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Abstract: Tuning tensor program generation involves navigating a vast search space to find optimal
program transformations and measurements for a program on the target hardware. The complexity
of this process is further amplified by the exponential combinations of transformations, especially
in heterogeneous environments. This research addresses these challenges by introducing a novel
approach that learns the joint neural network and hardware features space, facilitating knowledge
transfer to new, unseen target hardware. A comprehensive analysis is conducted on the existing
state-of-the-art dataset, TenSet, including a thorough examination of test split strategies and the
proposal of methodologies for dataset pruning. Leveraging an attention-inspired technique, we tailor
the tuning of tensor programs to embed both neural network and hardware-specific features. Notably,
our approach substantially reduces the dataset size by up to 53% compared to the baseline without
compromising Pairwise Comparison Accuracy (PCA). Furthermore, our proposed methodology
demonstrates competitive or improved mean inference times with only 25–40% of the baseline tuning
time across various networks and target hardware. The attention-based tuner can effectively utilize
schedules learned from previous hardware program measurements to optimize tensor program
tuning on previously unseen hardware, achieving a top-5 accuracy exceeding 90%. This research
introduces a significant advancement in autotuning tensor program generation, addressing the com-
plexities associated with heterogeneous environments and showcasing promising results regarding
efficiency and accuracy.

Keywords: autotuning; deep learning compilers; heterogeneous transfer learning; tensor program
generation

1. Introduction

Deep neural networks (DNN) are crucial in various artificial intelligence domains,
impacting industries and scientific fields. The development of DNNs has been propelled by
advancements in computing hardware and specialized accelerators, enabling the efficient
execution of tensor programs via hand-tuned deep-learning libraries. However, these
libraries often need more scalability. Tensor compilers like XLA [1], TVM [2], and Glow [3]
and TACO [4] facilitate optimizations for input computation graphs [5], offering both
hardware-independent (high-level) and dependent (low-level) optimizations.

A tensor compiler analyzes computation graphs and optimizes mathematical expres-
sions for efficient tensor programs. The evolution of deep neural architectures, from simple
to complex models like Megatron-Turing Natural Language Generation (MT-NLG) [6], has
led to a vast search space for compiler optimizations. Despite automatic tuning of tensor
compilers becoming prevalent, data-driven approaches face challenges due to resource-
intensive methodologies and the need for significant hardware data.

Advancements in hardware, including GPUs and domain-specific accelerators, along
with popular DL frameworks like TensorFlow [7] and PyTorch [8], provide optimized
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kernel support for driving innovations in deep learning. The evolving landscape of DNN
architectures and backend hardware has significantly expanded the search space for com-
piler optimizations. This extensive space, encompassing optimizations like tiling and
vectorization, poses challenges for data-driven approaches in autotuning tensor compil-
ers to generate efficient tensor programs. As automatic tuning of tensor compilers gains
prevalence, methodologies based on data-driven cost modeling and intelligent techniques
necessitate substantial hardware data for effective model learning. However, these datasets
are often experiment-specific in the HPC domain, and resource-intensive techniques face
obstacles when introducing new hardware due to the need to retrain the cost model or
tuner from scratch.

Moreover, a majority of these cost models [9,10] rely on training and testing data
derived from identical probability distributions, with the assumption that the source and
target computer hardware are the same. Yet, in the era of diverse and heterogeneous hard-
ware systems encompassing various generations of CPUs and GPUs, such an assumption
may prove impractical. For example, a tuner trained to optimize tensor programs for a
specific vendor’s CPU in a deep learning workload may not be as effective in generating
efficient tensor programs for a CPU from a different vendor. To address this challenge,
transfer learning has proven beneficial by assimilating context from neural network tasks
and applying it to novel contexts.

Thus, the imperative for a transfer learning-based approach, demanding less data and
swift adaptability to new hardware, becomes evident. Cost models trained on restricted
hardware or specific neural network tasks often lack transfer learning capabilities. Con-
sequently, it proves efficient to map the heterogeneous feature space across devices and
fine-tune only the necessary features rather than undergoing a complete retraining process.
In situations where manually tuned libraries struggle to offer optimized support for new
hardware and operators, autotuners, with their capacity to learn from limited data, can
significantly reduce tuning time and the duration needed for online device measurement
by concentrating on acquiring knowledge about high-performance kernels. Recent studies
have introduced transfer learning methods specifically for the same source and target
hardware [10–12]. We advocate for heterogeneous transfer learning by mapping the kernel
as a feature space in a new context.

This paper builds upon the research conducted by Verma et al. [13,14] and scruti-
nizes the contemporary methods employed for generating tensor programs via transfer
learning, specifically targeting CPU and GPU-based systems. Leveraging probabilistic
and exploratory analyses, we strive to attain comparable results using a reduced dataset
compared to the baseline, employing various split strategies. Our proposed approach
centers on transfer learning to produce efficient tensor programs, aiming for minimized
tuning time and a decreased number of kernel measurements across diverse hardware
platforms. The significant contributions of this paper are as follows:

• Conducted a thorough examination of existing research to extract and assimilate
insights from the combined neural network and hardware features.

• Formulated a proposed methodology grounded in the principles of minimizing kernel
measurements and leveraging efficient transfer learning.

• Implemented an optimized tuner based on the aforementioned key points and show-
cased results for heterogeneous transfer learning. The outcomes demonstrated com-
parable or improved mean inference time, accompanied by a noteworthy 3×–5×
reduction in tuning time and up to a 53% reduction in dataset size.

The remainder of the paper is organized as follows: Section 2 gives the requisite
background to understand the problem and presents the related work in this area. Section 3
describes the proposed methodology used in the study. Section 4 discusses experimentation
and results. Section 5 provides a conclusion and potential future steps.
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2. Background and Related Work

Autotuning of tensor programs poses a significant challenge due to the time-consuming
nature of the auto-scheduling process. Tuning can take several hours for a DNN model,
depending on factors such as program complexity and available hardware resources. This
extended tuning duration becomes a hurdle for timely deployment, as achieving the best
inference times requires thoroughly exploring the schedule space. Methods to shorten the
search process, like restricting the tuner’s operation time or focusing on tuning a part of the
model’s kernels, come with trade-offs. Users need to consider the balance between potential
improvements in performance and the reduction in tuning time. The primary challenge in
tensor program autotuning is the time-intensive measurement of tensor program latency.
This process involves multiple steps, network transfers, compilation complexities, and
the need for repetitive measurements to ensure accuracy. These challenges highlight the
complexity of autotuning tensor programs. In this section, we discuss previous work on im-
proving the effectiveness and efficiency of tuning tensor programs, specifically addressing
the requirements of datasets and tuning time.

2.1. Cross-Device Learning

The search space in cross-device learning is vast, spanning from orders of millions
(CPU) to billions (GPU), resulting in a considerable search space and associated high
costs in terms of search time. Transferring knowledge from auto-scheduled pre-tuned
kernels to untuned kernels holds significant promise in addressing these challenges. As
discussed in the literature, various solutions have been proposed to tackle different aspects
of transfer learning [12]. Gibson [12] and Verma et al. [15] have classified tasks into classes
to enhance optimization selection. Mendis et al. [16] employ a hierarchical LSTM-based
approach, predicting throughput based on the opcodes and operands of instructions in
a basic block. Their proposed solution demonstrates portability across various processor
micro-architectures. In another study [17], a cost model query optimizer is utilized to
enhance resource utilization and reduce operational costs. Zheng et al. [18] introduce an
end-to-end pipeline to optimize synchronization strategies based on model structures and
resource specifications, thereby simplifying data-parallel distributed machine learning
across devices. In our work, we propose an efficient dataset pruning technique to learn joint
kernel and hardware features. This approach facilitates streamlined tuning by focusing on
prominent kernels, contributing to enhanced efficiency in the learning process.

Gibson et al. [12] introduce a novel approach to reuse auto-scheduling strategies
among tensor programs efficiently. Specifically, they explore collections of auto-scheduling
strategies derived from previously optimized deep neural networks (DNNs) and lever-
age them to enhance the inference efficiency of a new DNN. A comparative evaluation
is conducted, contrasting the efficacy of the proposed approach with the state-of-the-art
auto-scheduling framework known as Ansor. The proposed method capitalizes on the
inherent similarities found within kernels that encompass identical operations but exhibit
diverse data sizes. This similarity enables the seamless reuse of scheduling strategies across
different tensor programs, resulting in a notable reduction in both time and computational
expenses associated with the optimization process. Notably, this investigation focuses ex-
clusively on the CPU platform and does not encompass hardware-specific characterizations
when selecting heuristics for transfer tuning. Furthermore, the authors limit their selection
of kernels to those derived from networks within the same architectural class, omitting the
consideration of potential knowledge transfer between networks of distinct architectures
or hardware configurations.

In a multi-task approach [19], the authors introduce a novel approach to cost model-
ing for autotuning tensor program generation using multi-task learning. This approach
involves extracting features from schedule primitives obtained via offline measurements.
By doing so, the model gains valuable insights from a wide range of hardware and network
configurations. Additionally, the authors employ NLP regression techniques to facilitate
the automation of scheduling decisions. To address the complexity of the problem, they
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structure it as a multi-task learning framework. Each task corresponds to a specific hard-
ware platform for a given tensor program. This innovative approach allows for improved
performance even with a limited dataset. In contrast, our approach builds on top of their
approach. We employ probabilistic sampling techniques to curate the dataset, jointly fo-
cusing on the FLOPs and execution time of the kernels. During the fine-tuning process,
we prioritize tasks with high significance, guided by prior measurements. This strategy
sets our approach apart from the one presented by the authors, providing a unique and
effective method for tackling the autotuning challenge.

Further, there are approaches [20] employing model distillation as a technique for
segregating both transferable and non-transferable parameters. The authors introduce a
novel design inspired by the lottery ticket hypothesis, pinpointing features that can seam-
lessly transfer across different hardware configurations via domain adaptation. It is worth
noting that this work stands among the pioneering efforts in harnessing transfer learning
for such purposes. The proposed approach can automatically discern the transferable,
hardware-agnostic parameters of a pre-trained cost model. It accomplishes this feat via
cross-device cost model adaptation, achieved through fine-tuning, and does so within
a notably abbreviated search time for a new device. Notably, this approach facilitates
cross-device domain adaptation for a trained cost model by updating the domain-invariant
parameters during online learning. This innovation carries significant implications, partic-
ularly in enhancing the efficiency of the autotuning process and elevating the end-to-end
throughput of tuned tensor programs on the target device. As with any approach, there
are certain limitations to consider. In this case, the method does not address knowledge
transfer from cross-subgraph tensor optimization. Nevertheless, the authors acknowledge
this as an area for future exploration and development.

2.2. Machine Learning-Based Autotuners

Machine learning approaches for optimizing tensor programs [9,21–27] are heav-
ily researched for tensor compilers and deep learning workloads [5,28]. The work from
Zheng et al. [29] generates tensor programs for DL workloads by exploring optimization
combinations through a hierarchical search space and optimizing subgraphs with a task
scheduler. The use of LSTM to sequence optimization choices [30] has been explored. More-
over, Whaley et al. [31] automate generating and optimizing numerical software (version
3.6, https://www.netlib.org/atlas/, accessed date on 4 January 2024) for processors with
deep memory hierarchies and pipelined functional units, making it adaptable across server
and mobile platforms.

Additionally, authors have employed reinforcement learning (RL) in various works.
Mendis et al. [32] investigate transforming the integer linear programming solver into
a graph neural network-based policy for auto-generating vectorization schemes. Also,
domain-specific compilers such as COMET [33], JAX [34], and NWChem [35] are under
active research for optimizing program execution. Lately, Ryu et al. [10] have proposed a
one-shot tuner for the tensor compilers. Its limitation is that it considers only task-specific
information, which prevents it from being applied for transfer learning. On the other hand,
we employ neural network and hardware platform information so that the autotuner can
learn better.

Bi et al. [36] introduce a novel approach to tensor program optimization, explicitly
focusing on biased-diversity-based active learning. The primary objective is to streamline
the training process while maintaining a consistent program performance optimization
level comparable to the baseline Tenset. They implement a unique biased-diversity-based
diversity scheme within their framework to achieve this. This scheme addresses a critical
issue in active learning: the problem of overestimation when utilizing brute-force sampling
techniques. The framework comprises two components: AL-based model pre-training
and pre-trained-model-based program optimization. However, it is essential to note
that this framework employs random program sampling without considering hardware
characterization. Subsequently, these sampled programs are executed on the hardware to

https://www.netlib.org/atlas/


Appl. Sci. 2024, 14, 513 5 of 20

collect performance measurements. To generate unlabeled program datasets, the framework
randomly samples transformed tensor programs from predefined optimization tasks. The
authors employ a diversity-based selection approach to balance the distribution of these
samples and, in particular, increase the proportion of high-performance programs. This
strategy is designed to enhance the diversity of selected programs’ performance, ultimately
contributing to the effectiveness of the active learning process.

In another research, Liu et al. [37] address the challenge of latency estimation using
evolving relational databases. To achieve this, they introduce two integral components:
the Neural Network Latency Query System (NNLQ) and the Neural Network Latency
Prediction System (NNLP). The central innovation of this system lies in its capacity to
automatically convert deep neural networks (DNNs) into executable formats based on prior
knowledge derived from offline latency measurements. The Latency Querying System
employs a Graph Neural Network (GNN)-based foundation to extract cohesive graph
embeddings for various DNN models. It also incorporates a multi-headed approach to
facilitate concurrent latency prediction across multiple hardware platforms. This framework
further empowers users to discern the supported tensor operators on a given hardware
setup while considering achievable latency and the tradeoff between latency and accuracy.
However, it is essential to note that the proposed system primarily functions as a querying
tool and does not extend to providing fine-grained control over scheduling processes to
optimize either latency or accuracy. Consequently, the influence of auto-scheduling remains
outside the scope of its functionality.

2.3. Hardware-Aware Autotuners

In addition to the works mentioned earlier, we examined specific studies to understand
hardware-aware autotuners [38,39], as explained below.

The current state-of-the-art deep learning compilers undertake optimizations in a
two-step fashion, involving high-level graph optimizations followed by operator-level opti-
mizations. In this study [40], researchers shift their focus towards a unified optimization
approach. They introduce a framework that incorporates a versatile transformation module
designed to enhance the layouts and loops via fundamental functions. Additionally, this
framework incorporates an autotuning module to facilitate these optimizations. To address
the overhead associated with layout transformations, they propose a mechanism known as
layout propagation. Under this mechanism, the upstream operator assumes responsibility
for accommodating varying input layouts. In cases of operator fusion, it extends these new
layouts downstream throughout the computation graph. This propagation mechanism
manages the reconstruction of loops and aligns the loop nests of multiple operators for
fusion with minimal additional computational cost. Furthermore, they tackle the challenge
of search space reconstruction in the autotuning process by dividing it into two distinct
stages: joint and loop-only stages. During the joint stage, the system explores optimal
tensor layouts, while the loop-only stage exclusively focuses on fine-tuning loops while
maintaining the previously determined layouts. To streamline the search space explo-
ration, they employ effective pruning strategies. First, they restrict the creation of layout
transformation spaces to tensors accessed by complex operators. Second, they identify a
promising subspace by tailoring a tuning template for each tensor accessed by complex
operators. These templates are constructed based on a comprehensive analysis of layout
optimization, considering both operator and hardware characteristics. It is worth noting
that this template-based approach aims to address scalability concerns associated with
manually created templates, similar to the challenges faced by the auto-tvm approach.

On the other hand, Ahn et al. [41] focus on the mathematical representation of GPUs’
hardware specifications, a fundamental aspect of the study. The approach here embraces
a strategy rooted in hardware awareness, bringing forth an intelligent and strategic ex-
ploration and sampling process. This method is carefully designed to guide the search
algorithm towards regions within the search space with a higher potential for improving
performance outcomes. The initial step entails the generation of prior probability distri-
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butions that encapsulate various dimensions within the expansive search space. These
distributions subsequently become invaluable inputs to the Bayesian optimization frame-
work, enhancing its decision-making capabilities. Moreover, a vital element of this work
is integrating a lightweight neural function that is pivotal in striking the delicate balance
between exploration and exploitation—a fundamental challenge in optimization tasks.
The authors’ innovation extends to applying the Meta-Optimizer, a powerful tool that
orchestrates achieving an optimal equilibrium between exploration and exploitation. This
blend of techniques seamlessly incorporates hardware awareness into the Hardware-Aware
Exploration module, culminating in an approach that demonstrates a keen understanding
of GPU hardware characteristics while optimizing the search process.

Taking a different approach, Li et al. [42] have proposed an autotuning framework that
generates tensor programs by exploiting the subgraph similarities. The framework intro-
duces a novel approach by harnessing subgraph similarities and systematically organizing
them into subgraph families. Within this context, a significant enhancement is achieved
via the development of cost models built on a per-family basis, improving the precision in
estimating high-potential program candidates. This advancement contributes significantly
to the overall optimization of tensor program generation. A notable achievement of this
framework is its ability to reduce the number of program candidates subjected to resource-
intensive hardware measurements. This is accomplished by utilizing highly accurate cost
models on a family basis, without compromising the quality of the search. Furthermore,
the literature survey highlights the authors’ in-depth analysis of the accuracy of these
cost models regarding various subgraph attributes, including the number of operators,
core operators, and operator sequences. The findings presented in this study shed light
on the framework’s effectiveness and its potential impact on optimizing tensor program
generation, making it a valuable contribution to the field of automated program tuning.

Lastly, Mu et al. [43] introduce a specialized autotuner for deep learning operators
that adapts to hardware, particularly tailored for tensors with dynamic shapes. They use
micro-kernels akin to DietCode, optimized explicitly for dynamic shape tensors. While
DietCode primarily focuses on tensor shapes, HAOTuner goes further by considering the
available hardware resources. They present an algorithm for selecting hardware-friendly
micro-kernels, reducing the time required for tuning. Additionally, they offer a model
transfer solution that enables the rapid deployment of the cost model on diverse hardware
platforms. The evaluation of HAOTuner covers six different GPU types. However, it is
important to note that their proposed method is constrained by hardware architecture
compatibility, as it exclusively functions with CUDA-enabled hardware. This limitation
restricts its applicability for transfer learning across various hardware architectures.

3. Design and Implementation

In this section, we present our methodology as follows: Section 3.1 offers a compre-
hensive overview of the entire flow and individual components, Section 3.2 delves into
the proposed optimizations and opportunities for efficient heterogeneous transfer learning
with a reduced dataset, and Section 3.3 details the adaptive autotuner architecture.

3.1. End-to-End Execution Steps of the Framework

Figure 1 presents a comprehensive overview of our framework’s end-to-end work-
flow. Our approach is based on TVM v0.8dev0, serving as the foundational platform for
conducting heterogeneous transfer learning. The framework is designed to facilitate the
seamless transition of computational models between different hardware environments. In
this process, the user interacts with the framework via the TVM APIs, engaging in a series
of key steps, as illustrated by the circled numbers:

1. The user initiates the workflow by providing the computational framework in a
supported format, such as TensorFlow, ONNX [44], or PyTorch.

2. The framework undertakes high-level optimization and subgraph partitioning, result-
ing in the generation of smaller subgraphs. These subgraphs constitute the candidates
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for the search space for subsequent feature extraction operations. Measurements
are performed on these subgraphs for a particular hardware configuration. The
outcomes are subsequently stored in individual JSON [45] files for each subgraph, en-
compassing schedule primitive hints and the execution time for each auto-generated
tensor program.

3. Domain-specific information, encompassing details like kernel dimensions and tensor
operations, is preserved from the subgraphs, forming a distinctive feature set.

4. For each data-point entry or kernel, critical hardware information is meticulously
recorded, including hardware architecture, maximum thread count, register allocation,
and threads per block. This data constitutes the static hardware dataset.

5. A probabilistic and exploratory study is conducted on this feature set to identify
features of significant importance. This hardware characterization plays a pivotal
role in mapping features from the source hardware to the target hardware, ensuring
compatibility. The autotuner is trained using this dataset, extending the principles of a
one-shot tuner [10]. This training equips the autotuner with the capability to generate
tensor programs on the target device automatically, with or without retraining.

6. For users seeking fine-tuning capabilities, the framework offers the option to fine-tune
the autotuner using online hardware features. Experimental work includes selective
task retraining and a methodology inspired by the Lottery Ticket Hypothesis-based
technique [20]. Our approach reduces retraining time and minimizes the dataset
size required for fine-tuning. The utilization of attention heads supports memory-
augmented fine-tuning via bidirectional LSTM [46]. Given the framework’s attention-
based training strategy, the autotuner model undergoes a comprehensive training
phase only once, mitigating the necessity for extensive data on the target device for
full retraining.

7. Following the execution of steps 5 and 6, a set of top-k tensor programs is generated.
To facilitate user selection based on specified metrics, we employ ranking loss. This
ensures that users have the flexibility to choose a tensor program from the top-k list
according to their preferences and the defined metric.

8. Finally, the proposed tensor programs are deployed on the target hardware, and their
performance is rigorously evaluated.

This end-to-end workflow represents a systematic and efficient approach to enabling
the seamless transfer of computational models across different hardware environments.
The framework’s ability to adapt and fine-tune for specific hardware configurations offers
enhanced flexibility and performance optimization.

Figure 1. Comprehensive Insight into the Proposed Framework.

In our study, we utilized the TenSet dataset [11] as the foundation for our baseline
measurements. According to the assertions made by the dataset’s authors, it is positioned as
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a resource suitable for generating tensor programs via the application of transfer learning.
The dataset’s strength lies in its diversity, fostering generalization and encompassing
performance data points across multiple platforms, including CPUs from Intel and ARM,
as well as NVIDIA GPUs. Section 3.3 delves into the discussion of how these foundational
characteristics make the dataset conducive for effective transfer learning using the proposed
autotuner. Further details about the dataset can be found in [11]. For a concise overview of
the hardware platforms and their associated characteristics considered in our investigation,
refer to Table 1.

Table 1. Compute Hardware Description.
Hardware Platform Processor Remarks

Intel Platinum 8272CL @ 2.60 GHz CPU 16 cores, AVX-512
AMD EPYC 7452 @ 2.35 GHz CPU 4 cores, AVX-2
ARM Graviton2 CPU 16 cores, Neon
NVIDIA Tesla T4 GPU Turing Architecture
NVIDIA GeForce RTX 2080 GPU Turing Architecture
NVIDIA A100 GPU Ampere Architecture
NVIDIA A40 GPU Ampere Architecture
NVIDIA H100 GPU Hopper Architecture
Intel Gold 5115 @ 2.40 GHz CPU 40 cores, Xeon
ARM A64FX CPU 48 cores, aarch64

3.2. Hardware-Aware Kernel Sampling

We conducted an extensive and experimental analysis of the TenSet dataset to gain
insights into the neural network and hardware features influencing metrics such as flops,
throughput, and latency. The dataset comprises over 13,000 tasks derived from 120 net-
works, measured on six distinct hardware platforms. These measurements include through-
put and latency, considering various neural network and hardware parameters, resulting
in a dataset encompassing over 52 million measurements. In our analysis (as detailed in
Table 1), we focused on the first four platforms to understand tasks, the applied schedules,
associated performance, and hardware parameters. The latter half of the hardware serves
for evaluating and establishing the viability of cross-device or transfer learning.

In addition to neural network details such as tensor operations and input/output
shapes, hardware parameters (as presented in Table 2) are also considered. While we
specifically present hardware features for CPU and GPU, the approach can be extended to
other heterogeneous devices. Through dataset analysis, we observed that high-performing
kernels often correlate with specific hardware parameters. Employing probabilistic sam-
pling helps mitigate biased kernel selection, preventing the inclusion of kernels that might
lead to lower FLOPs or result in invalid computation graphs. We rigorously filtered out
measurements and kernels deemed invalid or low performing. Notably, our observations
underscore the impact of large search spaces, selected via random sampling of kernels,
causing performance regression in existing cost modeling practices.

Table 2. Hardware Parameters Considered While Training.

Hardware Parameter Definition Hardware Class Value (Bytes)

cache_line_bytes chunks of memory handled by the cache CPU; GPU 64
max_local_memory_per_block maximum local memory per block in bytes GPU 2,147,483,647
max_shared_memory_per_block maximum shared memory per block in bytes GPU 49,152
max_threads_per_block maximum number of threads per block GPU 1024
max_vthread_extent maximum extent of virtual threading GPU 8
num_cores number of cores in the compute hardware CPU 24
vector_unit_bytes width of vector units in bytes CPU; GPU 64, 16
warp_size thread numbers of a warp GPU 32
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In our efforts to streamline the tensor program generation, we strategically pruned the
expansive search space. Relying on a search task driven by measurements from randomly
sampled kernels proves unreliable, particularly when the search space lacks richness. Our
observations underscore that certain hardware parameters, such as the number of cores,
exhibit less significance as features compared to flop count, especially in relation to latency.
This arises from the necessity for diverse kernel combinations and hardware features within
the dataset under consideration.

Consequently, we conducted an evaluation focusing on the interplay of FLOPs’ count,
kernel shape, and execution time for various tensor operations on a specific hardware
platform. The outcomes, detailed in Table 3, reveal similar behavior between CPUs and
GPUs in selecting optimal kernel shapes. However, a notable discrepancy in execution
time emerges based on the compute hardware. In response, we strategically sampled
kernels by jointly exploring tensor operations, kernel shapes, and hardware parameters,
prioritizing FLOPs’ count and execution time. The initial set of kernels, extracted from six
diverse neural networks to encompass prominent classes, is a dynamic list that continues
to evolve. We are actively developing an intelligent algorithm to efficiently accommodate
new network classes as they are introduced. Our experimentation, employing metrics
such as rmse, Equation (1), and ranking loss, Equation (2), has led us to favor rmse for
performance evaluation in our tuner. Notably, the analysis of the costs associated with the
selected kernels’ measurement records reveals the presence of local minima. To circumvent
this, we used simulated annealing within TVM. However, the computational intensity of
this approach results in a significant time investment to identify global optima. Addressing
this, we have identified optimization opportunities for future work.

RMSE =

√√√√ 1
N

N

∑
i=1

(predictedi − truei)2 (1)

where
RMSE is the Root Mean Squared Error;

N is the number of observations;

predictedi is the predicted value for observation i;

truei is the true (actual) value for observation i.

RankingkLoss(preds, labels, k, ε, µ, σ) = −∑
i,j

log2

[
(σ · (predssorted[i, j]

− predssorted[i, j′]))weightsi,j,j′
] (2)

where
preds is the matrix of predicted values;

labels is the matrix of true labels;

k is the top-k ranking factor;

ε is a small constant to prevent numerical instability (e.g., 1× 10−10);

µ is a hyperparameter controlling the behavior of the loss;

σ is a hyperparameter controlling the behavior of the sigmoid function;

predssorted is the matrix of sorted predicted values;

weightsi,j,j′ is calculated using the Ranking scheme.
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Table 3. Neural Network And Hardware Features’ Characterization.

Sampled Kernels
#Kernel_Shapes Max GFLOPs

Tensor Shape
Mean Execution Time (ms)

CPU GPU CPU GPU EPYC-7452 Graviton2 Platinum-8272 T4

T_add 229 388 8.59 8.59 [4, 256, 1024] 180.97 81.25 92.86 4.31
Conv2dOutput 60 27 1.20 1.07 [4, 64, 64, 32] 40.94 14.21 19.11 2.07
T_divide 24 69 0.003 0.003 [8, 1, 1, 960] 0.07 0.05 0.11 0.10
T_fast_tanh 9 9 0.008 0.008 [4, 1024] 0.43 0.43 0.53 0.97
T_multiply 105 150 8.92 8.92 [4, 256, 4096] 320.74 48.08 95.65 0.55
T_relu 300 1257 73.46 73.46 [4, 144, 72, 8, 64] 0.52 5.70 0.72 0.23
T_softmax_norm 27 27 0.016 0.016 [4, 16, 256, 256] 1.01 2.78 4.08 0.19
T_tanh 9 9 0.905 0.629 [8, 96, 96, 3] 5.55 33.48 50.55 0.16
conv2d_winograd 0 33 NA 0.868 NA NA NA NA 0.93

CPU: EPYC-7452, Graviton2, Platinum-8272; GPU: T4; NA: operator is not present in the considered CPU
dataset; #Kernel_Shapes: Number of diverse-shaped kernels in the sampled kernel; measured on Nvidia GeForce
RTX 2080.

3.3. Autotuner Architecture

We have employed an attention-based [47] tuner to experiment with a joint neural
network and hardware features as part of the task. In addressing the generation of tensor
programs with reduced latency, it is crucial to recognize the convex nature of the problem,
rendering search-based methodologies particularly useful. Leveraging schedule informa-
tion from the comprehensive TenSet dataset, we focused on feature extraction, with the
length of the schedule primitive serving as the designated sequence length. The internally
processed features are subsequently encoded using the one-hot encoding technique, facili-
tating their integration into the embedding layer and determining the overall embedding
size. As highlighted earlier in the discourse, our analysis targeted the identification of
high-performing tensor kernels. Notably, our findings reveal a prevalence of these high-
performing kernel tensor program schedules across both CPU and GPU architectures,
underscoring their cross-platform efficacy.

In outlining our model architecture, we employ an attention mechanism (Equation (3))
as the core component to grasp contextual features. This mechanism operates simultane-
ously, allowing for efficient parallel execution. Our model undergoes training using the
existing dataset, and in the event of encountering new hardware, we fine-tune the learned
autotuner to adapt to the updated conditions by learning new weights. To facilitate transfer
learning and accommodate updates through fine-tuning, we incorporate multiple heads
(Equation (4)), each tailored to the specific hardware parameters obtained from the system
under test. This approach enhances the adaptability and performance of our model across
diverse hardware configurations.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (3)

where
Q, K, and V are the query, key, and value matrices, respectively;

dk is the dimension of the key vectors.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (4)

where
headi = Attention(QWQi, KWKi, VWVi)

WO is the output transformation matrix.

We designed our autotuner for efficient attention-based processing with applications in
multiple tasks. The architecture incorporates a sequential encoder, composed of four linear
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layers with ReLU activation functions, to capture and transform input features. An attention
mechanism is employed, allowing for parallel execution and facilitating the extraction of
contextual information. The attention output is enhanced via residual connections in a series
of residual blocks, each containing two linear layers followed by ReLU activation and batch
normalization. This design choice aims to mitigate vanishing gradient issues and enhance
training stability. The model further incorporates multiple heads, each tailored to specific
hardware parameters, through which transfer learning and fine-tuning are facilitated.
Notably, additional layers, including linear transformations and batch normalization, are
introduced in the heads to increase model depth and expressiveness. This augmented depth,
along with the inclusion of batch normalization, contributes to improved convergence
during training. Overall, the model is structured to adapt effectively to varying hardware
configurations, leverage attention mechanisms for contextual understanding, and harness
the benefits of both residual connections and batch normalization for enhanced performance
in multitask learning scenarios.

The training methodology encompasses the optimization process for the proposed
autotuner, leveraging an attention-based architecture. The model is initialized with tailored
configurations featuring four hidden layers, and parallelized training is achieved via the
application of torch.nn.DataParallel. The chosen optimizer is Adam, complemented by
an associated learning rate scheduling strategy. After testing multiple configurations, we
chose the near-optimal values based on empirical evaluation, including a batch size of 16,
200 epochs, and other hyperparameters listed in Table 4.

Table 4. Autotuner’s Hyperparameters.
Hyperparameter Value

Batch 16, 32, 64, 256, 512
Epoch 100, 200, 400
Learning Rate 1× 10−4

Attention Head (fine-tuning) 6
#Unrolling Steps for Attention Head 2
Optimizer Adam

4. Evaluation
4.1. Experimental Setup

Platform: Our study experiment used heterogeneous architectures like Nvidia GPUs-
H100, A100, A40, ARM A64FX, and Intel Xeon CPU. We chose different generations of GPUs
and CPUs to study the impact of architectural differences. We chose different generations
of GPUs and CPUs to study the effects of architectural differences.

Dataset and Model: This study employs TVM v0.8dev0 and PyTorch v0.7.1 for its im-
plementations. As baseline tuners, we utilized XGBoost (XGB) [48], multi-layer perception
(MLP) [49], and LightGBM (LGBM) [50]. Our proposed tuner introduces an attention-based
multi-head model, as elaborated in Section 3.3. The baseline TenSet dataset [11] utilized
in this study comprises over 51 million measurement records. These records pertain to
2308 subgraphs extracted from 120 networks. The baseline dataset for each subgraph
contains measurements on various hardware, as delineated in Table 1.

Baseline Measurements: For the baseline, we used the TenSet dataset, commit 35774ed.
Based on the previous work [11], we have considered 800 tasks with 400 measurements as
the baseline. We used Platinum-8272 for the CPU dataset and Nvidia Tesla T4 for the GPU
dataset. Further, we took record measurements on A64FX and H100 for the autotuner’s
extensive feature analysis and evaluation.

4.2. Dataset Sampling

A measurement record corresponding to a task in the dataset is encapsulated within
JSON files, delineating three crucial components: first, the input information and the
schedules generated (i); second, the measured performance across multiple runs (r); and
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finally, the version information (v). The concrete manifestation of such a measured record
for a randomly chosen task is depicted in Listing 1. This exemplar showcases an intricate
array of details, including explicit hardware specifications such as “llvm-keys =arm_cpu,
cpu-device=arm_cpu-link-params=0”, intricate tensor information, and the automatically
generated scheduling primitives (e.g., CI, SP, etc.), along with their respective parameters.
To rectify erroneous measurements, we incorporate warm runs for each measurement and
meticulously exclude any configurations deemed invalid. In Table 5, a comprehensive list of
scheduling primitives, derived from measurements conducted on hardware utilizing TVM,
is presented. Each abbreviation corresponds to a specific scheduling step, offering a succinct
representation of the intricacies involved in the optimization process. These primitives
encapsulate a range of tasks, from annotation (AN) and fusing (FU) steps to pragma (PR)
application and reordering (RE) procedures. Notably, the table encompasses more intricate
steps such as storage alignment (SA), compute at (CA), and compute in-line (CI) steps,
highlighting the nuanced nature of the optimization strategies employed. Additionally,
the inclusion of cache-related steps such as cache read (CHR) and cache write (CHW)
underscores the importance of memory considerations in optimizing performance. A
schedule constitutes a compilation of computational transformations, often referred to as
schedule primitives, that are applied to the loops within a program, thereby modifying the
sequence of computations. Diverse schedules contribute to varying degrees of locality and
performance for tensor programs. Consequently, it becomes imperative to delve into the
search space and autonomously generate optimized schedules to enhance overall efficiency.

Listing 1. A Sample Measured Record On A64FX.
{

‘‘i’’: [[‘‘[\‘‘ fb4a01c3da78ae0da8352ece38076266\’’, 1, 8, 8, 960, 5, 5,
960, 1, 1, 1, 1, 960, 1, 8, 8, 960]’’, ‘‘llvm -keys=arm_cpu ,cpu -device=
arm_cpu -link -params=0’’, [24, 64, 64, 0, 0, 0, 0, 0], ‘‘’’, 2, []], [[],
[[‘‘CI’’, 10], [‘‘CI ’’, 9], [‘‘CI’’, 8], [‘‘CI ’’, 7], [‘‘CI’’, 6], [‘‘CI

’’, 5], [‘‘SP’’, 3, 0, 1, [1, 1, 1], 1], [‘‘SP’’, 3, 4, 8, [2, 2, 2], 1],
[‘‘SP’’, 3, 8, 8, [4, 1, 2], 1], [‘‘SP’’, 3, 12, 960, [16, 12, 1], 1],

[‘‘SP’’, 3, 16, 5, [1], 1], [‘‘SP ’’, 3, 18, 5, [1], 1], [‘‘RE’’, 3, [0,
4, 8, 12, 1, 5, 9, 13, 16, 18, 2, 6, 10, 14, 17, 19, 3, 7, 11, 15]], [‘‘
CA ’’, 1, 3, 4], [‘‘FU ’’, 3, [0, 1, 2, 3, 4]], [‘‘AN ’’, 3, 0, 3], [‘‘FU’’,
11, [0, 1, 2, 3]], [‘‘AN ’’, 11, 0, 3], [‘‘PR’’, 3, 0, ‘‘

auto_unroll_max_step$64 ’’], [‘‘AN ’’, 3, 15, 2]]]],
‘‘r’’: [[0.000601874 , 0.000620504 , 0.000601334 , 0.000600345 , 0.000598904 ,
0.000599284 , 0.000599315 , 0.000600214] , 0, 6.08456 , 1700954668] ,

‘‘v’’: ‘‘v0.6’’
}

We conducted a comprehensive exploration of hardware measurements, extending
our analysis to encompass two additional hardware platforms: NVIDIA’s H100 and ARM
A64FX. This endeavor aimed to unravel valuable insights from the recorded data, subse-
quently employed as embeddings in our attention-based autotuner. The cumulative count
of measurements amassed across both hardware platforms reached an impressive total
of 9,232,000.

On the H100 hardware, the automatically generated schedule sequence lengths exhib-
ited a diverse spectrum, spanning from 5 to 69. Conversely, within the measured records
on the A64FX platform, the sequence lengths manifested a range between 3 and 54. Note-
worthy variations in the occurrences of schedule primitives within a measured record were
observed, and these intricacies are meticulously documented in the accompanying Table 6.
In this context, “sequence length” refers to the total length of the schedule primitives when
encoded as a string, as illustrated below. The term “total occurrence” denotes the overall
presence of such encoded strings across all 2308 subgraphs. For each individual subgraph,
a comprehensive set of 4000 measurements were systematically conducted.
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Table 5. Explanation of Scheduling Primitives.
Primitive Meaning

AN Annotation Step
FU Fuse Step
PR Pragma Step
RE Reorder Step
SP Split Step
FSP Follow Split Step
FFSP Follow Fused Split Step
SA Storage Align Step
CA Compute At Step
CI Compute In-line Step
CR Compute Root Step
CHR Cache Read Step
CHW Cache Write Step
RF Rfactor Step

To illustrate, an example sequence with a length of five may take the form of FU_SP_AN_
AN_PR or CA_CA_FU_AN_PR, complete with parameter values tailored to the specific kernel.
This exemplar serves as a glimpse into the rich diversity found in the measured records.
Based on these insightful analyses, we have made informed decisions regarding the em-
bedding strategies employed by our autotuner, ensuring a robust and nuanced approach.

Table 6. Top-5 Scheduling Primitive’s Sequence Length and Probabilistic Occurrences.
H100 A64FX

Sequence Length Total Occurrence (%) Sequence Length Total Occurrence (%)

37 46.41 21 20.89
36 12.59 20 20.21
39 5.56 16 11.06
38 5.00 17 8.91
32 4.62 19 7.29

As detailed in Section 3.2, we have conducted sampling on the dataset. Utilizing
data sampling techniques that prioritize the importance of features, particularly in relation
to FLOPs’ count, enabled a reduction of 43% in the GPU dataset and 53% in the CPU
dataset. The evaluation results, presented in Table 7, indicate an overall improvement in
training time.

Table 7. Reduction In Dataset Size And Train-time (by split strategies).

Target Hardware Dataset Size
XGBoost (Train-Time (sec)) MLP (Train-Time (sec)) LightGBM (Train-Time (sec))

Within_Task By_Task By_Target Within_Task By_Task By_Target Within_Task By_Task By_Target

GPU
Baseline 16 G 1504 1440 454 3000 2434 3150 1574 780 4680
Sampled 9 G 1406 1169 339 1968 1655 2464 1175 595 3637

CPU
Baseline 11 G 1490 1265 428 3143 2623 2043 1131 636 3946
Sampled 6.8 G 905 780 354 2091 1672 1270 489 387 2435

During the dataset sampling process, ensuring the precision of the resulting cost model
or tuner trained on the sampled dataset is crucial. Therefore, we conducted a comparison
between the top-1 and top-5 accuracy metrics and the pairwise comparison accuracy (PCA).
To elaborate briefly, when y and ŷ represent actual and predicted labels, the number of
correct pairs, CP, is computed via elementwise xor, followed by elementwise not on y and
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ŷ. Subsequently, we sum the upper triangular matrix of the resulting matrix. The PCA is
then calculated using Equation (5).

PCA = CP/(n ∗ (n− 1)/2); n = len(ŷ) (5)

The cost models trained on both the baseline and sampled datasets exhibited compa-
rable performance.

For a fair comparison, we trained XGB, MLP, and LGBM tuners on both the baseline
and sampled datasets using three distinct split strategies outlined as follows:

• within_task

– The dataset is divided into training and testing sets based on the measurement
record.

– Features are extracted for each task, shuffled, and then randomly partitioned.

• by_task

– A learning task is employed to randomly partition the dataset based on the
features of the learning task.

• by_target

– Partitioning is executed based on the hardware parameters.

These split strategies are implemented to facilitate a thorough and unbiased evaluation
of the tuners under various scenarios. The aim is to identify and select the best-performing
strategy from the aforementioned list.

To prevent biased sampling, tasks with an insufficient number of measurements were
excluded. Additionally, we selected tasks based on the occurrence probability of FLOPs
in tensor operations, as illustrated in Table 3. The latency and throughput of these tasks
were recorded by executing them on the computing hardware. The time-to-train gains
for the sampled dataset are presented in Table 7. Notably, in the case of CPUs, there is a
time-to-train increase of up to 56% for LGBM when utilizing the within_task split strategy
during training. GPUs also exhibit an increase of up to 32%.

4.3. Tensor Program Tuning

In this section, we outline the metrics utilized to demonstrate the efficacy of our
proposed approach in comparison to the baseline.

In Figure 2, the Pairwise Comparison Accuracy (PCA), as defined in Equation (5), is
illustrated for each split scheme, comparing our sampled dataset with the baseline dataset
across NVIDIA A100 GPU and Intel Xeon CPU. Remarkably, the accuracy exhibits minimal
variations with the introduction of the sampled dataset under the 5% error rate. This
consistent trend is observed across various architectures employed in this study.
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Figure 2. Comparing Pairwise Comparison Accuracy Across Hardware. (a) Hardware:
NVIDIA A100; (b) Hardware: Intel Xeon.

In Table 8, the inference times for both baseline and sampled datasets are presented,
considering ARM A64FX CPU, Intel Xeon CPU, NVIDIA A40, A100, H100, and RTX 2080
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GPUs, with and without transfer tuning. The XGBoost tuner was employed for this analysis.
Notably, the sampled dataset demonstrates significant advantages, exhibiting markedly
lower inference times compared to the baseline dataset. The standard deviation in the
reported inference times, both with and without transfer tuning, falls within the range
of 4% to 6% relative to the mean inference time. For additional inference results, includ-
ing those obtained using multi-layer perception (MLP)- and LightGBM (LGBM)-based
tuners, as well as detailed logs for various batch sizes (1, 2, 4, 8) and diverse architectures,
please refer to our GitHub repository (https://github.com/xintin/TransferLearn_HetFeat_
TenProgGen (accessed on 30 November 2023)). The observed trends, favoring the sampled
dataset, remain consistent across different tuners and architectures considered in this study.

Table 8. Inference Time Comparison (Seconds).

Target Hardware
Baseline Dataset Sampled Dataset

W/o Transfer Tuning W/ Transfer Tuning W/o Transfer Tuning W/ Transfer Tuning

A64FX (CPU) 66.81 149.5 58.7 112.43
Xeon (CPU) 91.34 282.2 85.22 189.25
A40 (GPU) 627 416 599 175
A100 (GPU) 578 391 585 400
H100 (GPU) 128.12 67.30 93.42 54.25
RTX2080 (GPU) 18.67 27.68 17.37 841.74

4.4. Evaluation of Heterogeneous Transfer Learning

Various transformations can be implemented on a given computation graph, which
comprises tensor operations along with input and output tensor shapes, thereby influenc-
ing their performance on the target hardware. For instance, consider the conv2D tensor
operation, where the choice of tiling is contingent upon whether the target hardware is
a GPU or CPU, given the constraints imposed by grid and block size in GPUs. A tiling
size deemed appropriate for a CPU may be unsuitable for a GPU, and not all combinations
yield optimal performance. To identify jointly optimized schedules for a kernel and hard-
ware, we leveraged the TVM auto-scheduler. Subsequently, we applied these optimized
schedules to similar untuned kernels using an attention mechanism. To streamline the
process, we organized the kernels by their occurrences and total contribution to the FLOPs’
count, ensuring efficiency. The tuning process focused on refining a select few significant
tensor operations.

We conducted an evaluation of our methodology using three architecturally distinct
networks on both CPU and GPU. In contrast to the baseline approach, where tasks were
randomly tuned, we specifically selected tasks that contribute more to the FLOPs’ count.
As outlined in Table 9, our approach achieved mean inference times comparable to the
baseline, while significantly reducing tuning time. On CPU, we observed a reduction in
time of 30% for ResNet_50, 70% for MobileNet_50, and 90% for Inception_v3. However,
ResNet_50 experienced a performance regression due to a lack of matching kernel shapes
in the trained dataset for the given hardware. On the GPU, we achieved a remarkable
80–90% reduction in tuned time across all networks. The greater reduction in tuning time
for GPUs can be attributed to the utilization of hardware intrinsics, leveraging the inherent
higher parallelism in GPUs compared to CPUs. The standard deviation associated with the
reported mean inference time in Table 9 ranges from 5% to 7%. In this evaluation, the tuner
was trained on features extracted from neural networks and hardware.

We conducted a thorough comparison of tuners based on the convergence epochs,
considering both the baseline and sampled datasets. Following the design principles
of TVM’s auto-scheduler, it is anticipated that tuners like XGB and MLP will converge
after a substantial number of trials. To ensure an equitable evaluation, we assessed their
convergence in terms of epochs. As depicted in Figure 3, the convergence patterns for
XGB, MLP, and LGBM tuners exhibit minimal differences between the two datasets. In
contrast, our attention-inspired tuner showcased remarkable performance by converging
in a comparable number of epochs while achieving a twofold improvement in error loss.

https://github.com/xintin/TransferLearn_HetFeat_TenProgGen
https://github.com/xintin/TransferLearn_HetFeat_TenProgGen
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Specifically, the root mean square error (RMSE) for our optimized tuner is 0.04 after
200 epochs, outperforming the values of 0.08 and 0.09 for XGB and LGBM, respectively. It
is important to note that we are actively addressing the offline training overhead as part
of our ongoing research efforts. This represents an initial phase in our research, and we
are concurrently investigating potential instabilities in the tuners. A limitation inherent
in our proposed methodology is its challenge in effectively transferring knowledge across
hardware architectures of dissimilar classes, such as attempting knowledge transfer from
one CPU class to a GPU class. This constraint becomes especially notable in situations
where the dataset available for a specific hardware class is limited, leading to substantial
time requirements for data collection and model training. The consequences of insufficient
data may manifest in the autotuner’s performance, potentially resulting in suboptimal
convergence. Emphasizing the significance of robust datasets for each hardware class
becomes crucial to ensure the effectiveness of the knowledge transfer process and the
subsequent autotuning performance. Additionally, exploring research avenues in few-
shot learning methods for hardware-aware tuning could provide valuable insights into
mitigating this limitation.

Table 9. Evaluation of Proposed Tuner: Variation In Tuning Time And Inference Time.

Target Hardware Network
Without Transfer Tuning With Transfer Tuning

Time-to-Tune Mean Inference Time Time-to-Tune Mean Inference Time

CPU
Incpetion_v3 614 75.27 61 73.80
MobileNet_v3 236 5.48 71 5.57
ResNet_50 128 11.93 86 12.12

GPU
Incpetion_v3 2510 28.72 191 28.73
MobileNet_v3 1092 1.72 136 1.75
ResNet_50 817 3.79 226 3.78

CPU: Intel Xeon; GPU: A100; tune time (s); inf time (ms).
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Figure 3. Comparing Training Convergence of Tuners. (a) XGBoost, (b) MLP, (c) LightGBM,
and (d) Our Tuner, experimented on Nvidia RTX 2080.

Table 10 presents the assessment outcomes of the proposed tuner compared to the
TenSet XGB Tuner based on Top-k scores. The table outlines each tuner’s top-1 and top-5
accuracy metrics across two target hardware platforms: H100 and A64FX. In the case of
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our proposed tuner, it was trained to utilize all available hardware datasets, excluding
the specific hardware under examination. Subsequently, an evaluation was performed
for both tuners. The network architecture employed for this evaluation was ResNet_50.
Our tuner exhibited comparable performance to the XGB tuner, which was trained for
the underlying hardware. Our tuner, conversely, leveraged learning schedules derived
from a similar architecture. This quantitative analysis underscores the proficiency of our
tuner in transfer learning, demonstrating competitive performance across the specified
hardware configurations.

Table 10. Evaluation Of Proposed Tuner: Top-k Scores.

Target Hardware
TenSet XGB Our Tuner

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

H100 83.94 95.81 85.67 96.08
A64FX 72.6 92.49 77.04 91.79

Network: ResNet_50.

5. Conclusions and Future Directions

In this research, we have showcased the efficacy of incorporating neural network
and hardware-aware sampling to automate the generation of tensor programs within
search-based tensor compilers. Our investigation delved into the influence of different split
strategies on the overall optimization duration and the early convergence of the process.
Recognizing the significance of mapping tensor operators to specific hardware configu-
rations, especially in a heterogeneous environment, we seamlessly integrated hardware
features into the evolutionary search procedure. This integration serves to enhance the
efficiency of the tensor program generation process.

Our findings underscore that an approach integrating heterogeneous features into
the training strategy mitigates the training overhead associated with dataset requirements
and facilitates effective transfer learning, necessitating fewer online measurements. More-
over, we have introduced an attention-based autotuner designed to assimilate knowl-
edge from heterogeneous features and execute tuning operations on previously unseen
hardware configurations.

Moving forward, our research trajectory involves delving into the nuanced realm of
selective feature training during the transfer learning process. Our prospective endeavors
include refining the efficacy of cross-device and inter-subgraph learning methodologies,
coupled with a comprehensive evaluation utilizing a scientific application.
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