
Citation: Lu, J.; Yuan, W.; Cao, S.;

Zhou, P. FedNow: An Efficiency-

Aware Incentive Mechanism Enables

Privacy Protection and Efficient

Resource Utilization in Federated

Edge Learning. Appl. Sci. 2024, 14, 494.

https://doi.org/10.3390/

app14020494

Academic Editor: Christos Bouras

Received: 11 December 2023

Revised: 29 December 2023

Accepted: 3 January 2024

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

FedNow: An Efficiency-Aware Incentive Mechanism Enables
Privacy Protection and Efficient Resource Utilization in Federated
Edge Learning
Jianfeng Lu 1, Wenxuan Yuan 1, Shuqin Cao 1,* and Pan Zhou 2

1 School of Computer Science and Technology, Wuhan University of Science and Technology,
Wuhan 430065, China; lujianfeng@wust.edu.cn (J.L.); wenxuan@wust.edu.cn (W.Y.)

2 School of Cyber Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; panzhou@hust.edu.cn

* Correspondence: shuqincao@wust.edu.cn

Abstract: Federated edge learning (FEL) has recently attracted great interest due to its real-time
response and energy-efficient characteristics. Most existing work focuses on designing algorithms
to improve model performance, ignoring the malicious behavior and personal decision-making of
self-interested edge servers. Although some efforts have been devoted to incentivizing honest edge
server engagement by compensating training costs, this rarely considers resource efficiency and
often assumes that edge servers provide complete information to the platform, which may lead
to the risk of private attribute leakage. Hence, we aim to achieve an incentive mechanism that
promotes secure and efficient model training between the platform and edge servers. However,
edge servers’ multi-dimensional private attributes and training strategies make the optimization
problem nonconvex, and incomplete information further increases the complexity of the analysis. In
order to address these challenges and by integrating contract theory and exponential mechanism, we
propose an efficiency-aware incentive mechanism, FedNow, which enables edge servers to personally
determine their local training rounds while motivating their participation without giving access to
their true training strategies and private attributes. Specifically, we enabld edge servers to add noise
to their submitted training strategy to hide their true training rounds; then, we carefully designed an
efficiency score function to select honest and efficient edge servers without disclosing their private
attributes. In order to demonstrate that FedNow strictly outperforms existing schemes in terms of
total costs, we theoretically derived sufficient conditions for making the total costs of FedNow lower
than existing schemes and designed a greedy algorithm that uses the Monte Carlo method to find
feasible near-optimal solutions in polynomial time. Our extensive experimental assessment using
synthetic and real datasets shows the superiority of FedNow.

Keywords: federated edge learning; exponential mechanism; resource efficiency; contract-based
incentive mechanism

1. Introduction

With the development of the internet of things, a huge number of smart devices,
such as mobile phones and sensing devices, generate a massive amount of data every
day [1–3]. Relying entirely on a central cloud for global model aggregation will consume
considerable bandwidth resources and may result in significant response delays due to the
long-haul transmission of massive data [4]. Besides, data privacy is prone to the invasion
of unauthorized devices during transmission [5]. Federated edge learning (FEL) is a highly
promising paradigm for implementing federated learning (FL)-based solutions in edge
computing systems [6]. Compared to FL, FEL enables partial storage and computation
resources to be offloaded from the data center (e.g., the cloud platform or one of the edge

Appl. Sci. 2024, 14, 494. https://doi.org/10.3390/app14020494 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020494
https://doi.org/10.3390/app14020494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14020494
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020494?type=check_update&version=2


Appl. Sci. 2024, 14, 494 2 of 24

servers) to the network edge servers (e.g., clients or communication base stations), which
reduces the communication frequency and the risk of data leakage [7].

Although FEL has natural advantages in resisting a single point of failure and mali-
cious attacks, the uploaded local models or gradients still pose a risk in terms of privacy
leakage. For example, an untrusted cloud platform may infer the sensitive attributes of
edge servers from the gradient updates [8], which hinders the willingness of edge servers
to participate in FEL. Moreover, the inefficient resource utilization caused by device hetero-
geneity and the low-quality updates from inactive participants remain open issues in FEL.
On the one hand, the performance of FEL systems can be affected by various factors related
to both computation and communication [9], such as the data processing and transmission
capability of edge servers and the network channel delay of data-collection devices. These
factors may prevent each edge server’s training progress in global training rounds from
being synchronized, which introduces a synchronization barrier in FEL, particularly when
requiring uniform update frequencies across all edge servers [4] (The synchronization barrier,
i.e., the total training delay of an FEL system, is dominated by the slowest edge server,
which leads to useless waiting times and the under-utilization of computation resources for
efficient edge servers [10]). Some existing efforts have explored strategies, such as dynamic
batch-size methods [11] and staleness-bounded updates [12,13], to alleviate the negative
impact of the synchronization barrier. However, a dynamic batch-size method may not
adapt well to the heterogeneous computing ability of edge servers, and the staleness-
bounded update may have a slower convergence rate due to the potentially stale gradients
of stragglers [14]. On the other hand, many existing works that focus on improving system
efficiency usually assume unconditional learning resource sharing between the edge servers
and the cloud platform [15,16]. This may not always be possible, as edge servers belong
to different entities (e.g., organizations or enterprises) that are unwilling to contribute
any computing resource without sufficient financial compensation. It is worth noting that
some early and important works incentivize edge servers’ effective participation by using
auctions [17], contracts [18], and Stackelberg games [19], but they overlook the waiting time
of heterogeneous edge servers [18] or focus on motivating low-cost learners [20], which
may result in low resource utilization and inefficient model training.

In order to address the joint optimization problem of training efficiency and partici-
pation incentive in situations where the platform may be untrusted, we need to design a
secure and efficient incentive mechanism that considers device heterogeneity and training
costs (i.e., computation, communication, and data collection costs), as well as the personal
decision-making of strategic edge servers. Nevertheless, edge servers’ multi-dimensional
private attributes and training strategies make the joint optimization problem nonconvex,
and incomplete information further increases the complexity of the analysis. In order
to tackle these challenges, we propose an efficiency-aware incentive mechanism, FedNow,
which enables edge servers to personally determine their local training rounds while
motivating their participation without access to their true training strategies and private
attributes. Our main contributions can be condensed as follows:

• We propose an efficiency-aware incentive mechanism, FedNow, which allows strategic
edge servers to personally decide their local training rounds to improve resource
utilization while compensating their training costs. Compared to existing works
that only focus on improving model performance or incentivizing client engagement,
we jointly optimize the training efficiency and expenditure costs, forming a joint
optimization objective. Moreover, we take the multi-dimensional heterogeneous
attributes, decision-making, and incomplete information of edge servers into account,
which makes our work more practical.

• We model the optimization problem of FedNow as a mixed-integer nonlinear pro-
gramming problem, which is nonconvex due to the involvement of mixed-integer
variables and multiple incentive constraints. In order to solve this complex problem,
we use contracts to determine the optimal payments for each type of edge server
and design a scoring function to prioritize the selection of more efficient edge servers



Appl. Sci. 2024, 14, 494 3 of 24

that are able to provide more data at lower costs. Then, to demonstrate that FedNow
strictly outperforms existing schemes in terms of joint optimization objectives, we
theoretically derive sufficient conditions for making the above situation true. Based
on that, by integrating the Monte Carlo method, FedNow can obtain near-optimal
feasible solutions and model parameters within a finite number of training rounds.

• We perform extensive experimental evaluations on one synthetic and three real
datasets to demonstrate the advantages of FedNow in terms of resource utilization and
training efficiency. The numerical results indicate that FedNow can converge at least
42.3% faster than our baselines when achieving the same model accuracy. Moreover,
FedNow improves training efficiency and resource utilization by at least 15.53% and
22.78%, respectively.

The remaining part of this paper is organized as follows. Section 2 provides a review
of the related work. The system model and design objectives of FedNow are described
in Section 3. Section 4 elaborates on the design and optimization details of our efficiency-
aware incentive mechanism, and Section 5 shows our experimental evaluations. Section 6
draws the conclusions.

2. Related Work

FEL combines the characteristics of privacy protection in FL and the high-energy
efficiency of edge intelligence, which can reduce dependence on central aggregation and
implement collaborative learning in large network systems [21]. Although promising,
the leakage of clients’ sensitive attributes due to an untrusted platform, the insufficient
resource utilization caused by device heterogeneity, and the economic incentives required
by practical deployment are important but still under-explored problems in FEL.

Existing solutions have often focused on improving system efficiency by optimizing
the allocation scheme of communication and computational resources [15]. For instance,
the authors in [22] presented a compromise solution, named stale synchronous parallel
(SSP), to create a trade-off between full synchronization and no synchronization, which
sets a pre-defined threshold to enable some efficient devices to upload the model updates
earlier than the stragglers. The study of [12] suggested that the proportion of time that each
device spends on computation and training be increased by introducing the SSP strategy.
However, the SSP method can increase the performance gap between efficient devices
and straggler devices, leading to the global model being affected by outdated models and
causing convergence issues [13]. Some other efforts attempted to leverage the dynamic
batch-size method to alleviate the negative impact of a synchronization barrier [11,23,24].
As exemplified by [11], the authors proposed an adaptive algorithm to dynamically adjust
the batch size based on the predicted loss and training progress during model training.
Although these methods can achieve better system efficiency, they cannot adapt well to
the heterogeneous computing capabilities of edge servers. By taking device heterogeneity
into account, some methods based on device selection were proposed to mitigate the
straggler effect [25–27]. For instance, Xia et al. [25] proposed a device selection scheme to
choose more efficient devices without disclosing private device information, thus ensuring
a satisfactory convergence rate. Unfortunately, reducing the platform’s waiting time for all
heterogeneous devices by excluding the engagement of some straggler devices may come
at the cost of more epochs for model convergence and greater communication overhead.
Moreover, there is still incomplete resource utilization among the selected heterogeneous
edge devices. By drawing inspiration from this, our objective is to select edge servers with
higher efficiency to improve training efficiency while making the selected edge servers
maximize their resource utilization (e.g., training data size or local training rounds) to
compensate for the accuracy loss and performance degradation caused by stragglers.

Another important practical challenge faced by FEL comes in the form of economic
incentives. Many existing works derived their results based on the assumption that edge
servers will participate in FL without seeking any rewards, which may not be practical
enough since the communication and computation process often causes huge energy con-



Appl. Sci. 2024, 14, 494 4 of 24

sumption [11,22,25]. There are some important and early works that focus on compensating
for clients’ training costs to incentivize their participation, but they rarely pay extra at-
tention to resource utilization and also have some limitations. For example, the authors
in [28] modeled the client’s utility based on one-dimensional attributes, i.e., training data
size, to incentivize clients’ data contribution. Sarikaya et al. [29] assumed a complete
information scenario, where the server has full knowledge of clients’ private informa-
tion. The assumption of complete information may pose a risk of privacy leakage when
the parameter server is untrusted, while the corresponding solutions are also not easily
generalized when clients possess multi-dimensional attributes and keep them private.
Kang et al. [18] considered incomplete information and proposed an incentive mechanism
that integrates contract and reputation to select high-quality clients. However, they did not
consider clients’ personal decision-making and only incentivized clients with reputations
above the threshold to maximize the economic utilities of the server, which may result in a
significant loss of data and ultimately lead to poor model performance. Considering the
joint optimization objectives of expenditure costs and model accuracy loss, the study of [30]
saw the design of a multi-dimensional contract to achieve efficient FL. Although taking
the personal decision-making of clients into account, they assumed that all heterogeneous
clients have identical local update frequency, which leads to useless waiting times and
leaves room for further optimization in resource efficiency.

In contrast to the existing works mentioned above, we aim to solve the joint optimiza-
tion problem of efficiency and incentive from a game-theoretic perspective. Additionally,
we consider the edge servers’ personal decision-making, multi-dimensional private at-
tributes, and incomplete information, which makes our incentive mechanism more general
and practical.

3. System Model

In this section, we first present an overview of FedNow, which includes the framework
and training process of FedNow. We then model the utility function of both edge servers
and the cloud platform to formulate contracts, and finally, we give the design objectives
of FedNow.

3.1. Overview

We plotted the framework diagram of FedNow, as shown in Figure 1, where we
consider a typical FEL system with three major components: a data collecting network,
a set of edge servers (I = {1, · · · , I}), and one cloud platform. The platform incentivizes
edge servers to participate in FEL by compensating for their training and data collection
costs. Considering the fact that the costs of edge servers represent private information that
is unknown to the platform, the platform will send a set of contract items to edge servers.
Each edge server will independently decide whether to participate in training and, if so,
which training strategy to adopt, i.e., selecting a contract item and determining the number
of times they complete contracts in each global round. Then, each edge server downloads
the initial model from the cloud platform and conducts model training using its local data
samples. At the beginning of each global round, each edge server first receives a batch of
data samples from its associated data-collecting network and then updates its local model
using this batch of data before the global model aggregation with other edge servers.

In the training process of FEL, we denote Di as the data samples received by the edge
server i ∈ I . Generally, data samples received by different edge servers may not follow the
same distribution, i.e., Di ̸= Dx, ∀i ̸= x ∈ I . If edge server i utilizes the data of size si in
its dataset Di to train its local model, the local loss function of edge server i is the average
prediction loss for all data d ∈ Di, i.e.,

Fj(ω) =
1
si

∑
d∈Di

fd(ω), (1)



Appl. Sci. 2024, 14, 494 5 of 24

where fd(ω) is the loss function for the data sample. FEL aims to find the optimal global
model ω∗ that minimizes the global loss function F(ω), which is a weighted average of all
clients’ loss functions [31]:

ω∗ = argmin
ω

F(ω) = argmin
ω

J

∑
j=1

sj

s
Fj(ω), (2)

where s is the total data size of all edge servers.

Figure 1. Framework of the efficiency-aware incentive mechanism for FEL.

In this paper, we propose FedNow, which considers personal decision-making in
local training rounds and the self-interest of strategic edge servers, aiming to alleviate the
performance bottlenecks associated with synchronous incentive schemes in FEL (Compared
to asynchronous updates, a synchronous update scheme has provable convergence [14] and
stronger anti-attack capability [32]). FedNow allows edge servers to determine their local
training rounds in each global iteration independently, thereby reducing useless waiting
times. However, conducting more local iterations will also lead to higher training costs.
Moreover, heterogeneous edge servers usually have different capabilities in data collecting
and processing. In the following, we model the cost of edge servers and the platform,
and we formulate contracts to incentivize the truthful contributions of the edge servers.
Table 1 summarizes the key notations used in this article.

Table 1. Key notations used in this paper.

Variable Physical Meanings

I , J , J ′ The number set, type set, and incentivized type set of edge servers.
Φ, ϕj The set of contract items; contract items for type-j edge servers.
cj, rj The unit training costs and local training rounds of type-j edge servers.
sj, pj The required data size and corresponding payments for type-j edge servers.
θ, ta The upper limit of local training rounds; the longest allowable training time.
ej, ẽj The margin efficiency costs of type-j edge servers; the approx marginal efficiency costs.

P(r′|r) The conditional probability of edge servers with training strategy r choosing r′ training strategy.
ej The serial number corresponding to the type-j edge servers in score queue ẽj.

3.2. Incentive Model

Cost model for FEL: The training costs of edge servers include computation, com-
munication, and data collection. The computation and data-collection cost is proportional
to the data-usage size si [30], while the communication cost is related to the size of the
compressed uploaded model, which we assume to be a fixed model size, Sd [33]. For
simplicity, we denote cp

i , cl
i . and cm

i as the unit computation cost, unit data-collection cost,
and unit communication cost of edge server i, respectively. The total training costs can be
expressed as

ct
i = (cp

i + cl
i)si + cm

i Sd. (3)



Appl. Sci. 2024, 14, 494 6 of 24

When considering that edge servers may perform several local training rounds but only
one communication process in each global epoch, we assumed that training time is the
predominant factor in each global epoch and set the edge server’s unit training costs as ci.

Contract formulation: We distinguish edge servers based on their unit training costs,
ci. Specifically, we define an edge server with unit training costs ci as a type-i edge server
and categorize all edge servers in set I = {1, · · · , I} into J = {1, · · · , J} types, where
each type j contains Ij edge servers, and ∑j∈J Ij = |I|. We use a smaller index number to
indicate smaller unit training costs, such that c1 < c2 < · · · < cJ . It should be noted that
the total number of participating edge servers, |I|, is public information, and the platform
can know the number, Ij, of edge servers for each type based on market research or past
training records [34], but for privacy considerations, each edge server will not report its
privacy attributes, such as unit training costs, cj. In light of this, the platform requires
the design of a set of contracts, Φ ≜ {ϕj}j∈J , to motivate edge server participation. Each
contract item, ϕj ≜ (sj, pj), corresponds to edge server type, j, expressing the relationship
between the data size (required for local training) of each type-j edge server and the
corresponding rewards.

Edge server utility: We represent the CPU cycle frequency of the type-j edge server
as f j. We assume the number of CPU cycles for edge servers to compute one sample of
data in local training is τ. Therefore, the computation time for a type-j edge server to
perform one round of local training is Tp

j =
τsj
f j

. By representing he longest allowable
training time of the platform in each global round as ta, the local iteration rounds of the
strategic edge servers are denoted as ri = ⌊ ta

Tp
i
⌋ = {1, 2, · · · , θ}, where θ is the maximum

local training round that the edge servers can execute in each global epoch. Since edge
server type is private information, they can choose a contract item designed for other types.
Hence, by determining the contract item ϕj and the corresponding training strategy as rj,
an edge server’s total utilities are the difference between the reward, pj, and the costs, cjsj,
multiplied by rj:

Uj
(
cj, ϕj, rj

)
= rj(pj − cjsj) (4)

The platform’s utility: We denote the platform’s total costs as our joint optimization
objectives, which is equivalent to the sum of the global model’s accuracy loss and the
total payments for edge servers. According to [35,36], the upper bound of model accuracy
loss after T training rounds is O(1/

√
DT + 1/T), where D is the total amount of data

contributed by all edge servers in each global epoch (D = ∑j∈J rj Ijsj). In the case where
FEL can converge in finite rounds, i.e., a fixed T, minimizing the upper bound of accuracy
loss is mathematically equivalent to minimizing 1/

√
∑j∈J rj Ijsj [30]. Then, given that all

edge servers choose their corresponding contract items and determine their local training
rounds, the total rewards are ∑j∈J rj Ij pj. It is clear that the model accuracy loss decreases
with the increase in the edge servers’ total training data size, while the total payments
increase as the data size increases. Therefore, we expect to achieve the best trade-off
between accuracy loss and expenditure cost to minimize the total cost of the platform:

US =
1√

∑j∈J rj Ijsj

+ ξ ∑
j∈J

rj Ij pj, (5)

where ξ is a weight coefficient that balances the amount of accuracy loss and expenditure
costs. A smaller ξ indicates that the platform places more emphasis on improving model
performance and less on reducing expenditure costs.



Appl. Sci. 2024, 14, 494 7 of 24

3.3. Design Objectives

Based on the above, our objective was to design an incentive mechanism that improves
resource utilization while minimizing the platform’s costs, formulated as follows:

(P1) min
Φ,rj

US =
1√

∑j∈J rj Ijsj

+ ξ ∑
j∈J

rj Ij pj,

s.t.
{

1 ≤ rj ≤ θ,
0 < sj ≤ smax, ∀j ∈ J .

(6)

where these two constraints, respectively, limit the range of local training rounds and the
required data size.

Moreover, an incentive mechanism that can motivate the truthful data contribution of
edge servers should guarantee the following properties:

• Individual rationality (IR). A contract satisfies IR if each type of edge server can
receive a non-negative payoff by choosing the contract item, ϕj, designed for that type,
i.e., Uj

(
cj, ϕj, rj

)
≥ 0, ∀j ∈ J [30,37].

• Incentive compatibility (IC). A contract satisfies IC if each type of edge server re-
ceives its maximum payoffs by choosing the contract item, ϕj, designed for that type,
i.e., Uj

(
cj, ϕj, rj

)
≥ Um(cm, ϕm, rm), ∀j ̸= m ∈ J [30,37].

• Computational efficiency (CE). The contract mechanism can be terminated in polyno-
mial time [33].

The IR constraints provide the necessary incentive for making edge servers sign the
contract. The IC constraints dictate that edge servers can maximize their utilities when
choosing the contract item designed for their true types. When IC conditions are satisfied,
each edge server’s type is revealed to the platform, which is called “self-reveal”. The
contract item is feasible if it satisfies both IC and IR constraints [20,37]. However, in this
work, as strategic edge servers can adjust their local training rounds, simply imposing
IC solely on each edge server’s total utility may result in a decrease in the unit-round
utility of edge servers that conduct more local training rounds, which is unfair [38–40].
Hence, we relax the incentive compatibility of the edge servers’ total utility into incentive
compatibility for their unit-round utility [33].

Definition 1 (µ-Incentive compatibility). A contract satisfies µ-IC if each type of edge server
can receive its maximum unit payoff by accepting the contract item, ϕj, designed for that type, i.e.,

uj
(
cj, ϕj

)
= pj − cjsj ≥ um(cm, ϕm), ∀j ̸= m ∈ J . (7)

If a contract satisfies IR, it also satisfies µ-IR since rj > 0. Therefore, µ-IR can be
regarded as an equivalent transformation constraint of IR, expressed as follows:

Definition 2 (µ-Individual rationality). A contract satisfies µ-IR if each type of edge server can
receive a non-negative unit payoff by accepting the contract item, ϕj, designed for that type, i.e.,

uj
(
cj, ϕj

)
= pj − cjsj ≥ 0, ∀j ∈ J . (8)

4. Optimal Design of Efficiency-Aware Incentive Mechanism

In this section, we present the design details of FedNow and explore its optimal design.

4.1. Optimal Rewards

By integrating the constraints of IR and IC, the cost optimization problem, (P1), of the
incentive mechanism can be transformed as a non-collaborative cost optimization problem,



Appl. Sci. 2024, 14, 494 8 of 24

(P2), which aims to motivate edge servers to make more data contributions (i.e., more
training rounds and greater data size) at the lowest possible costs, i.e.,

(P2) min
Φ,rj

US =
1√

∑j∈J rj Ijsj

+ ξ ∑
j∈J

rj Ij pj,

s.t.


1 ≤ rj ≤ θ,
0 < sj ≤ smax,
uj
(
cj, ϕj

)
≥ 0,

uj
(
cj, ϕj

)
≥ um(cm, ϕm, ), ∀j ̸= m ∈ J .

(9)

Solving the above problem involves two challenges. First, due to the enormous number
of µ-IR and µ-IC constraints (i.e., J 2 [18]), directly solving the problem is significantly
complex. Second, the multi-dimensional decisions of edge servers (i.e., ϕj and rj) will affect
their total payoffs and, consequently, influence the platform’s optimal incentive strategy
(ϕ∗j , θ

∗
), leading to a nonconvex mixed-integer nonlinear programming problem. In order

to overcome this complex problem, we first equivalently transform µ-IR&µ-IC constraints
into a simplified set with fewer constraints (i.e, J , Lemma 1) and then derive the optimal
rewards for different types of edge servers, thereby simplifying the platform’s strategies,
(ϕ∗j , θ

∗
), into two-dimensional variable decisions that only involve (s∗j , θ

∗
).

Lemma 1. In a scenario of information asymmetry between the cloud server and edge servers,
a contract is feasible if and only if the following conditions hold:

(i) pJ − cJsJ ≥ 0;
(ii) p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0 and s1 ≥ · · · ≥ sJ ≥ 0;
(iii) pj+1 + cj

(
sj − sj+1

)
≤ pj ≤ pj+1 + cj+1

(
sj − sj+1

)
.

Proof. See Appendix A.

Constraint (i) is the equivalent conversion of the µ-IR constraints. Constraints (ii) and
(iii) jointly correspond to the µ-IC constraints. Constraint (i) ensures that if the edge server
with the largest training cost can obtain non-negative utility by choosing the contract item
intended for its type, then each type-j edge server can also receive a non-negative payoff
by choosing the contract item of type-J. This is because pJ − cjsJ ≥ pJ − cJsJ ≥ 0, ∀j ∈
{1, . . . , J}. Constraint (ii) indicates that the platform should provide more rewards for the
edge servers with a lower training cost and require more data in return. Constraint (iii)
specifies the relationship between any two adjacent contract items. Based on the equivalent
relaxation of µ-IR&µ-IC, we can derive the optimal rewards for each type of edge server,
shown as follows:

Lemma 2. For any data size, s =
{

sj
}

j∈J , and any edge server type, j ∈ J , the optimal choice for
the platform is to select the rewards that satisfy the following criteria:

(
pj
)∗

=


cjsj, if j = J,
cjsj + ∑J

i=j+1(ci − ci−1)si,
if j ̸= J and j = {1, · · · , (J − 1)}.

Proof. See Appendix B.

When deriving the optimal rewards for each type of edge server, most of the existing
works tend to prioritize incentivizing low-cost edge servers [20,30,41]. However, they often
overlook the importance of resource efficiency, i.e., when the low-cost edge servers are
providing more data for local model training, some expensive but computationally pow-
erful edge servers may have already completed the local training, resulting in significant
waiting times and resource waste for the entire participating group. In contrast, if the



Appl. Sci. 2024, 14, 494 9 of 24

platform tends to choose the edge servers with the strongest computing ability, it may lead
to excessive payment costs and, thus, low profits. In order to solve this dilemma, we expect
to achieve a better trade-off between economic incentives and training efficiency.

4.2. Efficiency Score Function Design

Before presenting our efficiency score function, we first calculate the total costs of
the general incentive mechanism that does not consider multiple rounds of local training,
and we take this as the upper-bound cost of our optimization scheme. Hence, we obtain

Theorem 1. For any solution, from (s′j,J ′) to (P2), it is a feasible solution if and only if the
platform’s costs under such a solution are lower than the upper-bound cost, US, i.e.,

U′S(s
′
j,J ′) < US =

1√
∑j∈J

1

(2ξcj)
2
3

+ ξ|J | ∑
j∈J

cj(
2ξcj

) 2
3

+ ξ
J−1

∑
j=1

Ij ·
J
∑

i=j+1
(ci − ci−1)

1

Ii(2ξci)
2
3

.

(10)

Proof. See Appendix C.

After deriving the upper-bound cost of problem (P2) (Theorem 1), a general method
that can be used is to relax integer constraints and then obtain a feasible solution that
satisfies the constraints by rounding, but it cannot guarantee both the existence and the
quality of the feasible solutions. Inspired by [25,42], we consider (P2) as a high-efficiency
participant selection problem, which aims to select an appropriate number of edge servers
with the best score to form the incentivized set. We consider the edge servers that can
generate higher benefits (i.e., lower model accuracy loss) at lower costs as high-efficiency
participants and define marginal efficiency costs (MECs) as our efficiency score function,
expressed as follows:

ej = US(J )−US(J /{j})

=
1√

∑j∈J rj Ijsj

+ ξ ∑
j∈J

rj Ij pj −
1√

∑j∈J /{j} rj Ijsj

− ξ ∑
j∈J /{j}

rj Ij p′j,
(11)

where p′j denotes the optimal rewards for type set J /{j} (since the number of types
changes, the optimal rewards that decrease (by type) will also change accordingly). Given
sj, it is evident that the MECs are influenced by the local training rounds rj. However,
the edge servers’ CPU-cycle frequency f is private information and unobservable by the
platform. In order to calculate the efficiency score of the edge servers without access to
their private attributes, we introduce an exponential mechanism [33], defined as follows:

Definition 3 (Exponential mechanism). There exists a random mechanism Me and a score
function q(r, v), where r → R is the input and v→ V is the output of the mechanism;Me satisfies
ϵ-differential privacy if

Pr[Me(r) = v] ∝ exp(
ϵq(r, v)

2∆q
), (12)

where ∆q is the global sensitivity of the score function, which is defined as the maximum distance
between any two input scores, i.e., ∆q = max|q(r, v)− q(r∗, v)|.



Appl. Sci. 2024, 14, 494 10 of 24

The definition of the exponential mechanism indicates that each edge server has a
probability, P(r′j|rj), to determine its local training round as r′j. Moreover, the closer r′j and
rj are, the greater the probability P(r′j|rj) is. As a result, q(rj, r′j) can be defined as

q(rj, r′j) = −|rj − r′j|
1
2 . (13)

Thus, the global sensitivity ∆q = max|q − q′| = (rmax − rmin)
1
2 = (θ − 1)

1
2 . For

any local training round rj ∈ R = {1, 2, · · · , θ}, the platform can calculate the mapping
probability P(r′j|rj) as

P(r′j|rj) =

exp(ϵ
−|rj−r′j |

1
2

2∆q
1
2

)

∑r∗∈R exp(ϵ
−|rj−r∗ |

1
2

2∆q
1
2

)

. (14)

For the mapping probability P(r′j|rj), the platform can use the expected rounds, E(rj),
to approximate the edge servers’ true local training rounds rj, i.e., given P(r′j|rj), r′ ∈ R,
the expected local training rounds can be calculated by

E(rj) = ∑
r′∈R

r′jP(r
′
j|rj) = ∑

r′∈R
r′j

exp(ϵ
−|rj−r′j |

1
2

2∆q
1
2

)

∑r∗j ∈R exp(ϵ
−|rj−r∗j |

1
2

2∆q
1
2

)

. (15)

Therefore, the approximate marginal efficiency cost (AMEC) can be expressed as

ẽj =
1√

∑j∈J E(rj)Ijsj

+ ξ ∑
j∈J

E(rj)Ij pj−

1√
∑j∈J /{j} E(rj)Ijsj

− ξ ∑
j∈J /{j}

E(rj)Ij p′j.
(16)

The platform sorts each type of edge server according to their AMEC in ascending
order. A smaller AMEC indicates a higher margin utility and higher quality. The platform
will select edge servers according to their AMEC from low to high until finding a threshold
type, x′, such that US(J ′) ≤ US and US(J ′ ∪ {ex′+1}) > US, where J ′ represents the set
of selected edge servers (Assuming there are only five types of edge servers: {1, 2, 3, 4,
and 5} and x′ = 4. Since the order sorted by the edge servers’ AMEC may not follow the
same order as their contract types, e.g., AMEC: {2, 1, 4, 3, and 5}, then ex′ ≜ 3, ex′+1 ≜ 5,
and (ex′ + 1) ≜ 4). For the selected set J ′, we denote J′ = |J ′| and re-index the edge
servers’ type in J ′ by {j}j∈{1,··· ,J′} in ascending order of training cost, cj. However, since
the platform’s cost, US, is affected by both rj and sj, even if the incentivized set J ′ is
determined, the platform may be able to obtain a better feasible solution by adjusting its
data requirements sj, ∀j ∈ J ′. Based on the above analysis, we obtain

Proposition 1. Given a set of contract items ϕj = (pj, sj) and θ, where ∀j ∈ J ,

(i) if ∑j∈J ′ rj Ijsj > ∑j∈J Ijsj and ∑j∈J ′ rj Ij p′j < ∑j∈J Ij pj, there exists a threshold type x′,
such that U′S(sj,J ′) < US, where

p′j =


cjsj, if j = J′,
cjsj + ∑J′

i=j+1(ci − ci−1)si,
if j ̸= J′ and j = {1, · · · , (J′ − 1)}.



Appl. Sci. 2024, 14, 494 11 of 24

(ii) if the threshold type x′ exists, there exists an optimal type x∗ and required data size s∗j such
that U∗S(s

∗
j ,J ∗) ≤ U′S(sj,J ′), where J ∗ is the platform’s optimal incentivized type set.

Proof. See Appendix D.

Proposition 1(i) shows that, given sj, the optimal choice for the platform is to incen-
tivize the edge servers that can provide more total data at lower payment costs. In addition,
the platform only provides positive contract items for the incentivized type of edge servers,
whereas the non-incentivized edge servers will receive zero contract items. Proposition
1(ii) suggests that if a feasible solution exists, the platform can adjust its incentive strategy
(i.e., required data size sj), which may lead to a better solution that minimizes the plat-
form’s costs. According to the above analysis, we first designed an iterative algorithm
to determine all incentivized edge servers and then characterized the training process
of FedNow, which enables the edge servers to personally determine their local training
rounds; we used the Monte Carlo method to obtain a better (near-optimal) response for
the platform, including the incentivized set J ∗ and corresponding {s∗j , p∗j }j∈J ∗ . With J ∗

and {s∗j , p∗j }j∈J ∗ , the incentivized edge servers will honestly complete model training to
compute the optimal global model parameters.

The details of searching for feasible solutions are shown in Algorithm 1. The platform
first calculates all edge servers’ AMEC (Line 2–4), then sorts the edge servers based on their
AMEC in ascending order and searches for the threshold type x′ (Line 5–18). The time com-
plexity of calculating ẽj (Line 4) is O(J ), while the time complexity for checking whether
the feasibility condition holds (Line 11) is also O(J ). Therefore, the time complexity of
Algorithm 1 is O(J 2).

Algorithm 1 Calculation of the feasible solution (x′,J ′).
Input: θ, cj, Ij, P(r′j|rj), ∀j ∈ J ; rj, r′j ∈ R.
Output: x′, J ′.

1 Compute contract items Φ = (sj, pj), ∀j ∈ J ;
2 for j in range [1, J] do
3 Calculate E(rj) of type-j edge servers based on Formula (15);
4 Calculate ẽj of type-j edge servers based on Formula (16);

5 Sort edge servers according to ẽj in ascending order;
6 for j in range [1ẽ, Jẽ] do
7 Initialize x′ = j;
8 Insert x′ into J ′;
9 Check if Formula (10) holds;

10 if yes then
11 Check if US(J ′ ∪ {j + 1}ẽ) > US;
12 if yes then
13 Record x′;
14 break;

15 else
16 continue;

17 else
18 j ++;

Algorithm 2 describes the training process of FedNow when computing the optimal
model parameters. The time complexity of the Monte Carlo method is O(N), where N
means the number of sampling times. For a strongly convex objective F(ω), the general
upper bound of global iterations is expressed as Tite(κ, ζ) =

O(log(1/σ))
1−ζ [43], which is

affected by both global accuracy κ and local accuracy ζ. Given a fixed global accuracy σ,
the upper bound of the local iterations, i.e., O(log(1/σ)), can be normalized to 1 so that



Appl. Sci. 2024, 14, 494 12 of 24

Tite(ζ) =
1

1−ζ [16]. We represent the time used for one global iteration of FEL as Tglob (ξ);

the upper bound of the time complexity for Algorithm 2 is O
(

max{N, 1
1−ξ · Tglob(ζ)}

)
.

Algorithm 2 The training process of FedNow

Input: tw, I , J , T, η, x′, θ and N.
Output: ωT .

1 Use the Monte Carlo Method to determine the optimal incentivized set J ∗ and contract
items (p∗j , s∗j ), ∀j ∈ J ∗ based on (N, x′);

2 Send contracts and initialize ω0;
3 for epoch t = 0; t < T; t ++ do
4 Each edge server in J ∗ executes:
5 Download global model ωt from the platform;
6 Collect data Di from its associated edge devices;
7 Train the model with data size s∗j (≤ Di) and local training rounds r∗j (≤ θ):

8

ωt+1
j ← ωt

j − η · ∇Fj

(
ωt

j

)
,

Upload model parameters ωt+1
j within ta;

9 Cloud server executes:
10 aggregate model parameters:
11

ωt+1 ← ∑
j∈J ∗

sj

s
ωt+1

j

Pay rewards for the incentivized edge servers.

5. Experiments

In this section, we first exhibit the experimental setup and then show the experiments
conducted on both the synthetic and real datasets to evaluate the performance of our
proposed FedNow.

5.1. Experimental Setup

Edge server parameters. By referring to [7,37], we considered a cloud platform, a set
of |I| = 100 edge servers for FEL. We leveraged two GPU devices (i.e., Lenovo Note-
books with NVIDIA RTX 3060 and NVIDIA GTX 1050Ti, Beijing, China) with multi-thread
programming to simulate the training process of heterogeneous edge servers. For sim-
plicity, the platform divides edge servers into several groups based on their training
costs, c, and CPU frequency, f , and we approximate each group as a supertype [30].
By limiting computing resources to a range from 0.8 GHz to 2.7 GHz, we divided the
edge servers into 10 groups, where the edge servers with (cj, f j) uniformly distributed
over ([1.5, 2.4] × [0.8, 0.9]) ∪ ([2.5, 3.4] × [1.0, 1.1]) ∪ ([3.5, 4.4] × [1.2, 1.3]) ∪ ([4.5, 5.4]
× [1.4, 1.5]) ∪ ([5.5, 6.4] × [1.6, 1.7]) ∪ ([6.5, 7.4] × [1.8, 1.9]) ∪ ([7.5, 8.4] × [2.0, 2.1]) ∪
([8.5, 9.4] × [2.2, 2.3]) ∪ ([9.5, 10.4] × [2.4, 2.5]) ∪ ([10.5, 11.4] × [2.6, 2.7]). We took the
midpoint of each group to represent the cost and CPU frequency of their supertype, e.g., ap-
proximately (cj, f j) = (2.3, 0.8) ≈ (2.0, 0.85) as the type-1 edge server (According to [30],
approximating edge server type with reagrd to several supertypes will not significantly
affect the platform’s payment and utility.).

Training parameters. We constructed an FL model using MLP, CNN, and ResNet-18,
respectively, and trained them by exploiting benchmark datasets: MNIST, Fashion MNIST,
and CIFAR-10. The MLP network is formed by two convolutional layers with a max-pooling
of 2, fully connected layers, a Relu activation function, and a softmax output layer, whereas
the CNN model has two convolutional layers with a kernel size of 5, two dense layers,
and a softmax output layer. The ResNet-18 model is made up of a feedfoward layer,
a fully connected layer (size = 1000), and a softmax output layer, where the feedforward



Appl. Sci. 2024, 14, 494 13 of 24

layer includes four convolutional layers and eight residual blocks. We set the economic
conversion parameter to ξ = 9× 10−8 and the learning rate to 0.01.

Baselines. In order to demonstrate the performance of FedNow, we adopted two
state-of-the-art solutions as the baselines, described as follows:

• UB: A vanilla contract incentive mechanism that assumes each edge server only
conducts one round of local training (Theorem 1). We consider that it represents the
upper-bound cost of any feasible strategy.

• CD: A cost-driven incentive mechanism that considers the multi-local training rounds
of edge servers but prefers to motivate low-cost edge servers [20,30]. We compared it
with FedNow to demonstrate the effectiveness of the efficiency score function.

Metrics. For the synthetic dataset, we used model accuracy loss: acc.l = 1√
∑j∈J rj Ijsj

,

payment costs: P = ∑j∈J rj Ij pj, and the platform’s total costs: US = acc.l + ξP to assess
the performance of FedNow in terms of economic incentives. In the real datasets, we used
(i) model accuracy and accuracy loss, (ii) average waiting time, (iii) training efficiency, and
(iv) completion time, respectively, to evaluate the performance of FedNow. Concretely, we
recorded the changes in model accuracy over time and accuracy loss with epoch under
different strategies. Moreover, for the different strategies, we recorded the average waiting
time of all edge servers in each epoch. Based on this, we could calculate the overall average
waiting timeW and the overall average epoch time V for different strategies, thus deriving
their training efficiency (defined as 1−W/V [4]). W and V are represented as follows:{

W = 1
T ∑T

t=1W t,
V = 1

T ∑T
t=1 ρt.

whereW t means the overall average waiting time of the edge servers in epoch t, and ρt

denotes the time spent on completing the t-th epoch, which can be measured by recording
the training time of the slowest edge server at the t-th epoch (ρt ≤ ta, ∀t ∈ {1, · · · , T}).
Moreover, we also recorded the completion time of Fednow and the two baselines when
achieving the same training accuracy.

5.2. Evaluation of the Synthetic Dataset

For the first set of experiments, we used to verify the superiority and rationality of our
mechanism in terms of economic utility. Concretely, we first demonstrated how FedNow
selects more efficient edge servers, and we verified the rationality of the incentive design.
Then, we performed experiments on the synthetic dataset to evaluate the performance of
the different strategies.

Figure 2 shows the MECs and AMECs of different types of edge servers. Apparently,
the MECs and AMECs of the type-1, -3, and -10 edge servers were both greater than 0,
which means that the cost contribution of the type-1, -3, and -10 edge servers is positive,
considering that the smaller the MEC/AMEC (i.e., smaller cost increment), the higher the
value/efficiency of the corresponding edge servers. In contrast, the MEC and AMEC of the
type-2, -4–9 edge servers are both less than 0, which means that they have negative effects
on the platform’s costs. In other words, when MEC/AMEC is less than zero, the smaller
the MEC/AMEC, the lower the priority of selecting the corresponding type of edge server.
In addition, since the training cost of type-10 edge servers is the largest, then, when
calculating the efficiency score of the other types of edge servers, the type-10 edge servers
are always in the incentivized set J ′, and the platform’s optimal payment for them will just
cover their training costs, making the type-10 edge servers always a critical payment type.
When calculating the efficiency score of the type-10 edge servers, the critical payment type
changes from 10 to 9, which may lead to a significant reduction in server payment costs.
The above two factors explain the intense changes in efficiency scores between the type-9
and type-10 edge servers. Therefore, when the platform has complete information about
the local training rounds of the edge servers, the preference order is {1, 3, 10, 5, 2, 4, 6, 7, 8, 9},
whereas the preference order under incomplete information is {3, 1, 10, 2, 5, 4, 6, 7, 8, 9}.



Appl. Sci. 2024, 14, 494 14 of 24

1 2 3 4 5 6 7 8 9 10
The Type of Edge Servers

20

10

0

10

20

(E
xp

ec
te

d)
 M

ar
gi

na
l E

ff
ic

ie
nc

y 
Sc

or
e 

(×
10

3 )

MEC
AMEC

Figure 2. Marginal efficiency score.

Table 2 characterizes the performance differences of different strategies under their
respective optimal incentive solutions. According to the control group, it is clear that the
lack of data size leads to a significant accuracy loss, thus making the total costs higher
than UB, even if the payment costs are the lowest. The cost-driven incentive strategy
(CD) could incentivize more types of edge servers to participate, but this also leads to
higher payment costs, whereas when reducing the incentivized types, the decrease in
data size causes an increase in accuracy loss and may make the total cost US higher than
UB. Moreover, in Table 2, we denote MEC as the efficiency-aware incentive mechanism
with complete information about edge servers’ local training rounds. Obviously, with the
complete information about rj, MEC achieves the best performance on both accuracy loss
and payment costs, thereby minimizing the total costs of the platform. Due to the influence
of incomplete information, although the preference order and the optimal incentivized set
of FedNow are different from MEC, FedNow can achieve similar performance to MEC and
outperform the cost-driven strategy.

Figure 3 shows that the platform provides positive contract items for the incentivized
type of edge servers, and the critical type of edge servers (i.e., type-10 edge servers) only
obtain 0 utility since the optimal rewards provided to type-10 edge servers by the platform
just cover their training costs.

1 2 3 10
The Incentivized Type of Edge Servers

0

2

4

6

8

10

D
at

a 
Si

ze
/R

ew
ar

ds
/U

til
ity

 (×
10

3 )

Data Size
Rewards
Utility

Figure 3. The platform’s optimal contract for different types of edge servers.



Appl. Sci. 2024, 14, 494 15 of 24

Table 2. Differences in performance for different metric; LR means the local training rounds, and D
denotes the overall data size contributed by the incentivized set J ′.

Ref. J ′ LR D (×103) acc.l (×10−2) P (×104) US (×10−1)

UB {1, · · · , 10} 1 10.3583 0.3107 9.2625 0.1152
Control Group {1, 2, 3} rj, j ∈ J ′ 2.4602 0.6375 6.5252 0.1231

CD {1, 2, 3, 4, 5} rj, j ∈ J ′ 7.5857 0.363 7.5447 0.1048
MEC {1, 3, 5, 10} rj, j ∈ J ′ 10.4166 0.3098 7.0024 0.0946

FedNow {1, 2, 3, 10} rj, j ∈ J ′ 9.0836 0.3317 7.4569 0.1009

5.3. Evaluation Using the Real Datasets

The second set of experiments evaluated the training performance of our mechanism
according to accuracy and loss when using the real datasets. We first used training loss
to evaluate the performance of the three strategies. Figure 4 shows the training loss of
three strategies trained with different datasets over the epochs. As training progresses,
the training loss of FedNow and the two baselines both decrease with epoch, but the loss
curve of FedNow clearly has the fastest decline and a faster convergence rate than the
baselines. For example, in Figure 4a, when the epoch approaches 50, FedNow begins to
converge, and its loss is below 0.4, while the training loss for the baselines is obviously
higher than 0.4; it takes CD and UB an additional 50 and 100 epochs, respectively, to achieve
a similar loss. Second, considering the fact that different strategies may have different
training times in each epoch, we recorded the variation in training accuracy over time,
as shown in Figure 5. Due to the ease of training with MNIST and FMNIST, the three
strategies ultimately achieve similar training accuracies, as seen in Figure 5a,b; in contrast,
CD achieves the highest training accuracy in Figure 5c, which may due to the fact that
tending toward low-cost edge servers can motivate relatively more training samples with
the same budgets. However, it is worth noting that since FedNow prioritizes selecting
more efficient edge servers and allows them to personally decide their local training rounds
(i.e., multiple local training rounds), the model trained with FedNow can converge over a
time that is obviously shorter. For example, in FMNIST and CIFAR-10, the model trained
with FedNow converges nearly 100 and 300 s earlier than CD, respectively. Moreover, CD
allows multiple local training rounds but tends to choose low-cost edge servers, which
leads to more training samples but also longer training times. UB requires each edge server
to perform only one round of local training, which makes the overall training time under
this strategy relatively short. However, this also leads to insufficient training samples/local
training rounds for UB, resulting in the slowest convergence speed and the worst model
accuracy. In Figure 6, in order to demonstrate the effectiveness of the efficiency-aware
mechanism, we further intuitively represent the completion time when the model trained
using the three strategies reaches the same accuracy. Excitingly, the completion time of
FedNow is the lowest among the three training strategies. For instance, in Figure 6c, it
takes 393 s, 681 s, and 801 s for a model to obtain the training accuracy of 0.75 when trained
with FedNow, CD, and UB, respectively. In other words, for CIFAR10-ResNet18, FedNow
saves more training time than CD and UB by as much as 42.3% and 51% when reaching an
accuracy of 0.75.

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Tr
ai

ni
ng

 L
os

s

FedNow
UB
CD

(a)

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

FedNow
UB
CD

(b)

0 50 100 150 200 250 300 350 400 450 500
Epochs

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
ai

ni
ng

 L
os

s

FedNow
UB
CD

(c)

Figure 4. Training loss for the three strategies with epoch. (a) MNIST-MLP; (b) FMNIST-CNN;
(c) CIFAR10-Resnet18.



Appl. Sci. 2024, 14, 494 16 of 24

0 100 200 300 400 500 600 700 800 900
Time(s)

60

70

80

90

100

Tr
ai

ni
ng

 A
cc

ur
ac

y

FedNow
CD
UB

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100
Time(s)

40

50

60

70

80

90

100

Tr
ai

ni
ng

 A
cc

ur
ac

y

FedNow
UB
CD

(b)

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
Time(s)

0

20

40

60

80

Tr
ai

ni
ng

 A
cc

ur
ac

y

FedNow
UB
CD

(c)
Figure 5. Training accuracy of the three strategies with time. (a) MNIST-MLP; (b) FMNIST-CNN;
(c) CIFAR10-Resnet18.

0.85 0.90 0.95
Training Accuracy

0

50

100

150

200

250

300

350

400

C
om

pl
et

io
n 

Ti
m

e(
s)

FedNow
CD
UB

(a)

0.85 0.90 0.95
Training Accuracy

0

100

200

300

400

500

C
om

pl
et

io
n 

Ti
m

e(
s)

FedNow
CD
UB

(b)

0.70 0.75 0.80
Training Accuracy

0

200

400

600

800

1000

1200

C
om

pl
et

io
n 

Ti
m

e(
s)

FedNow
CD
UB

(c)
Figure 6. Completion time when reaching the same accuracy. (a) MNIST-MLP; (b) FMNIST-CNN;
(c) CIFAR10-Resnet.

Based on the above results, we found that enabling personal decision-making during
local training rounds could ensure satisfactory convergence speed and shorten completion
time when reaching the same training accuracy. Therefore, even in a situation where
resources are limited (e.g., the limited payment budgets), FedNow can improve model
convergence speed and achieve a better final model accuracy than those solutions that only
consider payment costs or ignore edge server personal decision-making.

The third set of experiments was performed to evaluate the training efficiency of
the different strategies. Figure 7 characterizes the average waiting time for the different
strategies with epochs. Figure 7 indicates that the average waiting time for the three
strategies remains relatively stable, and Fednow’s performance in resource utilization
is still the best. For example, for MNIST-MLP in Figure 7a and FMNIST in Figure 7b,
the average waiting time for the two baselines is around 0.125 s and 0.15 s, respectively,
whereas that of FedNow is 0.05 s and 0.75 s, which indicates that FedNow reduces the
average waiting time by at least 50% when compared to the baseline method. Moreover,
the average waiting time of CD is only slightly lower than that of UB, which indicates that
a preference for low-cost edge servers cannot effectively solve the problem of low training
efficiency. Last but not least, we present the training efficiency and testing accuracy of the
three strategies in Table 3.

Based on the above results, we found that FedNow could improve resource utilization
and reduce useless waiting times. This is because the performance gaps between hetero-
geneous devices are narrowed by allowing for different local training rounds and data
requests. Hence, comprehensively considering an edge server’s personal decision-making
and individual efficiency can alleviate the negative effect of a synchronization barrier for
those edge devices with heterogeneous computation capacities.



Appl. Sci. 2024, 14, 494 17 of 24

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e 

W
ai

tin
g 

Ti
m

e

FedNow
UB
CD

(a)

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

W
ai

tin
g 

Ti
m

e

FedNow
UB
CD

(b)

0 50 100 150 200 250 300 350 400 450 500
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

W
ai

tin
g 

Ti
m

e

FedNow
UB
CD

(c)
Figure 7. The average waiting time of three strategies over epochs. (a) MNIST-MLP; (b) FMNIST-
CNN; (c) CIFAR10-Resnet.

Table 3. Training efficiency and test accuracy of three strategies

MNIST-MLP FMNIST-CNN CIFAR10-RESNET

Efficiency Test_acc Efficiency Test_acc Efficiency Test_acc

UB 0.4109 0.9546 0.4132 0.9800 0.4787 0.7874
CD 0.6672 0.9667 0.6780 0.9822 0.7010 0.8435

FedNow 0.8247 0.9833 0.8027 0.9838 0.8357 0.8332

6. Conclusions

In this work, we propose a novel, efficiency-aware incentive mechanism, FedNow, that
can motivate data contribution and efficient resource utilization without accessing edge
servers’ private attributes. On the basis of contract incentive boundaries, we have carefully
designed an efficiency score function to prioritize more efficient edge servers. Subsequently,
we have derived sufficient conditions for making FedNow outperform existing schemes
in terms of joint optimization objectives. Extensive simulations on both synthetic and
real datasets show that our efficiency-aware incentive mechanism can improve training
efficiency and resource utilization by at least 15.53% and 22.78%, respectively.

In future research, we consider that this work can be extended/deepened in multiple
directions and mention two ideas as examples. First, when compared to the solution that
requires edge servers to maintain the same local update frequency, allowing multiple
rounds of local training can narrow the performance gap between heterogeneous edge
servers, which, to some extent, enhances the fairness of the FEL system. As far as we
know, although there have been some efforts made to focus on controlling client partic-
ipation frequency to achieve better fairness [44], few of these introduce the axiomatized
fairness concept or rigorously derive optimal solutions based on maximizing social fairness.
Therefore, improving training efficiency while strictly ensuring social fairness remains an
open topic that, although challenging, is of great significance for promoting the sustainable
co-operation of clients in FEL. Second, in this work, to resist privacy breaches that may be
caused by an untrusted platform, we introduced an exponential mechanism and designed
FedNow to motivate clients’ contributions without accessing their private attributes and
true training strategies. In future work, we expect to generalize our work to situations
where both the platform and clients are untrusted while still incentivizing efficient co-
operation between honest clients and the platform. The explanations of mathematical terms
used in all formulas are shown in Table 4.

Table 4. Expand Table 1: An explanation of the mathematical terms used in the formulas.

Mathematical Terms Physical Meanings

fd(ω), Fj(ω), ω, ω∗
The prediction loss on a pair of data samples d, the loss function of edge server j, the model parameter,
and the optimal model parameters.

ct
i , cp

i , cl
i , cm

i
The total costs of edge server i in t-th global epoch; the unit computation cost, unit data-collection cost,
and unit communication cost of edge server i.

Sd, Ij The global model size (fixed), and the number of edge servers contained in the type set j.



Appl. Sci. 2024, 14, 494 18 of 24

Table 4. Cont.

Mathematical Terms Physical Meanings

Tp
j , τ, f j

The computation time for a type-j edge server to perform one local training round, the number of CPU
cycles required for performing one sample of data, and the CPU-cycle frequency of a type-j edge server.

Uj(cj, ϕj, rj), uj(cj, ϕj)
The total utilities of type-j edge servers; the unit-round utility of type-j edge servers, equivalent to the
utility of completing contract per time.

ξ, s∗j , p∗j The platform’s weight regarding the rewards and the optimal data size/rewards for type-j edge servers.

US, US
The utility function of the platform, equivalent to the platform’s total costs; the cost upper-bound of
the platform.

∆q The global sensitivity of the score function.

rj, r′j,R
The real training rounds of type-j edge servers, the expected training rounds of type-j edge servers,
the set of possible training rounds.

US(J ), US(J /{j}) The total costs of the platform when the incentivizing set is J and J /{j}, respectively.
Tite(κ, ζ) The general upper bound of global iterations; κ: global accuracy, ζ: local accuracy.
W t,W Waiting time in the t-th epoch and the overall average waiting time.

V t, V , ρt Epoch time in the t-th epoch, the overall average epoch time, and the training time of the slowest edge
server in the t-th epoch.

Author Contributions: Conceptualization, J.L. and S.C.; methodology, J.L. and W.Y.; software, J.L.;
validation, W.Y.; formal analysis, J.L. and W.Y.; investigation, J.L.; resources, J.L.; data curation,
S.C.; writing—original draft preparation, W.Y.; writing—review and editing, J.L., W.Y., S.C. and
P.Z.; visualization, J.L. and W.Y.; supervision, J.L., S.C. and P.Z.; project administration, J.L.; funding
acquisition, J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 62372343,
62072411), the Zhejiang Provincial Natural Science Foundation of China (No. LR21F020001), the Key
Research and Development Program of Hubei Province (No. 2023BEB024), and in part by the fund
from Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial
System (Wuhan University of Science and Technology).

Data Availability Statement: Publicly available datasets were used in this study. These datasets
can be found here: 1. http://yann.lecun.com/exdb/mnist/ (accessed on 10 December 2023);
2. http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 10 December 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Lemma 1, we propose that contracts are feasible if and only if the following three
conditions hold:

(i) pJ − cJsJ ≥ 0,
(ii) p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0 and s1 ≥ s2 ≥ · · · ≥ sJ ≥ 0,
(iii) pj+1 + cj

(
sj − sj+1

)
≤ pj ≤ pj+1 + cj+1

(
sj − sj+1

)
,

where j ∈ {1, 2, · · · , J}.
The contract items are feasible only when both IR and IC constraints are satisfied.

Therefore, we prove the equivalence between the above three conditions and the IR&IC
constraints from necessity and sufficiency perspectives.
(i) Necessity:

(a) Condition (i) pJ − cJsJ ≥ 0: according to the IR constraint, i.e., pj − cjsj ≥ 0, ∀j ∈ J ,
we have

pJ − cJsJ ≥ 0, where J = |J |, (A1)

So, Condition (i) holds.
(b) Condition (ii) p1 ≥ p2 ≥ · · · ≥ pJ ≥ 0 and s1 ≥ s2 ≥ · · · ≥ sJ ≥ 0: according to IC

constraints, the following condition for the type-j edge servers must hold:

pj − cjsj ≥ pm − cjsm ⇔ cj
(
sm − sj

)
≥ pm − pj, (A2)

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html


Appl. Sci. 2024, 14, 494 19 of 24

where j, m ∈ {1, · · · , J} and j ̸= m. Formula (A2) shows that if sm ≤ sj, then
0 ≥ cj

(
sm − sj

)
≥ pm − pj, pm ≤ pj.

Similarly, according to IC constraints, the following condition for the type-m edge
servers must hold:

pm − cmsm ≥ pj − cmsj ⇔ cm
(
sj − sm

)
≥ pj − pm. (A3)

Formula (A3) shows that if sm ≥ sj, then 0 ≥ cm
(
sj − sm

)
≥ pj − pm, pm ≥ pj.

Based on the above analysis, we can know that pj ≥ pm if and only if sj ≥ sm.
By combining Formulas (A2) and (A3), we have

cm
(
sj − sm

)
≥ pj − pm ≥ cj

(
sj − sm

)
→

(
cj − cm

)(
sj − sm

)
≤ 0.

(A4)

According to Formula (A4), for a feasible contract, sj ≥ sm and pj ≥ pm if and only if
cj ≤ cm, ∀j ̸= m ∈ {1, · · · , J}. In other words, both pj and sj are negatively correlated
with cj. So, Condition (ii) holds.

(c) Condition (iii) pj+1 + cj(sj − sj+1) ≤ pj ≤ pj+1 + cj+1(sj − sj+1): according to IC
constraint, pj − cjsj ≥ pm − cjsm, ∀j, m ∈ {1, · · · , J}, for any two neighbor contract
items, we have {

pj+1 − cjsj+1 ≤ pj − cjsj,
pj − cj+1sj ≤ pj+1 − cj+1sj+1,

(A5)

which can be equivalent, as

pj+1 + cj(sj − sj+1) ≤ pj ≤ pj+1 + cj+1(sj − sj+1). (A6)

So, Condition (iii) holds.

(ii) Sufficiency:
We denote the subset of contract items that contain the last r data-reward contract items

as C(r), i.e., C(r) =
{(

sj, pj
)
| j = J− r + 1

}
, and use induction to complete the proof:

We first prove that C(1) is feasible: according to condition (i), i.e., pJ − cJsJ ≥ 0, the IR
constraint is satisfied. Since there is only one contract item, the IC constraint does not need
to be considered. Therefore, C(1) is feasible.

Then, we show that if C(r) is feasible, then C(r + 1) is also feasible. This corresponds
to two aspects:

(a) For the new type (J − r), the IR and IC constraints are satisfied, i.e.,
p(J−r) − c(J−r)s(J−r) ≥ 0,
p(J−r) − c(J−r)s(J−r) ≥ pr − crsr,

∀r = J − r + 1, · · · , J.
(A7)

(b) For the existing type (J − r + 1, · · · , J), the IR and IC constraints are still satisfied
when the type J − r exists, i.e.,

pr − crsr ≥ 0,
pr − crsr ≥ pr′ − cr′ sr′ ,
∀r, r′ ∈ (J − r, J − r + 1, · · · , J) and r ̸= r′.

(A8)

We first prove Formula (A7) as follows: since C(r) is feasible, the IC constraint is
satisfied for the type (J − r + 1) client, i.e.,

p(J−r+1) − c(J−r+1)s(J−r+1) ≥ pr − c(J−r+1)sr, ∀r = J − r + 1, · · · , J. (A9)



Appl. Sci. 2024, 14, 494 20 of 24

Moreover, according to Condition (iii), we have

p(J−r) ≥ p(J−r+1) + c(J−r)

(
s(J−r) − s(J−r+1)

)
. (A10)

By summing up Formulas (A9) and (A10), we have

p(J′−r+1) + p(J−r) − c(J−r+1)s(J−r+1) ≥ pr − c(J−r+1)sr + p(J−r+1) + c(J−r)

(
s(J−r) − s(J−r+1)

)
(A11)

which can be rewritten as

p(J−r) − c(J−r)s(J−r) ≥ pr − c(J−r)s(J−r+1) + c(J−r+1)

(
s(J−r+1) − sr

)
≥ pr − c(J−r)s(J−r+1)

≥ pr − c(J−r)sr, ∀r ∈ {J − r + 1, · · · , J}.

(A12)

where Formula (A12) is based on condition (ii), i.e., s(J−r+1) ≥ sr, ∀r = J − r + 1, · · · , J.
Therefore, the IC constraints are satisfied for type (J − r) edge servers. Additionally, we can
prove that pr − crsr ≥ pr − c(J−r)sr, ∀r ∈ {J − r + 1, · · · , J}. To sum up, the IR constraint
for type (J − r) edge servers is satisfied.

We then prove Formula (A8): obviously, proving Formula (A8) is equivalent to demon-
strating the following:

pr − crsr ≥ p(J−r) − crs(J−r), ∀r ∈ {J − r + 1, · · · , J}. (A13)

According to condition (iii), we have

p(J−r) ≤ p(J−r+1) + c(J−r+1)

(
s(J−r) − s(J−r+1)

)
. (A14)

Moreover, since the IC constraints are satisfied for type-r edge servers (∀r ∈ {J− r + 1, · · · , J}),
we have

p(J−r) + p(J−r+1) − crs(J−r+1) ≤ p(J−r+1)

+ c(J−r+1)

(
s(J−r) − s(J−r+1)

)
+ pr − crsr,

(A15)

which can be rewritten as

pr − crsr ≥ p(J−r) − crs(J−r+1) − c(J−r+1)

(
s(J−r) − s(J−r+1)

)
≥ p(J−r) − crs(J−r+1) − cr

(
s(J−r) − s(J−r+1)

)
= p(J−r) − crs(J−r).

(A16)

which is equivalent to Formula (A13), so Formula (A8) is proven.

Appendix B

In the following, we prove that the optimal payments to edge servers satisfies

(
pj
)∗

=


cjsj, if j = J,
cjsj + ∑J

i=j+1(ci − ci−1)si,
if j ̸= J and j = {1, · · · , (J − 1)}.

We use contradiction to demonstrate the optimality of Lemma 2, which asserts that the
optimal payments specified in the theorem can realize the minimum payment costs for the
cloud platform. We assume that for a given data size, there exists at least one payment p̃j



Appl. Sci. 2024, 14, 494 21 of 24

such that p̃j <
(

pj
)∗. In order to ensure the feasibility of the contract, based on Condition

(iii) of Lemma 1, p̃j must satisfy

p̃j ≥ p̃j+1 + cj
(

sj − sj+1
)
,

which can be rewritten as

p̃j+1 ≤ p̃j − cj

(
sj − sj+1

)
<

(
pj

)∗
− cj

(
sj − sj+1

)
=

(
pj+1

)∗
.

By repeating the aforementioned process, we can obtain

p̃J <
(

p̃J
)∗

= cJsJ . (A17)

Apparently, Formula (A17) does not satisfy Condition (i) of Lemma 1, thus violating
the IR constraints. Therefore, the payments in Lemma 2 are optimal.

Appendix C

By restricting θ to 1, the optimization problem is transformed into a vanilla contract
incentive problem, which aligns with the upper-bound cost that we aim to optimize.
Therefore, by setting θ = 1, it yields

min US =
1√

∑j∈J Ijsj

+ ξ ∑
j∈J

Ij pj,

s.t.


0 < sj ≤ smax,
pJ − cJsJ ≥ 0;
p1 ≥ · · · ≥ pJ ≥ 0 and s1 ≥ · · · ≥ sJ ≥ 0;
pj+1 + cj

(
sj − sj+1

)
≤ pj ≤ pj+1+

cj+1
(
sj − sj+1

)
, ∀j ∈ J .

(A18)

Based on Lemma 2, we can transform the above problem into a single variable opti-
mization problem, which is only correlated with sj. By using calculus, we have

∂US
∂sj

= − 1
2
√

Ijsj
3 + ξ Ijcj,

∂2US
∂(sj)

2 = 3
4
√

Ijsj
5 > 0.

(A19)

The fact that the second-order derivative is greater than 0 indicates that Formula (A18)
is convex and s∗j = 1

Ij(2ξcj)
2
3

, ∀j ∈ J is the minimum point. Therefore, by substituting

rmax = 1 and s∗j into Formula (A18), we have

US =
1√

∑j∈J
1

(2ξcj)
2
3

+ ξ|J | ∑
j∈J

cj(
2ξcj

) 2
3
+ ξ

J−1

∑
j=1

Ij ·
J
∑

i=j+1
(ci − ci−1)

1

Ii(2ξci)
2
3

.

Appendix D

In the following, we prove the establishment of (i) and (ii) in Proposition 1.

(i) For a given required data size, sj, ∀j ∈ J , according to Theorem 1, a solution U′S(sj,J ′)
is feasible when it is lower than US, i.e.,

U′S < US

⇔ 1√
∑j∈J ′ rj Ijsj

+ ξ ∑
j∈J ′

rj Ij p′j <
1√

∑j∈J Ijsj

+ ξ ∑
j∈J

Ij pj.



Appl. Sci. 2024, 14, 494 22 of 24

In order to ensure the satisfaction of the above condition, we need to prove sufficient
conditions, i.e.,

⇒
{

1√
∑j∈J ′ rj Ijsj

< 1√
∑j∈J Ijsj

, ξ ∑j∈J ′ rj Ij p′j < ξ ∑j∈J Ij pj,

⇔
{

∑j∈J ′ rj Ijsj > ∑j∈J Ij sj ∑j∈J ′ rj Ij p′j < ∑j∈J Ij pj,

If the above sufficient conditions hold, then the platform’s incentivized type set is
J = {1, 2, · · · , J′}. Correspondingly, since the edge servers with an AMEC larger
than ẽx′ are not included in the incentivized type set J ′, the optimal contract rewards
of the platform under such a feasible type x′ are

p′j =


cjsj, if j = J′,
cjsj + ∑J′

i=j+1(ci − ci−1)si,
if j ̸= x′ϵ and j = {1, · · · , (J′ − 1)}.

It is worth noting that type-x′ edge servers have the largest AMEC in the score
order {ẽj}j∈J , but they may not necessarily have the largest training costs, cj, in the
incentivized set J ′. So, (i) is proven.

(ii) Since the cost optimization problem of the cloud server involves two variables
(sj, rmax), if a threshold type x′ϵ exists under the current rmax = ϵ, then the cloud server
can always search for a new solution that is not inferior (to such a feasible solution)
by adjusting its data requirement, sj. Therefore, under a feasible rmax = ϵ, the cloud
server’s optimal incentivized type set can be formalized as J ∗ϵ ≜ {1, 2, · · · , x∗ϵ}, which
ensures that U∗Sϵ

(s∗j , rmax) ≤ U′Sϵ
(sj, rmax) holds. Hence, the validity of (ii) is proven.

References
1. Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans.

Syst. Man, Cybern. Part C Appl. Rev. 2009, 40, 1–12. [CrossRef]
2. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using

smartphones. In Proceedings of the Esann, Bruges, Belgium, 24–26 April 2013; Volume 3, p. 3.
3. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an intelligent edge: Wireless communication meets machine

learning. IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]
4. Ma, Z.; Xu, Y.; Xu, H.; Meng, Z.; Huang, L.; Xue, Y. Adaptive batch size for federated learning in resource-constrained edge

computing. IEEE Trans. Mob. Comput. 2023, 22, 37–53. . [CrossRef]
5. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Federated learning for data privacy preservation in vehicular cyber-physical

systems. IEEE Network 2020, 34, 50–56. [CrossRef]
6. Xiao, Y.; Zhang, X.; Li, Y.; Shi, G.; Krunz, M.; Nguyen, D.N.; Hoang, D.T. Time-sensitive learning for heterogeneous federated

edge intelligence. IEEE Trans. Mob. Comput. 2023, early access. [CrossRef]
7. Luo, S.; Chen, X.; Wu, Q.; Zhou, Z.; Yu, S. Hfel: Joint edge association and resource allocation for cost-efficient hierarchical

federated edge learning. IEEE Trans. Wirel. Commun. 2020, 19, 6535–6548. [CrossRef]
8. Lyu, L.; Chen, C. A novel attribute reconstruction attack in federated learning. arXiv 2021, arXiv:2108.06910.
9. Varshney, P.; Simmhan, Y. Characterizing application scheduling on edge, fog, and cloud computing resources. Softw. Pract. Exp.

2020, 50, 558–595. [CrossRef]
10. Stich, S.U. Local sgd converges fast and communicates little. arXiv 2018, arXiv:1805.09767.
11. Liu, B.; Shen, W.; Li, P.; Zhu, X. Accelerate mini-batch machine learning training with dynamic batch size fitting. In Proceedings

of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.
12. Ho, Q.; Cipar, J.; Cui, H.; Lee, S.; Kim, J.K.; Gibbons, P.B.; Gibson, G.A.; Ganger, G.; Xing, E.P. More effective distributed ml via a

stale synchronous parallel parameter server. Adv. Neural Inf. Process. Syst. 2013, 26, 1223–1231.
13. Zhang, J.; Tu, H.; Ren, Y.; Wan, J.; Zhou, L.; Li, M.; Wang, J. An adaptive synchronous parallel strategy for distributed machine

learning. IEEE Access 2018, 6, 19222–19230. [CrossRef]
14. Chen, C.; Wang, W.; Li, B. Round-robin synchronization: Mitigating communication bottlenecks in parameter servers. In Pro-

ceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 532–540.

15. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive federated learning in resource constrained
edge computing systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [CrossRef]

http://doi.org/10.1109/TSMCC.2009.2032660
http://dx.doi.org/10.1109/MCOM.001.1900103
.
http://dx.doi.org/10.1109/TMC.2021.3075291
http://dx.doi.org/10.1109/MNET.011.1900317
http://dx.doi.org/10.1109/TMC.2023.3237374
http://dx.doi.org/10.1109/TWC.2020.3003744
http://dx.doi.org/10.1002/spe.2699
http://dx.doi.org/10.1109/ACCESS.2018.2820899
http://dx.doi.org/10.1109/JSAC.2019.2904348


Appl. Sci. 2024, 14, 494 23 of 24

16. Tran, N.H.; Bao, W.; Zomaya, A.; Nguyen, M.N.; Hong, C.S. Federated learning over wireless networks: Optimization model
design and analysis. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France,
29 April–2 May 2019; pp. 1387–1395.

17. Zeng, R.; Zhang, S.; Wang, J.; Chu, X. Fmore: An incentive scheme of multi-dimensional auction for federated learning in
mec. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29
November–1 December 2020; pp. 278–288.

18. Kang, J.; Xiong, Z.; Niyato, D.; Xie, S.; Zhang, J. Incentive mechanism for reliable federated learning: A joint optimization
approach to combining reputation and contract theory. IEEE Internet Things J. 2019, 6, 10700–10714. [CrossRef]

19. Tang, M.; Wong, V.W. An incentive mechanism for cross-silo federated learning: A public goods perspective. In Proceedings of
the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10.

20. Wang, Y.; Su, Z.; Luan, T.H.; Li, R.; Zhang, K. Federated learning with fair incentives and robust aggregation for uav-aided
crowdsensing. IEEE Trans. Netw. Sci. Eng. 2021, 9, 3179–3196. [CrossRef]

21. Xiao, Y.; Shi, G.; Li, Y.; Saad, W.; Poor, H.V. Toward self-learning edge intelligence in 6g. IEEE Commun. Mag. 2020, 58, 34–40.
[CrossRef]

22. Cipar, J.; Ho, Q.; Kim, J.K.; Lee, S.; Ganger, G.R.; Gibson, G.; Keeton, K.; Xing, E. Solving the straggler problem with bounded
staleness. In Proceedings of the 14th Workshop on Hot Topics in Operating Systems (HotOS XIV), Santa Ana Pueblo, NM, USA,
13–15 May 2013.

23. Tyagi, S.; Sharma, P. Taming resource heterogeneity in distributed ml training with dynamic batching. In Proceedings of the 2020
IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), Washington, DC, USA, 17–21
August 2020; pp. 188–194.

24. Ye, Q.; Zhou, Y.; Shi, M.; Sun, Y.; Lv, J. Dbs: Dynamic batch size for distributed deep neural network training. arXiv 2020,
arXiv:2007.11831.

25. Xia, W.; Quek, T.Q.; Guo, K.; Wen, W.; Yang, H.H.; Zhu, H. Multi-armed bandit-based client scheduling for federated learning.
IEEE Trans. Wirel. Commun. 2020, 19, 7108–7123. [CrossRef]

26. Shi, W.; Zhou, S.; Niu, Z. Device scheduling with fast convergence for wireless federated learning. In Proceedings of the ICC
2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

27. Chen, M.; Poor, H.V.; Saad, W.; Cui, S. Convergence time minimization of federated learning over wireless networks. In
Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020;
pp. 1–6.

28. Feng, S.; Niyato, D.; Wang, P.; Kim, D.I.; Liang, Y.-C. Joint service pricing and cooperative relay communication for federated
learning. In Proceedings of the 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Atlanta, GA, USA, 14–17 July 2019; pp. 815–820.

29. Sarikaya, Y.; Ercetin, O. Motivating workers in federated learning: A stackelberg game perspective. IEEE Netw. Lett. 2019, 2,
23–27. [CrossRef]

30. Ding, N.; Fang, Z.; Huang, J. Optimal contract design for efficient federated learning with multi-dimensional private information.
IEEE J. Sel. Areas Commun. 2020, 39, 186–200. [CrossRef]

31. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017,
Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282.

32. Carli, R.; Chiuso, A.; Schenato, L.; Zampieri, S. A pi consensus controller for networked clocks synchronization. IFAC Proc. Vol.
2008, 41, 10289–10294. [CrossRef]

33. Wang, D.; Ren, J.; Wang, Z.; Wang, Y.; Zhang, Y. Privaim: A dual-privacy preserving and quality-aware incentive mechanism for
federated learning. IEEE Trans. Comput. 2022, 72, 1913–1927. [CrossRef]

34. Ding, N.; Gao, L.; Huang, J. Joint participation incentive and network pricing design for federated learning. In Proceedings of the
IEEE INFOCOM 2023—IEEE Conference on Computer Communications, New York City, NY, USA, 17–20 May 2023; pp. 1–10.

35. Li, M.; Zhang, T.; Chen, Y.; Smola, A.J. Efficient mini-batch training for stochastic optimization. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014;
pp. 661–670.

36. Dekel, O.; Gilad-Bachrach, R.; Shamir, O.; Xiao, L. Optimal distributed online prediction using mini-batches. J. Mach. Learn. Res.
2012, 13, 165–202.

37. Wang, X.; Zhao, Y.; Qiu, C.; Liu, Z.; Nie, J.; Leung, V.C. Infedge: A blockchain-based incentive mechanism in hierarchical federated
learning for end-edge-cloud communications. IEEE J. Sel. Areas Commun. 2022, 40, 3325–33422. [CrossRef]

38. Lu, J.; Liu, H.; Jia, R.; Zhang, Z.; Wang, X.; Wang, J. Incentivizing proportional fairness for multi-task allocation in crowdsensing.
IEEE Trans. Serv. Comput. 2023. [CrossRef]

39. Lu, J.; Liu, H.; Jia, R.; Wang, J.; Sun, L.; Wan, S. Towards personalized federated learning via group collaboration in iiot. IEEE
Trans. Ind. Inform. 2023, 19, 8923–8932. [CrossRef]

40. Lu, J.; Liu, H.; Zhang, Z.; Wang, J.; Goudos, S.K.; Wan, S. Toward fairness-aware time-sensitive asynchronous federated learning
for critical energy infrastructure. IEEE Trans. Ind. Inform. 2022, 18, 3462–3472. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2019.2940820
http://dx.doi.org/10.1109/TNSE.2021.3138928
http://dx.doi.org/10.1109/MCOM.001.2000388
http://dx.doi.org/10.1109/TWC.2020.3008091
http://dx.doi.org/10.1109/LNET.2019.2947144
http://dx.doi.org/10.1109/JSAC.2020.3036944
http://dx.doi.org/10.3182/20080706-5-KR-1001.01741
http://dx.doi.org/10.1109/TC.2022.3230904
http://dx.doi.org/10.1109/JSAC.2022.3213323
http://dx.doi.org/10.1109/TSC.2023.3325636
http://dx.doi.org/10.1109/TII.2022.3223234
http://dx.doi.org/10.1109/TII.2021.3117861


Appl. Sci. 2024, 14, 494 24 of 24

41. Ying, C.; Jin, H.; Wang, X.; Luo, Y. Double insurance: Incentivized federated learning with differential privacy in mobile
crowdsensing. In Proceedings of the 2020 International Symposium on Reliable Distributed Systems (SRDS), Shanghai, China,
21–24 September 2020; pp. 81–90.

42. Huang, T.; Lin, W.; Wu, W.; He, L.; Li, K.; Zomaya, A.Y. An efficiency-boosting client selection scheme for federated learning with
fairness guarantee. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1552–1564. [CrossRef]

43. Ma, C.; Konečnỳ, J.; Jaggi, M.; Smith, V.; Jordan, M.I.; Richtárik, P.; Takáč, M. Distributed optimization with arbitrary local solvers.
Optim. Methods Softw. 2017, 32, 813–848. [CrossRef]

44. Sultana, A.; Haque, M.M.; Chen, L.; Xu, F.; Yuan, X. Eiffel: Efficient and fair scheduling in adaptive federated learning. IEEE
Trans. Parallel Distrib. Syst. 2022, 33, 4282–4294. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2020.3040887
http://dx.doi.org/10.1080/10556788.2016.1278445
http://dx.doi.org/10.1109/TPDS.2022.3187365

	Introduction
	Related Work
	System Model
	Overview
	Incentive Model
	Design Objectives

	Optimal Design of Efficiency-Aware Incentive Mechanism
	Optimal Rewards
	Efficiency Score Function Design

	Experiments
	Experimental Setup
	Evaluation of the Synthetic Dataset
	Evaluation Using the Real Datasets

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

