The
electrodes are uniformly distributed, with a width of 25 mm and a salt height of 16 mm,
placed in grooves with a radius of 150 mm. The KIT 4 system, on the other hand, used
neighboring current patterns with amplitudes of 3 mA and frequencies of 10 kHz. The
circular tank utilized in this system had a radius of 140 mm, and the electrodes were
about center, with a width of 25 mm. The tank contained two targets—a large resistor
with a conductivity of 0.067 S/m and a small conductor with a conductivity of 0.305 S/m.
We placed the target at a height of 45 mm in the salt bath. A chest-shaped slot with a
circumference of 1020 mm and an electrode width of 20 mm was used.

The reconstructed results of the simulated data are presented in Figure 5, while the
evaluation index results can be found in Table 1.

Table 1. Evaluation metrics for simulated data.

Sample 1 Sample 2 Sample 3

MSE 155.01 438.20 361.47
PSNR 26.23 21.71 22.55
SSIM 0.97 0.93 0.94

In this experiment, we use the finite element method to solve a direct EIT problem with
approximately 5000 triangular elements. The raster data are on the left side of the Figure 6.
In addition, we do not investigate the effect of mesh granularity on the accuracy of different
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reconstruction techniques. Before training the model, the resulting finite element mesh
data must be converted to the graph data format required for neural convolutional graphs.

Figure 6. Transformation of finite element mesh data into graph structure.

Our work employs the control variable method to compare the results of multiple
experiments. The selected parameters for the experiment include λLM = 0.1 and a con-
volutional network with a depth of 2 to train the model. The implementation in PyTorch
utilizes a mini-batch of 512 samples. It combines the optimization methods of Adam [51]
and limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) [52] to perform min-
imization training of the iterative loss function for each block. The learning rate is 0.002.
Training ends if the validation loss for 100 epochs does not decrease, and the minimum
validation loss for the trainable parameters remains unchanged.

We simulated static EIT without noise interference. The simulation results were ob-
tained by performing computer numerical calculations, using theoretical voltage data
with minimal error. However, noise inevitably influences measurement data, including
power frequency interference in practical applications such EIT and other fields. De-
spite efforts to reduce these interferences through hardware circuits, eliminating them
remains challenging.

This experiment examines the anti-noise performance of the Newton-based GCN by
adding Gaussian noise to the simulated data. Specifically, Gaussian noise with signal-to-
noise ratios of 0 dB, 39 dB, 45 dB, and 51 dB is added when calculating the voltage data
on adjacent electrodes. These four values cover a wide range of SNR conditions, ranging
from very low (0 dB) to very high (51 dB). They can be used to evaluate the performance of
the system under different SNR conditions [53]. The Newton-based GCNM algorithm is
then used to reconstruct the static image. The reconstructed images under different SNR
conditions are compared with the noise-free reconstructed image to analyze the anti-noise
performance. Figure 7 displays the reconstructed images at different SNR levels.

Figure 7. The effect of the reconstructed image under different SNR. The simulated test data results
were obtained using a network trained on ACT 4 data. It is important to note that the training data
only include a single horizontal segmentation of the lungs.
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Finally, we have tested the proposed algorithm on real data and illustrated the recon-
struction performance, as shown in Figure 8.

Figure 8. The SSIM, MSE, and PSNR values of reconstruction methods under different SNR.

6. Discussion

The results of this study indicate that the proposed algorithm has a good performance.
To further evaluate the performance of the algorithm, we conducted a flume experiment
using the proposed imaging algorithm in Figure 9. The flume data were obtained from
the EIT system KIT 4, developed by the University of Eastern Finland. The KIT 4 system
is an open EIT system that generates a two-dimensional EIT dataset. These data were not
included in the training and test sets used in this article. The KIT 4 system provides a
circular tank with a radius of 14 cm, equipped with 16 rectangular stainless steel electrodes
evenly spaced around the tank wall. Each electrode has a width of 2.5 cm. Physiological
saline was used as the filler in the tank to create the background field. The system utilizes
an excitation current size of 2 mA and a frequency of 1 kHz, with a proximity drive mode.
The obtained data were processed and converted into the pyEIT format.

Figure 9. Physical model imaging of a circular sink with acrylic cylinders.

Based on the data presented in Table 2, it is evident that our algorithm outperforms the
other methods in terms of the SSIM and MSE evaluation indicators while ranking second
in terms of PSNR. Although artifacts are present in the reconstructed images produced by
all three methods, the artifacts are most effectively reduced in the reconstructed images
generated by the proposed algorithm. It is important to note that actual measurements
are subject to measurement errors, model errors, and environmental noise interference,
which result in a reduced signal-to-noise ratio of the measured voltage. Consequently, the
quality of the actual reconstructed image is lower than that of the simulated calculation.
This further supports the conclusion that our alogrithm offers superior imaging quality.
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Table 2. Evaluation indexes of tank experiments.

MSE PSNR SSIM

Ours 1314.36 34.7755 0.8658
HNN 938.56 33.9552 0.8398

Tikhonov 1073.80 34.2260 0.8509
TV 1138.56 34.0933 0.8465

Ours 1179.74 33.9058 0.8594
HNN 589.62 33.8748 0.84590

Tikhonov 1081.04 34.0121 0.8444
TV 1156.31 33.8860 0.8557

We contribute to the research on lung EIT imaging algorithms by conducting simula-
tion experiments and experiments with ACT 3 and KIT 4 datasets to verify the effectiveness
of the proposed improved GNN algorithm. However, further optimization of the algorithm
is still necessary due to experimental conditions. There is potential for additional research
and improvement. To facilitate observation and verification of imaging results, a circular
field is used instead of a chest model to construct the EIT simulation model. However,
since there are notable differences in shape and size between the human chest contour
and the circular field, distortion of the reconstructed image may occur when applying the
algorithm in practical lung imaging.

7. Conclusions

The paper introduces a novel approach for electrical impedance imaging by combining
the convolution graph neural network and LM connection method. This method leverages
Newton’s neural network convolution graph to effectively address non-linear issues. The
numerical experiments conducted underscore the success of GN graph convolution, despite
some constraints in depicting intricacies. Moreover, the proposed technique demonstrates
promising viability in attending to practical non-linear inverse functions. In the forthcoming
research, our objective is to refine our proposed method and devise new architectures that
will augment the excellence of EIT reconstruction images and optimize processing speed.

EIT is undeniably an invaluable tool for diagnosing pulmonary issues in the future,
particularly for patients in the ICU who require constant monitoring. The convenience and
bedside applicability of EIT make it especially beneficial in this setting.
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