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Abstract: Federated learning (FL) is a promising technique to provide intelligent services for the
internet of things (IoT). By transmitting the model parameters instead of user data between the client
and central server, FL greatly improves the user privacy and reduces transmission latency. However,
due to the fading effects of the wireless channel, the outage of wireless transmission degenerates
the learning efficiency when FL is applied in wireless IoT networks. In order to address this issue,
we investigate the joint optimization of client selection and wireless resource allocation in FL-aided
cellular IoT networks. By taking both the amount of training data and wireless resource consumption
into consideration, we formulate the problem as a mixed integer non-linear programming to maximize
the utility of the network. To solve the problem effectively, an alternative direction-based algorithm
is proposed by decomposing the original problem into two sub problems. The simulation results
indicate that the proposed algorithm substantially improves the FL learning performance and reduces
the consumption of wireless resources compared with existing methods.

Keywords: federated learning; client selection; resource allocation; internet of things

1. Introduction

With the rapid development of artificial intelligence (AI), massive intelligent devices
have been deployed in the wireless internet of things (IoT), which makes the ability of
providing intelligent services one of the most important evolutionary directions for future
IoT. As a basic element of AI, machine learning (ML) [1] is widely utilized by various
intelligent applications. However, the centralized training manner in ML becomes more
and more inefficient and data transmission and privacy problems arise because massive
amounts of training data are generated and stored in various intelligent devices other
than the central server. Federated learning (FL) [2,3] is a desired solution to handle this
mismatch. As a distributed ML, FL only requires the transmission of model parameters
other than the data themselves between client and central server, which largely reduces the
amount of data transmission. Meanwhile, the user’s privacy is also well protected, since
the data avoid being transmitted to the central server.

Despite the advantage of FL, the communication issue should be addressed when
deploying it in wireless IoT networks [4]. Specifically, because of the fading effects of
the wireless channel, the transmission of model parameters may experience an outage,
which degenerates the performance of FL [5]. Towards this issue, an admission control
algorithm is proposed in [6], where the number of accessed devices is considered as the
optimization target. Furthermore, in [7], the quality of local training and the channel state
are utilized to decide the accessed devices. In addition to admission control, the wireless
resource optimization is also efficient for FL-aided IoT networks. For example, in [8], a joint
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optimization algorithm is proposed to improve the communication reliability of FL-aided
wireless networks, where the client selection and power allocation are employed to reduce
the loss of the trained model. In [9], split learning and FL are combined to handle the
diversity of clients with different channel states and computational capabilities. In this
algorithm, client selection is achieved by a multi-arm bandit scheme, which employs both
the channel states and local model as the optimized objective. In [10], a blockchain-based FL
is proposed for wireless computing power networks, where the client selection is achieved
by a evolutionary game-based incentive scheme. The incentive function takes the resource
and security into account; however, the amount of local training data is not involved. Ad-
ditionally targeting wireless computing power networks, a resource-aware FL is proposed
in [11] that aims to reduce the energy consumption. The algorithm is employed to adjust
the depth of the neural network and total training round without involving power and
wireless channel selection. To handle the dynamics of wireless channels and network
resources, in [12], the global FL models received in previous training are reused to replace
erroneous local models. In this algorithm, the client selection is adopted by minimizing
the accuracy loss in training data, so it focuses on the repair other than selecting superior
wireless channels. All these previous works adopt the synchronous model; conversely,
in [13], an asynchronous FL framework with client selection is proposed. In their optimiza-
tion, the client availability and long-term fairness are taken into consideration to minimize
latency. Lyapunov optimization is employed to tackle the asynchronous problem in an
online manner. However, the amount of local training data is not considered in client
selection. In [14], the training data of local model and wireless channel quality are jointly
considered for asynchronous FL. The optimization objective is to reduce the variance and
bias of the aggregated model updates, while the amount of local training data is also not
involved. In [15], a joint optimization of bandwidth allocation and client scheduling is
considered to achieve the ideal trade-off between training accuracy and latency. To solve
the problem efficiently, the reformulation and decoupling are adopted, and the optimal
resource allocation can be achieved by using an online algorithm. Nevertheless, the amount
of local training data is not considered in the client scheduling. Another joint optimization
of client selection and resource allocation for wireless FL is studied in [16], where the
target is to maximize the total average number of active clients and transmission time.
The Lyapunov optimization is employed to achieve an online-manner solution. Similarly,
in [17], a joint optimization of client scheduling and resource allocation for hierarchical FL
is investigated. The formulation simultaneously captures the uncertainty of the wireless
channel and the weight gradient. However, in these former works, the joint optimization
mainly focuses on the wireless channel and resource allocation without considering the
amount of local training data in each client. In [18], both the bandwidth and power alloca-
tion are considered in the wireless resource optimization, and the objective is to maximize
the number of accessed clients. However, in these existing works, the objective functions
treat all nodes equally, and do not involve the amount of the training data in the client,
which is worth being considered, because, in practice, the amount of collected data for each
IoT node varies.

Motivated by these observations, we investigate the joint optimization of client selec-
tion and wireless resource allocation in FL-aided IoT networks, and the major contributions
are as follows.

• We developed a joint optimization framework for FL in wireless IoT networks. Specifi-
cally, the framework supports client selection and wireless resource allocation, which
includes the power and bandwidth allocation of the clients. In the framework, the ob-
jective function takes both the amount of training data and wireless resource consump-
tion into consideration.

• We solve the formulated problem by using an alternative direction-based algorithm.
In the algorithm, the primal problem is decomposed and transformed, and then,
by combining and solving the constraints simultaneously, we derive the iteration
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equation for the optimal power and bandwidth. After that, the optimal client selection
can also be achieved using a greedy algorithm.

• We conduct extensive simulations using the MNIST to examine the effectiveness of
the proposed joint optimization in utility of the network, accuracy rate and energy
consumption.

The rest of the paper is organized as follows. Section 2 introduces the system model.
Section 3 describes the problem formulation. The proposed algorithm is then presented
in Section 4. The simulation results are discussed in Section 5. Finally, the conclusion is
drawn in Section 6.

2. System Model

In this section, we describe the system model of FL-aided wireless IoT networks, which
is divided into the network model, learning process and communication model.

2.1. Network Model

As depicted in Figure 1, we consider a FL-aided wireless IoT network, which consists
of one base station (BS) and M IoT nodes. Let M = {1, · · · , M} denote the set of IoT
nodes. A FL server is directly deployed at BS, which is responsible for broadcasting and
aggregating FL model parameters. In the FL-aided wireless IoT network, a global learning
model of interest is trained by the cooperation of the FL server and IoT nodes. In the
training, each IoT node acts as a FL client, which collects data as the training sample for
its local training. Let Si = {S1, · · · , Sl , · · · , |Si|} denote the collected training data by IoT
node i, where Sl is the lth training sample of the data. Thus, the whole training data set can
be expressed as S = ∑i∈M Si.

BS

Global model
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IoT node 1

IoT node 2

IoT node m
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Local model 1

Local model m

DL UL
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Figure 1. System model of FL-aided wireless IoT networks.

2.2. Learning Process

In the considered network, an ML model of interest is trained in a distributed man-
ner by the cooperation of the FL server and IoT nodes. The goal of the training is to
obtain the model parameter w by minimizing the loss function f (w) on the data set S.
The minimization can be expressed as
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min
w

f (w) ≜ min
w

1
|S|

M

∑
i=1

|Si |

∑
l=1

fi(w, Sl), (1)

where fi(w, Sl) is the local loss function of IoT node i on sample Sl . We focus on the widely
used federated averaging learning framework [2], where the training communication
round is periodical. The tth communication round consists of the broadcasting phase,
the local training phase and the aggregating phase. In the broadcasting phase, the FL server
broadcasts the global model parameter wt to all the IoT nodes via the wireless down link
(DL) of BS. Then, in the local training phase, each IoT node i calculates the gradient of the
local loss function ∇ fi(wt, Si), and then, E epochs of the gradient descent method are used
to obtain wt+1 as

wt+1
i = wt − ζi∇ fi(wt, Si), (2)

where ζi is the learning rate of IoT node i. Finally, in the aggregating phase, each IoT node i
transmits its local model parameter wt+1

i to BS via the wireless up link (UL), while the FL
server updates the global model parameter as

wt+1 =
M

∑
i=1

|Si|
|S| wt+1

i . (3)

The learning process terminates when the following condition holds.

f (wt)− f (wt+1) ≤ Λ, (4)

where Λ is the learning termination threshold.

2.3. Communication Model

In the learning process, the aggregating phase is the bottleneck, because the wireless
UL of the IoT node is resource-limited compared to the DL of BS. Hence, we focus on the
resource optimization of the wireless UL in FL-aided wireless IoT networks. We assume
that each IoT node transmits its local model parameter through frequency division multiple
access. The achievable rate of IoT node i at the tth round can be written as

rt
i = Bt

i log2(1 +
Pt

i ht
i

σ2 ), (5)

where Bt
i is the frequency bandwidth of IoT node i. Pt

i is the transmitting power of IoT i, ht
i

is the channel gain from IoT node i to BS, σ2 is the power spectral density of the background
noise. For each IoT node i, the local model parameter wt+1

i is encapsulated into a packet
with a size of D in the transmission. Thus, the transmission time from IoT node i to BS can
be written as

Tt
i =

D
rt

i
. (6)

With (6), the outage probability of IoT node i can be expressed as

pt
i = Pr(Tt

i > θ), (7)

where θ is the maximum acceptable latency for the tth round in FL.
For the convenience of readers, the parameters concerning the formulation can be

found in Table 1.
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Table 1. Explanation of Abbreviations.

Notation Definition

M The set of IoT nodes
Bt

i The bandwidth of IoT node i in tth communication round
Si The collected data by IoT node i
Sl The lth training sample of the data
Pt

i The transmitting power of IoT node i in tth communication round
xt

i The node selection indicator of IoT node i in tth communication round
pt

i The outage probability of IoT node i in tth communication round
rt

i The achievable rate of IoT node i in the tth communication round

3. Problem Formulation

To improve the accuracy of the trained model, it is desirable to bring as much data
as possible into the training process [19]. Meanwhile, it is also beneficial to reduce the
consumption of wireless resources in parameter transmission. Hence, the utility function
of the FL-aided wireless IoT network is formulated as

UFL = ∑
i∈M

xt
i b

t
i |Si| − τ ∑

i∈M
xt

i b
t
i Bt

i Pt
i , (8)

where xt
i is the node selection indicator, xt

i = 1 represents that IoT node i is selected to
participate in the tth round training; otherwise, xt

i = 0. bt
i is the outage indicator, bt

i = 1
indicates that the UL of node i experiences an outage; otherwise, bt

i = 0. τ denotes the cost
coefficient. In (8), the first term captures the total amount of training data, while the second
term represents the communication cost, which is formulated by the bandwidth-power
product [20].

Our goal is to optimize the bandwidth, power and client selection by maximizing the
utility function UFL; therefore, the problem is formulated as follows.

P1: max
x,B,P

UFL

s.t. C1: xt
i ∈ {0, 1}, ∀i ∈ M, (9)

C2: ∑
i∈M

Bt
i xt

i ≤ BT , (10)

C3: Pt
i ∈ [0, PM], ∀i ∈ M, (11)

C4: bt
i =

{
1, Tt

i ≤ θ, i ∈ M,

0, Tt
i > θ, i ∈ M.

(12)

Constraint C1 is the binary integer constraint for the client selection indicator. Con-
straint C2 guarantees that the sum of the allocated bandwidth cannot be beyond the total
bandwidth. Constraint C3 ensures that the transmitting power of each IoT node is non-
negative and cannot be beyond the maximal value. Constraint C4 denotes that only when
the transmission time is smaller than the maximum acceptable latency can the transmission
avoid the outage.

4. Algorithm Design

It can be observed that P1 belongs to mixed integer non-linear programming (MINLP);
therefore, its complexity is high. In order to handle this intractable problem, we propose
an alternative direction-based algorithm. In the proposed algorithm, x is first fixed to 1
while B and P are solved from the simplified problem. After that, the obtained B and P are
brought into P1 to solve x.
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4.1. Solving B and P When x Is Given

When x is fixed to 1, it indicates that all the nodes are selected to join the learning
process. In that case, P1 can be simplified to

P2: min
B,P

fP2 = ∑
i∈M

Bt
i Pt

i

s.t. ∑
i∈M

Bt
i ≤ BT , (13)

C3.

Comparing constraint C4 with the objective function fP2, it can be derived that Tt
i = θ

should be satisfied, so by combining (5) and (6), there is

D

θ log2(1 +
Pt

i ht
i

σ2 )
= Bt

i . (14)

By substituting (14) into P2, there is

P3: min
P

fP3 = ∑
i∈M

D

θ log2(1 +
Pt

i ht
i

σ2 )
Pt

i (15)

s.t. C3.

Using the derivation d fP3
dPi

= 0, it can be derived that

Dθ log2(1 +
Pt

i ht
i

σ2 )− DPiθ

ln 2

Pt
i ht

i
σ2

1 + Pt
i ht

i
σ2

= 0. (16)

Hence, we utilize the iteration method in [21] and derive the iteration equation of Pi as

P(k+1)t
i =

log 2(1 + P(k)t
i ht

i
σ2 ) ln 2(σ2 + P(k)t

i ht
i)

P(k)t
i ht

i

, (17)

where k is the iteration index. We denote P∗
i as the optimal value of Pt

i when the iteration
(17) ends. By substituting P∗

i into (14), there is

B∗
i =

D

θ log2(1 +
P∗

i ht
i

σ2 )
, (18)

where B∗
i denotes the optimal value of Bt

i .

4.2. Solving x with B and P

By substituting the obtained B∗
i and P∗

i into P1, it can be simplified as

P4: max
x ∑

i∈M
(|Si| − τB∗

i P∗
i )xt

i (19)

s.t. C1 ∼ C2.

Since P4 belongs to the knapsack problem, we propose a greedy algorithm to solve it
in Algorithm 1.
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Algorithm 1 Greedy Algorithm for P4.

1: Input: M, BT , |Si|, B∗
i , P∗

i
2: Initialize: WT = 0, xi = 0, Φ = M
3: for i = 1 : M do
4: if WT ≤ BT then
5: j = arg maxi∈Φ

(|Si |−τB∗
i P∗

i )
B∗

i
6: WT = WT + B∗

j
7: xj = 1
8: Φ = Φ − {j}
9: end if

10: end for
11: Output: x

With Algorithm 1, the proposed client and resource optimization can be summarized
as Algorithm 2.

Algorithm 2 Client and Resource Optimization for FL-aided IoT.

1: Input: M, ht
i , BT , PM, θ

2: Initialize: x = 1
3: for i = 1 : M do
4: compute Pt

i by iteration (17)
5: compute Bt

i by (18)
6: end for
7: run Algorithm 1 to obtain xt

i
8: Output: x, B, P

The block diagram of the proposed algorithm is presented in Figure 2. We propose
an alternative direction-based algorithm to handle the high complexity of P1. First, x is
fixed to 1, and P1 can be simplified to P2. Then by combining and substituting C4, (5)
and (6) into P2, it can be further simplified to P3. Letting the derivation d fP3

dPi
= 0 in P3,

the iteration Equation (17) is derived. Through the iteration of (17), P∗
i can be obtained.

Then, by substituting P∗
i into (14), B∗

i is also solved. Next, by substituting and into P1,
it can be transformed to P4, which belongs to the knapsack problem. Hence, we adopt
Algorithm 1 to solve x from P4. After that, x, P∗

i and B∗
i are obtained and used for the client

and resource optimization.

P1 P3P2

(17)

P4 x

x is fixed to 1
Combine C4, (5) 

and (6)

Combine (14)

P3 0
i

df

dP
 

*
iP

*
iB

Simplify P1 

with * *
,i iP B

Algorithm 1

Figure 2. Block diagram of the proposed algorithm.
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5. Simulation Results

In this section, the performance of the proposed alternative direction-based algo-
rithm is examined by comparison with two existing benchmarks. Benchmark 1 is the
vanilla FL scheme [2] over wireless IoT networks, among which the federated average
algorithm is adopted. Benchmark 2 is the communication-efficient FL [18], among which
the optimization objective is to maximize the number of clients participating in the FL
process. We consider a FL-aided cellular IoT network within a 1 km × 1 km area, where
the BS is located at the center while 20 IoT nodes are randomly distributed. The channel
model [22] is adopted; that is, 103.2 + 27.3 log10(d) is adopted between BS and the IoT
nodes. The total bandwidth of the network BT = 10 MHz, and the power of background
noise σ2 = −109 dBm. The maximum transmitting power PM = 15 dBm. In the simulation,
the ML model of interest is a convolutional neural network (CNN) [23], which consists of 2
convolutional layers, 1 fully connected layer, and 1 softmax function-based output layer.
Each convolutional layer is 5 × 5 and is connected with a 2 × 2 max-pooling. The fully
connected layer has 500 units. The training data set is MNIST [24], and the original data
from MNIST are randomly partitioned into M pieces and each IoT node is assigned one
piece. Thus, the data distribution follows i. i. d. Here, the amount of training data Si
follows uniform distribution between 1500∼3500 images.

Figure 3 shows the comparisons of network utility as the number of transmission
round increases. It is observed that as the number of transmission round grows, the pro-
posed algorithm outperforms benchmark 2. In fact, in the optimization of benchmark 2,
the objective function considers all the nodes equally, while in the proposed algorithm,
the amount of training data collected by the IoT nodes is considered as the profit weight
in the objective function, which leads to more data being brought into the training under
the same communication rounds. Meanwhile, the proposed algorithm and benchmark 2
are superior to benchmark 1. The reason is that in these two algorithms, the power and
bandwidth are optimized to maintain the learning process, which efficiently reduces the
consumption of communication resources.
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Figure 3. Comparisons of network utility when the number of transmission round increases.
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Figure 4 depicts the loss of the trained model for the compared algorithms. First, as the
number of transmission rounds increases, the loss of the trained model decreases for all
three algorithms. The reason is that with the growth of the transmission round, more and
more data are brought into training, which is helpful to improve the trained parameters.
We found that when the number of transmission rounds is larger than 1000, the proposed
algorithm and benchmark 2 converge to almost the same loss level. This is due to the
fact that with sufficient communication rounds, the two schemes can bring adequate data
into the training. However, recalling the results in Figure 3, it can be deduced that the
consumption of communication resources are different for the two algorithms, and the
proposed algorithm is superior in power and bandwidth saving.
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Figure 4. The loss of the trained model for the compared algorithms.

Figure 5 illustrates the comparisons of the accuracy rate when the number of transmis-
sion rounds increases. It is observed that as the transmission rounds grow, the accuracy rate
of the trained model also increases for all compared algorithms. The proposed algorithm
and benchmark 2 are superior to benchmark 1. The reason is that compared to benchmark
1, the two schemes brought more data into training with limited communication resources.
When the number of transmission rounds is greater than 1000, the performance of the three
algorithms is close, because in that case, sufficient data have been brought into the training
process. The proposed algorithm outperforms benchmark 2 because its objective function
considers both the amount of training data and the consumption of communication re-
sources. As a result, compared to benchmark 2, the proposed algorithm efficiently brings
more data into the training process.

Figure 6 depicts the comparisons of energy consumption per client when the number of
transmission rounds increases. We observed that when the number of transmission rounds
increases, the energy consumption per client also increases for all the three compared
algorithms; therefore, the energy consumption is basically proportional to the number of
transmissions. The proposed algorithm consumes less energy than the two benchmarks
because the proposed optimization only selects the client with a superior wireless channel
state and a large amount of local training data, which reduces the energy consumption
in parameter transmission. On the contrary, benchmark 1 consumes more energy than
benchmark 2 and the proposed algorithm because its client selection is random without
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considering wireless channel state. Additionally, benchmark 2 also consumes more energy
than the proposed algorithm. The reason is that the optimization objective function of
benchmark 2 has not taken the amount of local training data into consideration. This result
indicates that the proposed algorithm achieves superior trade-off between the wireless
channel state and the amount of local training data in parameter transmission.
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Figure 5. Comparisons of accuracy rate when the number of transmission rounds increases.
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Figure 6. Comparisons of energy consumption per client when the number of transmission rounds
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6. Conclusions

In this paper, we have investigated the joint optimization of client selection and com-
munication resource allocation in FL-aided wireless IoT networks. By taking both the
amount of trained data and the consumption of communication resources into considera-
tion, a MINLP was formulated to maximize the utility of the network. Then, an alternative
direction-based algorithm was proposed to solve the problem efficiently. The simulation
results have confirmed that the proposed algorithm is effective in reducing communication
resource consumption and improving learning performance. Furthermore, the results
also revealed that distinguishing node weights based on the amount of collected data
is beneficial for FL. In the future work, we will extend the algorithm to the FL-enabled
scenario with massive multiple-input multiple-output communications, where the higher
dimensional signals make joint optimization of client selection and resource allocation
more challenging.

Author Contributions: Conceptualization, J.Z. and Y.N.; methodology, J.Z. and Y.C.; validation,
J.Z. and Y.N.; formal analysis, J.Z.; algorithm investigation, J.Z. and Y.C.; writing—original draft
preparation, J.Z.; writing—review and editing, J.Z., Y.N. and Y.C.; supervision, Y.N.; project adminis-
tration, Y.N.; funding acquisition, Y.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded in part by the Jiangsu University Philosophy and Social Science
Research Fund under Grant 2022SJYB0517, in part by the Open Research Fund Project of Jiangsu
Provincial Key Laboratory of Wireless Communication at Nanjing University of Posts and Telecom-
munications: Research on Key Technologies of Backscattering Communication Assisted by Intelligent
Reflective Surface, and in part by the Natural Science Foundation on Frontier Leading Technology
Basic Research Project of Jiangsu under Grant BK20212001.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy concerns.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Imteaj, A.; Thakker, U.; Wang, S.; Li, J.; Hadi, A.M. A Survey on Federated Learning for Resource-Constrained IoT Devices. IEEE

Internet Things J. 2022, 9, 1–24. [CrossRef]
2. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL,
USA, 20–22 April 2017.

3. Zhou, Y.; Shi, Y.; Zhou, H.; Wang, J.; Fu, L.; Yang, Y. Toward Scalable Wireless Federated Learning: Challenges and Solutions. IEEE
Internet Things Mag. 2023, 6, 10–16. [CrossRef]

4. Mishra, K.; Puthal, D. Data Sampling in Federated Learning: Principles, Features and Taxonomy. IEEE Commun. Stand. Mag. 2023,
7, 28–33. [CrossRef]

5. Xu, J.; Wang, H. Client Selection and Bandwidth Allocation in Wireless Federated Learning Networks: A Long-Term Perspective.
IEEE Trans. Wirel. Commun. 2021, 20, 1188–1200. [CrossRef]

6. Nishio, T.; Yonetani, R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In Proceedings of
the 2019 IEEE International Conference on Communications, Shanghai, China, 20–24 May 2019.

7. Amiri, M.M.; Gündüz, D.; Kulkarni, S.R.; Poor, H.V. Update Aware Device Scheduling for Federated Learning at the Wireless
Edge. In Proceedings of the 2020 IEEE International Symposium on Information Theory, Los Angeles, CA, USA, 21–26 June 2020.

8. Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S. A Joint Learning and Communications Framework for Federated Learning
over Wireless Networks. IEEE Trans. Wirel. Commun. 2021, 20, 269–283. [CrossRef]

9. Liu, X.; Deng, Y.; Mahmoodi, T. Wireless Distributed Learning: A New Hybrid Split and Federated Learning Approach. IEEE
Trans. Wirel. Commun. 2023, 22, 2650–2665. [CrossRef]

10. Wang, P.; Sun, W.; Zhang, H.; Ma, W.; Zhang, Y. Distributed and Secure Federated Learning for Wireless Computing Power
Networks. IEEE Trans. Veh. Technol. 2023, 72, 9381–9393. [CrossRef]

11. Sun, W.; Li, Z.; Wang, Q.; Zhang, Y. FedTAR: Task and Resource-Aware Federated Learning for Wireless Computing Power
Networks. IEEE Internet Things J. 2023, 10, 4257–4270. [CrossRef]

12. Yao, J.; Yang, Z.; Xu, W.; Chen, M.; Niyato, D. GoMORE: Global Model Reuse for Resource-Constrained Wireless Federated
Learning. IEEE Wirel. Commun. Lett. 2023, 12, 1543–1547. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3095077
http://dx.doi.org/10.1109/IOTM.001.2300099
http://dx.doi.org/10.1109/MCOMSTD.0004.2200076
http://dx.doi.org/10.1109/TWC.2020.3031503
http://dx.doi.org/10.1109/TWC.2020.3024629
http://dx.doi.org/10.1109/TWC.2022.3213411
http://dx.doi.org/10.1109/TVT.2023.3247859
http://dx.doi.org/10.1109/JIOT.2022.3215805
http://dx.doi.org/10.1109/LWC.2023.3281881


Appl. Sci. 2024, 14, 542 12 of 12

13. Zhu, H.; Zhou, Y.; Qian, H.; Shi, Y.; Chen, X.; Yang, Y. Online Client Selection for Asynchronous Federated Learning with Fairness
Consideration. IEEE Trans. Wirel. Commun. 2023, 22, 2493–2506. [CrossRef]

14. Hu, C.; Chen, Z.; Larsson, E.G. Scheduling and Aggregation Design for Asynchronous Federated Learning over Wireless Networks.
IEEE J. Sel. Areas Commun. 2023, 41, 874–886. [CrossRef]

15. You, C.; Guo, K.; Yang H.; Quek, T.Q.S. Hierarchical Personalized Federated Learning over Massive Mobile Edge Computing
Networks. IEEE Trans. Wirel. Commun. 2023, 22, 8141–8157. [CrossRef]

16. Lee, H. Device Selection and Resource Allocation for Layerwise Federated Learning in Wireless Networks. IEEE Syst. J. 2022, 16,
6441–6444. [CrossRef]

17. Wen, W.; Chen, Z.; Yang, H.; Xia, W.; Quek, T.Q.S. Joint Scheduling and Resource Allocation for Hierarchical Federated Edge
Learning. IEEE Trans. Wirel. Commun. 2022, 21, 5857–5872. [CrossRef]

18. Chen, H.; Huang, S.; Zhang, D.; Xiao, M.; Skoglund, M.; Poor, H.V. Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources. IEEE Internet Things J. 2022, 9, 16592–16605. [CrossRef]

19. Chen, Y.; Sun, X.; Jin, Y. Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and
Temporally Weighted Aggregation. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4229–4238. [CrossRef] [PubMed]

20. Li, H.; Wang, K. Weighted Bandwidth–Power Product Optimization in Downlink Femtocell Networks. IEEE Commun. Lett. 2015,
19, 1588–1591. [CrossRef]

21. Yao, J.; Ansari, N. Caching in Energy Harvesting Aided Internet of Things: A Game-Theoretic Approach. IEEE Internet Things J.
2019, 6, 3194—3201. [CrossRef]

22. Liu, X.; Ansari, N. Dual-Battery Enabled Profit Driven User Association in Green Heterogeneous Cellular Networks. IEEE Trans.
Green Commun. Netw. 2018, 20, 1002–1011. [CrossRef]

23. Poudyal, A.; Tamrakar, U.; Trevizan, R.D.; Fourney, R.; Tonkoski, R.; Hansen, T.M. Multiarea Inertia Estimation Using Convolu-
tional Neural Networks and Federated Learning. IEEE Syst. J. 2022, 16, 6401–6412. [CrossRef]

24. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process
Mag. 2012, 29, 141–142. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2022.3211998
http://dx.doi.org/10.1109/JSAC.2023.3242719
http://dx.doi.org/10.1109/TWC.2023.3260141
http://dx.doi.org/10.1109/JSYST.2022.3169461
http://dx.doi.org/10.1109/TWC.2022.3144140
http://dx.doi.org/10.1109/JIOT.2022.3151193
http://dx.doi.org/10.1109/TNNLS.2019.2953131
http://www.ncbi.nlm.nih.gov/pubmed/31899435
http://dx.doi.org/10.1109/LCOMM.2015.2456171
http://dx.doi.org/10.1109/JIOT.2018.2880483
http://dx.doi.org/10.1109/TGCN.2018.2869039
http://dx.doi.org/10.1109/JSYST.2021.3134599
http://dx.doi.org/10.1109/MSP.2012.2211477

	Introduction
	System Model
	Network Model
	Learning Process
	Communication Model

	Problem Formulation
	Algorithm Design
	Solving B and P When x Is Given
	Solving x with B and P

	Simulation Results
	Conclusions
	References

