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Abstract: In human and other organisms’ perception, olfaction plays a vital role, and biomimetic
olfaction models offer a pathway for studying olfaction. The most optimal existing biomimetic
olfaction model is the KIII model proposed by Professor Freeman; however, it still exhibits certain
limitations. This study aims to address these limitations: In the feature extraction stage, it intro-
duces adaptive histogram equalization, Gaussian filtering, and discrete cosine transform methods,
effectively enhancing and extracting high-quality image features, thereby bolstering the model’s
recognition capabilities. To tackle the computational cost issue associated with solving the numerical
solutions of neuronal dynamics equations in the KIII model, it replaces the original method with
the faster Euler method, reducing time expenses while maintaining good recognition results. In the
decision-making stage, several different dissimilarity metrics are compared, and the results indicate
that the Spearman correlation coefficient performs best in this context. The improved KIII model is
applied to a new domain of traffic sign recognition, demonstrating that it outperforms the baseline
KIII model and exhibits certain advantages compared to other models.

Keywords: olfaction; biomimetic olfaction models; feature extraction; pattern recognition; traffic sign
recognition

1. Introduction

Olfaction, as a fundamental sense in humans and other organisms, plays an essential
role in many domains [1]. Biomimetic olfactory models, which emulate the principles and
mechanisms of biological olfactory systems to simulate and understand the basic processes
of olfactory perception, are a significant approach to studying olfaction. In this field,
numerous biomimetic models of the olfactory neural system have emerged, demonstrating
a wealth of variation and innovation. For example, the K-series models proposed by
Professor Freeman, which evolved from K0, KI, and KII to KIII [2–5], realistically simulate
the early stages of the olfactory neural system, including the olfactory epithelium, olfactory
bulb, and olfactory cortex. Hopfield and Li [6] constructed an olfactory bulb model based
on the biological anatomy and electrophysiological characteristics of the olfactory bulb and
used the model for simulating the transformation process of odor information. Soh et al. [7]
established an olfactory neural network model, which encapsulates the olfactory receptors,
olfactory bulb, and piriform cortex and allows odor encoding in the olfactory bulb to
be predicted by adjusting model parameters, as well as simulating the ability to extract
features associated with “attention”. The Li model [8] constructed by Li and colleagues
focused on the olfactory bulb layer and olfactory cortex. Hans et al. [9], based on the
laminar features of the olfactory cortex, subdivided it into three layers for construction. At
a macro level, the model structure omits the simulation of olfactory receptors, but the rest
corresponds to the actual structure of the olfactory neural tissue, and the model parameters
are primarily grounded in experimental data from neurophysiology.

Among the multitude of biomimetic models, the KIII model, grounded in experimen-
tal data from neurophysiology, corresponds closely to the actual structure of the olfactory
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neural tissue and has demonstrated high similarity between its simulated brain waves
and the outputs of the real olfactory neural system. The KIII model not only exhibits a
high degree of biomimicry but has also shown good pattern recognition capabilities in
applications. It has already been utilized in fields like tea leaf categorization [10], facial
recognition [11,12], fabric texture identification [13], pre-processing filters [14], and elec-
troencephalogram (EEG) recognition [15], showcasing its potential in pattern recognition
and data processing. Although the KIII model excels in certain areas, there remain some
issues worthy of attention: lengthy training times, suboptimal feature extraction abilities,
and an overly simplistic decision-making approach.

This study aims to enhance the KIII model by addressing its current limitations and
further improving its pattern recognition capabilities. Traffic sign recognition has become
a prominent research focus in recent years, and traffic sign datasets adhere to specific
standards and rules. This provides us with a robust testing scenario to assess the model’s
ability to handle diversity and complexity. For the KIII model, traffic sign recognition
represents a novel application domain. Therefore, we choose to validate the feasibility
of the optimized KIII model using a traffic sign dataset and compare it with the original
baseline KIII model as well as other models.

2. The KIII Model

The KIII model is constructed based on the anatomical structure of the entire anterior
olfactory neural pathway, and it exhibits a well-defined correspondence with the structure
of the olfactory system. The K-series models consist of K0, KI, KII, and KIII, with K0 serving
as the fundamental module. The KI model is composed of two K0 models, and the KII
model is composed of two KI models. The K0, KI, and KII models are interconnected in a
feedforward and delayed feedback manner to form the KIII model. As shown in Figure 1,
the complete KIII model is divided into five layers: the periglomerular cell (PG) layer,
the olfactory bulb (OB) layer, the anterior olfactory nucleus (AON) layer, the prepyriform
cortex (PC) layer, and the external capsule (EC) layer. The following is the topological
structure of the KIII model:

In the Figure 1, symbols and labels are used to represent different cell types and
neuronal layers to provide a better description of the composition and functionality of
the olfactory system. Specifically, the symbol ‘+’ denotes excitation, while the symbol ‘-’
denotes inhibition. ‘R’ is used to represent olfactory receptor cells responsible for perceiving
and receiving odor information. ‘P’ represents the periglomerular cells connecting the
olfactory bulb, which are part of the OB (olfactory bulb) layer. ‘M’ and ‘G’ denote excitatory
mitral cells and inhibitory granule cells, respectively, together forming the KII model,
which simulates the OB layer. Inhibitory ‘I’ and excitatory ‘E’ cells constitute the KII model,
corresponding to the anterior olfactory nucleus (AON) layer. Additionally, inhibitory ‘B’
and excitatory ‘A’ cells form the KII model, corresponding to the prepyriform cortex (PC).
‘C’ represents deep pyramidal cells [6,13–15].

In the KIII model, each ‘R’ represents a K0 model, and ‘n’ parallel ‘R’ units constitute
the n-channel input of the KIII model. The periglomerular cells ‘P’ preprocess signals from
olfactory receptors ‘R’. Mitral cells ‘M’ in the olfactory bulb layer (OB) receive signals from
both periglomerular cells ‘P’ and olfactory receptors ‘R’ and transmit information to granule
cells ‘G’. Mitral cells ‘M’ excite granule cells ‘G’, while granule cells ‘G’ inhibit mitral cells
‘M’, forming a negative feedback oscillatory neural loop. After processing in the olfactory
bulb layer OB, mitral cells ‘M’ transmit information to the anterior olfactory nucleus (AON)
and the prepyriform cortex (PC) through the lateral olfactory tract (LOT). The anterior
olfactory nucleus (AON) and the prepyriform cortex (PC) also contain excitatory neurons
‘E’ and ‘A’, as well as inhibitory neurons ‘I’ and ‘B’, forming similar oscillatory loops.
The output signals from the prepyriform cortex (PC) reach the external capsule (EC) and
provide feedback to the AON layer, OB layer, and PG layer through the ‘Di’ feedback
mechanism. The oscillatory characteristics and negative feedback mechanism of these
neural loops provide unique dynamic properties for odor signal processing.
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Figure 1. KIII model topology.

In the KIII model, the dataset is initially divided into training and testing sets in pro-
portion. After preprocessing, the data is transformed into feature vectors and subsequently
fed into ‘N’ channels. During this process, Hebbian learning is applied to extract the OB
layer matrix, compute clustering centers for each class, and determine the weight parame-
ters for each layer, which are then saved. Testing samples also undergo a similar process,
leading to the calculation of a clustering center. In the decision layer, a similarity metric
algorithm is employed to compare the testing center with the saved clustering centers,
ultimately yielding the predicted class results. The overall process of training and testing
in the KIII model is depicted in Figure 2.
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Figure 2. Experimental process. The red line represents the training process, the yellow line represents
the feature extraction process, and the black line represents the common elements.

3. Problems and Improvement of KIII Model
3.1. Calculate the Cost

The establishment of the K-series models is based on the neural ensemble theory,
where each node in the model is described by a common set of Equations (1)–(3):

1
a · b

·
[
x′′i (t) + (a + b) · x′i(t) + a · b · xi(t)

]
=

N

∑
j ̸=i

[
Wij · Q

(
xj(t), qj

)]
+ Ii(t) (i = 1, . . . , N) (1)

Q(xi(t), q) =

{
q · (1 − e− exp(x(t))−1), x(t) > x0

−1, x(t) < x0
(2)

x0 = ln(1 − q · ln(1 +
1
q
)) (3)

where N represents the number of K0 units in the model’s OB layer, that is, the number
of model channels. xi(t) and xj(t) denote the potential state variables of the i-th and j-th
neural ensembles, respectively. wij represents the synaptic connection strength from the j-th
neuron to the i-th neural ensemble. Ii(t) represents the external input received by the i-th
neural ensemble. a and b are two time constants associated with neural electrophysiological
activity, with experimental values of a = 0.220 and b = 0.720. Q(xj(t), qj) is a non-linear
S-shaped input/output function derived from the Hodgkin–Huxley (H-H) equation, where
q represents the maximum asymptote of the sigmoid function. To solve the problem, we are
given a second-order differential equation with initial values, and we seek the numerical
solution for the function at the next time step. To facilitate the computation, we introduce
intermediate variables and transform this second-order differential equation into two
first-order differential equations, represented as Equations (4) and (5):

y′′(t) + (a + b)y′(t) + aby(t) = abRHS(t) (4){
x1(t) = y(t)
x2(t) = y′(t)

⇒
{

x′1(t) = x2(t)
x′2(t) = abRHS(t)− (a + b)y′(t)− aby(t)

(5)

In the model, the initial time (t) is set to 0 with a step size of 1 ms, and at the 0 s mark, all
neurons are in a resting state with the initial values of both first-order differential equations
being 0. In the KIII model, a numerical solution must be computed for each pair of adjacent
neurons at every moment. The baseline KIII model utilizes the fourth-order Runge–Kutta
method, which undoubtedly incurs a significant computational cost. To balance precision
and computing expenses, four numerical methods with varying degrees of accuracy were
compared. These methods have different principles of solution, levels of computational
precision, and execution times. Below is a brief introduction to these four methods.
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3.1.1. Euler Method

Euler’s method approximates the solution step by step by using initial values and the
derivatives of the differential equation. It has a simple computational formula and is faster;
however, due to its first-order accuracy, it may introduce errors in certain problems. Here
is the Euler method’s computational formula:

yn+1 = yn + f (tn, yn) · h (6)

3.1.2. Trapezoidal Rule Method

The trapezoidal rule combines the ideas of Euler’s method and the midpoint method
by using the average of the derivatives at the current and next points in the update step.
This reduces the numerical solution error caused by the estimation error of the derivatives,
leading to a more accurate estimation of the derivatives. The calculation formula for the
trapezoidal rule is as follows:

yn+1 = yn +
h
2
· ( f (tn, yn) + f (tn+1, yn+1)) (7)

3.1.3. Third-Order Heun Method

The third-order Heun method belongs to the class of Runge–Kutta methods. Simi-
lar to Euler’s method, Heun’s method iteratively approaches the numerical solution of a
differential equation. In comparison to the first-order Euler method, Heun’s method main-
tains relative simplicity while achieving third-order accuracy in the numerical solution. It
demonstrates good numerical stability and convergence. However, due to the involvement
of two slope calculations, it incurs relatively higher computational costs. The calculation
formula for the third-order Heun method is as follows:

k1 = f (tn, yn)

k2 = f
(

tn +
h
3

, yn +
h
3
· k1

)
k3 = f

(
tn +

2h
3

, yn −
h
3
· k1 + h · k2

)
yn+1 = yn +

h
4
· (k1 + 3k2 + k3)

(8)

3.1.4. Fourth-Order Runge–Kuta Method

The fourth-order Runge–Kutta method utilizes a weighted average of multiple func-
tion values to approximate the numerical solution of a differential equation. The specific
steps involve computing intermediate values and weighting coefficients to update the ap-
proximate values of the solution. Due to its use of more function values for approximation,
it has a higher order, offering increased computational accuracy. However, it may require
more computation time correspondingly. Below are the computational formulas for the
fourth-order Runge–Kutta method:

k1 = f (tn, yn)

k2 = f
(

tn +
h
2

, yn + h · k1

2

)
k3 = f

(
tn +

h
2

, yn + h · k2

2

)
k4 = f (tn + h, yn + h · k3)

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4)

(9)
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3.2. Feature Extraction

The KIII model is inspired by the biological olfactory system and employs a biologically
plausible feature extraction method. This method processes sensory data through the
olfactory neural pathway, effectively capturing features such as texture and edges in one-
dimensional sequences and simple images. One-dimensional sequences and simple images
typically exhibit relatively simple structures, making them more amenable to feature
extraction and pattern recognition. The KIII model performs well when dealing with
one-dimensional sequences and simple images. However, its performance significantly
deteriorates when applied to more complex and diverse images. Therefore, handling images
and extracting features that represent original data effectively [16–18] is a challenging
and critical task when using the KIII model for pattern recognition. In this study, in
order to extract high-quality feature vectors, we incorporated previous research on image
enhancement. In the feature extraction stage, we applied adaptive histogram equalization
and Gaussian filtering to improve the overall image quality. Subsequently, we used gridded
Discrete Cosine Transform (DCT) and a combination of global and local DCT to extract
image features.

3.2.1. Adaptive Histogram Equalization

Based on previous research, a comparative analysis of image quality enhancement
methods, such as Adaptive Histogram Equalization, Local Contrast Enhancement, Sharp-
ening, Saturation Enhancement, and Dynamic Range Compression, has been conducted, as
summarized in Table 1. Relative to other techniques, Adaptive Histogram Equalization
displays a superior local contrast adjustment capability, which justifies the selection of this
adaptive method in our study to more effectively manage local details in images, thus
improving the overall image quality.

Table 1. Comparison of image quality enhancement methods.

Method Advantages Disadvantages

Adaptive
Histogram
Equalization

Performs histogram equalization
based on the local characteristics,
suitable for scenarios with uneven
illumination within the image.

It may introduce noise, mak-
ing the image appear over-
processed.

Local Contrast
Enhancement

Capable of highlighting local fea-
tures of an image and enhancing
detail.

It may result in the image look-
ing overly sharp or processed,
necessitating careful parameter
adjustment.

Sharpening Enhances the edges and details
of an image.

It can potentially lead to noise or
artifacts.

Dynamic Range
Compression

Helps in preserving more details
in the image, especially in high-
contrast scenes.

The image may appear darker,
requiring appropriate parameter
adjustments to balance bright-
ness and detail.

Adaptive Histogram Equalization (AHE) divides an image into small local regions and
performs histogram equalization within each region. This process enhances the image’s
contrast while preserving its details and background information. This method takes into
account the differences in brightness distribution in different regions of the image, ensuring
that each local region’s histogram is properly equalized, thus improving the visual quality
of the image. In the case of Adaptive Histogram Equalization, the choice of key parameters
can lead to different enhancement effects. Based on previous experimental research, this
study sets the contrast enhancement limiting factor, clipLimit, to 1.0 and uses an 8 × 8 grid
size, referred to as tileGridSize, to partition the image into local blocks.
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3.2.2. Gauss Filter

Noise removal is an indispensable step in data processing, and for images, Gaussian
noise is the most prominent and primary type of noise. Table 2 presents a comparative
analysis of several common denoising methods. Considering the specific characteristics of
the image, Gaussian filtering is ultimately selected as the method for this study.

Table 2. Comparison of denoising modes.

Method Advantages Disadvantages

Median
Filtering

Effective for salt-and-pepper im-
pulse noise, capable of removing ex-
treme outliers; does not introduce
additional sharpening effects.

It is not suitable for continuous noise
like Gaussian noise; excessive de-
noising may lead to image blurring.

Bilateral
Filtering

Preserves image edge information;
has parameters to control the degree
of smoothing, allowing for a balance
between smoothing and denoising.

The computation is relatively slow;
parameters need to be adjusted for
optimal results.

Gaussian
Filtering

Fast; effectively reduces Gaussian
noise and smooths the image while
preserving edge features of the im-
age.

It may reduce the sharpness of the
image and is not suitable for remov-
ing non-Gaussian noise.

Wiener
Filtering

Capable of reducing noise while
preserving image details; can adap-
tively filter based on the characteris-
tics of noise.

It is sensitive to parameters, requir-
ing accurate estimation of the statisti-
cal properties of the image and noise;
the computation is complex.

Gaussian filtering, based on the concept of the Gaussian distribution, aims to reduce
noise in images by applying a smoothing operation. It involves calculating a weighted
average of the pixel values surrounding each pixel in the image, following a Gaussian
distribution. This process effectively smooths the image and eliminates noise. While
Adaptive Histogram Equalization can provide excellent image enhancement results, it may
amplify noise in the image. Therefore, Gaussian filtering is chosen to process the image
to minimize the noise impact introduced by histogram equalization. In Gaussian filtering,
the size of the filter kernel determines the window size over which the filter slides on the
image. In this study, a 5 × 5 Gaussian kernel size is used.

3.2.3. Feature Fusion Based on Discrete Cosine Transform

Feature extraction plays a crucial role in image processing and pattern recognition [19,20],
enhancing model efficiency and performance by reducing data dimensions and preserving
key information. In Table 3, we conducted a comparative analysis of various feature
extraction methods. Due to the energy concentration property of the Discrete Cosine
Transform (DCT), the representation of features becomes more compact, enabling better
capture of essential characteristics in signals or images.

The Discrete Cosine Transform (DCT) decomposes an image into a weighted sum of a
series of cosine functions, representing the image in the frequency domain. By separating
high-frequency and low-frequency information, it provides a more compact representation
of the image. Low-frequency coefficients reflect the overall structure, while high-frequency
coefficients represent detailed information. Selecting appropriate frequency domain coeffi-
cients allows for the extraction of key features. DCT is a global feature extraction method,
and its performance in extracting local features is relatively limited. To address this, we
perform feature extraction in three steps:

1. Directly compute the DCT coefficients for the entire image as a representation of the
whole image;
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2. Divide the image into a grid and apply the Discrete Cosine Transform to each grid.
Finally, aggregate the DCT coefficients from each grid to represent the entire image;

3. Concatenate the features obtained from steps 1 and 2, combining local features with
global features to represent the entire image with richer features.

The overall process is illustrated in Figure 3.

Table 3. Comparative analysis of feature extraction methods.

Method Advantages Disadvantages

Local Binary
Pattern

Simple and efficient; highly sensi-
tive to texture features, suitable for
texture analysis.

Not suitable for extracting object
edges and shape features; unable
to handle local detailed features.

Discrete
Cosine Trans-
form

Concentrates image energy on
fewer coefficients; capable of cap-
turing frequency domain features
of signals.

Unable to capture image features
containing sharp edges and de-
tails.

Histogram of
Oriented Gra-
dients

Exhibits good rotational invari-
ance; provides a good description
of object shapes and contours.

Relatively larger feature dimen-
sions; sensitive to changes in light-
ing and viewpoint.

⑤

① ②

④

③

⑥

⑦ ⑧ ⑨

Global DCT

 feature extraction

Feature 

f usion

P art DCT

 feature extraction

Figure 3. Feature fusion.

3.3. Measurement Mode

During the training phase, the KIII model saves the parameters for each layer and the
cluster centers for each category. In the prediction phase, when a sample is input to the
KIII model, it undergoes calculations to obtain a cluster center. This cluster center is then
compared with all the saved cluster centers. The model calculates their similarity [21,22]
and selects the cluster center with the highest similarity as the output category for that
sample. The baseline KIII model uses the Euclidean distance to calculate similarity, which
is somewhat simplistic. Therefore, we attempted to measure the similarity between two
cluster centers from different perspectives by using four different methods: cosine similarity,
covariance, Pearson coefficient, and Spearman coefficient. This allowed us to analyze the
association between vectors from different angles and replace the original measurement
method with the one that produced the best results.The following is a brief description of
the centralized measures used in the experiment.

3.3.1. Euclidean Distance

The Euclidean distance measures the geometric distance between two vectors, which
is the straight-line distance in a multidimensional space. It does not impose any specific
requirements on data distribution but is sensitive to outliers. It is the default similarity
measurement method used in the KIII model. For two points A(a1, a2, . . . , an) and B(b1,
b2, . . . , bn) in an n-dimensional space, the Euclidean distance is calculated using the
following formula:
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D(A, B) =
√
(A11 − B11)

2 + . . . (Amn − Bmn)
2 =

√
∑m

i=1 ∑n
j=1

(
Aij − Bij

)2 (10)

3.3.2. Cosine Similarity

Cosine similarity assesses the degree of alignment between two vectors by calculating
the cosine of the angle between them. It is commonly used with text data and high-
dimensional sparse data. Cosine similarity is insensitive to the magnitude of the data and is
suitable for high-dimensional data. However, it cannot capture relationships beyond linear
ones and is not suitable for data containing negative values. The formula for calculating
cosine similarity is as follows:

Cos Sim(A, B) =
∑m

i=1 ∑n
j=1 Aij · Bij√

∑m
i=1 ∑n

j=1 A2
ij ·

√
∑m

i=1 ∑n
j=1 B2

ij

(11)

3.3.3. Covariance

Covariance is a statistical measure of the strength and direction of the linear relation-
ship between two variables. For two vectors, covariance quantifies the overall strength
and direction of their linear relationship, and it is sensitive to the scale of the data, unable
to eliminate dimensional effects. For two variables, A and B, the formula for calculating
covariance is as follows:

Cov(A, B) =
1

n − 1 ∑n
i=1(Ai − Ā)(Bi − B̄)T (12)

Here, n represents the number of samples, Ai and Bi represent the i-th dimension of
matrices A and B, respectively, and Ā and B̄ represent the sample means of matrices A and
B, respectively.

3.3.4. Pearson Correlation Coefficient

The Pearson correlation coefficient measures the strength of the linear relationship
between two variables. It is widely used in statistics to quantify the strength and direction
of a linear relationship. However, it has certain requirements regarding data scale and nor-
mality and is not suitable for capturing nonlinear relationships. The formula for calculating
the Pearson correlation coefficient is as follows:

ρ(A, B) =
cov(A, B)
σA · σB

(13)

Here, cov(A, B) represents the covariance of vectors A and B, and σA and σB represent
the standard deviations of A and B.

3.3.5. Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation coefficient measures the rank correlation between
two variables. Its calculation is based on the ranks of the variables rather than their specific
numerical values. Therefore, it is suitable for situations involving non-linear relationships,
ordered data, or the presence of outliers, but it cannot capture linear relationships. It is not
suitable for continuous numerical data. The formula for calculating the Spearman’s rank
correlation coefficient is as follows:

ρ(A, B) = 1 −
6 ∑n

i=1 d2
i

n(n2 − 1)
(14)

Here, d represents the rank difference of variables, n represents the number of samples
and in this paper refers to the length of the first dimension of the cluster center vector.

For the five aforementioned measurement methods, their ranges and the relationship
between their values and correlation are presented in Table 4.
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Table 4. The relationship between different measurement methods and correlation.

Method Value Range Relationship with Similarity

Euclidean Distance D(A, B) ∈ [0,+∞)
The smaller the value of D(A, B) the greater
the similarity between vectors A and B.

Cosine Similarity CosSim(A, B) ∈ [−1, 1]
1 indicates complete similarity, −1 indicates
complete dissimilarity, and 0 denotes no cor-
relation.

Covariance Cov(A, B) ∈ (−∞,+∞)
The greater the absolute value of Cov(A, B),
the stronger the correlation.

Pearson Correlation
Coefficient ρ(A, B) ∈ [−1, 1]

1 represents perfect positive correlation, −1
represents perfect negative correlation, and
0 represents no correlation.

Spearman’s Rank
Correlation Coefficient ρ(A, B) ∈ [−1, 1]

1 represents perfect positive correlation, −1
represents perfect negative correlation, and
0 represents no correlation.

4. Experiment and Result Analysis

The experimental dataset used in this study is the TSRD dataset from the Chinese
Traffic Sign Database, and the task is classification recognition. Based on prior research on
KIII pattern recognition, the currently employed KIII model still exhibits certain limitations
in terms of performance. Due to this, the dataset size should not be too large. In this case,
20 images were selected for each category, and there are a total of 58 categories. A portion
of the data is shown in Figure 4.

Figure 4. Partial data display.

To comprehensively evaluate the feasibility of improving the KIII model, three datasets
of different sizes were selected during the experimental process, each corresponding to
one of the three different channels of the KIII model. During the training process, a
partitioning strategy with a 60% training set and a 40% test set was employed to ensure
the full utilization of data. The number of iterations was set to 1, and the experimental
development environment included a CPU I5-13600KF and a GPU RTX 4080 16 GB, running
Python 3.9.

4.1. Comparison before and after Improvement to the KIII Model

The figure below depicts the total time spent on training and testing the KIII model
for three different original image sizes (corresponding to three different channels of the
KIII model) using four different numerical methods: Euler’s method, the trapezoidal rule
method, the third-order Heun method, and the fourth-order Runge–Kutta method for
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calculating the numerical solutions of a system of differential equations. The figure also
presents the average recognition accuracy on the test dataset for each numerical method.

According to the results shown in Figures 5 and 6, training with different numeri-
cal methods resulted in minimal differences in test accuracy, with an average accuracy
difference of less than 1%. However, there was a significant fivefold difference in time
expenditure, indicating that the KIII model’s pattern recognition task does not demand
strict precision in numerical solution accuracy for the next time step. This also highlights
the notable advantage of Euler’s method in terms of time efficiency when solving numer-
ical solutions. Additionally, it is evident that the KIII model exhibits poor recognition
performance on untreated complex images, with an average accuracy of only 56.69%.
Therefore, image processing and feature extraction are necessary and critical for improved
performance.
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Figure 5. Accuracy of different solution methods.
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Figure 6. Time spent on different solution methods.

The following figure shows the recognition results of image data of three different
sizes after applying adaptive histogram equalization, Gaussian filtering, and the fusion of
global and local DCT features introduced in Section 3.2 during the feature extraction stage
of the KIII model. The Euler method is used for solving the differential equations, and the
experimental results are as shown in the following figure.

According to the results in Figures 7 and 8, introducing a new feature extraction
methods in the KIII model significantly improved the model’s performance compared
to previous iterations, demonstrating the rationale behind these methods. Adaptive His-
togram Equalization enhances the uniformity of the grayscale distribution in original
images, effectively highlighting fine details as the image’s information entropy increases.
Gaussian filtering reduces image noise, resulting in a smoother image. Despite the in-
creased computational cost due to the extraction and combination of local and global
image features, the average test accuracy reached 89.10%. This represents a notable 32.41%
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improvement over the KIII model’s direct recognition of the original images. Taking all
factors into consideration, the proposed feature extraction methods have shown significant
effectiveness in pattern recognition tasks for the KIII model.
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Figure 7. Accuracy after feature extraction.
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Figure 8. Time spent after feature extraction.

Finally, experiments were conducted regarding the correlation measurement methods
described in Section 3.3 at the model decision stage, and the results are shown in Figure 9.
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Figure 9. Accuracy of different decision-making methods.

According to the results shown in Figure 9, the performance of the Spearman correla-
tion coefficient in the decision-making stage is significantly superior to other measurement
methods. This can be attributed to several factors. Firstly, the Spearman correlation coeffi-
cient exhibits better adaptability to non-linear relationships, a crucial characteristic given
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that similarity relationships among traffic signs are non-linear due to varying shooting an-
gles, lighting conditions, and deformations. Secondly, the Spearman correlation coefficient
demonstrates robustness against outliers, which is essential in real-world scenarios where
images may contain outliers due to factors such as lighting, dirt, and damage. Thirdly, since
traffic sign categories often follow certain logical or rule-based orderings, the Spearman
correlation coefficient effectively preserves this sequential information. Therefore, we
replace the Euclidean distance in the baseline KIII model with the Spearman correlation
coefficient for decision making.

Additionally, it can be observed that as the number of input image channels increases,
the model’s test accuracy exhibits a declining trend. This is because, with larger sample
sizes, the feature vectors also increase in size, requiring the model to learn more features.
This undoubtedly adds to the model’s burden, leading to a decrease in accuracy.

4.2. Comparison with Other Models

The ultimate goal of artificial intelligence is to endow machines with learning and
decision-making capabilities similar to humans. Therefore, the performance and biomimicry
of models are equally important. In addition to comparing the improved KIII model’s re-
sults with the baseline KIII model, we contrast the experimental outcomes with recognition
results from other models, as shown in Table 5. The experiments indicate that, although
the KIII model slightly lags behind other models in terms of performance, it exhibits a
significant advantage in biomimicry. Moreover, it achieves outstanding results after a single
learning iteration, much like the strong learning ability of the biological olfactory neural
system in response to new odors.

Table 5. KIII compared to other models.

Model Iterations Channels
(Image Size)

Biomimetic
Degree

Average
Accuracy

AlexNet 100 64 low 93.1%
RIECNN [23] 100 64 low 96.9%

CapsNetCNN [24] 100 64 low 97.5%
Improved KIII 1 64 high 95.2%

4.3. Conclusions and Prospects

This study aimed to improve the baseline KIII model. We delved into the trade-off
between the accuracy and time expenditure of solving differential equations in the KIII
model. The results showed that the Euler method consumes minimal time and achieves
decent recognition performance. To address the KIII model’s weakness in recognizing
disordered signals, we introduced image enhancement and feature extraction methods in
the feature extraction stage, resulting in the extraction of richer features. We validated their
significant contribution to the model’s recognition performance in experiments.

In the model decision stage, we compared five measurement algorithms, and the
results indicated that the Spearman rank correlation coefficient outperformed other metrics.
Finally, we applied the improved KIII model to a new application domain—traffic sign
recognition. On the TSRD dataset, the improved KIII model achieved a recognition rate of
95.18%, which was comparable to other classical models, demonstrating the feasibility of
the improvement.

In future research, we will focus on the following aspects:

• From a performance perspective, we will draw inspiration from deep learning con-
cepts. For instance, we will adjust the connection methods between neurons in the
model from existing connections to local or random connections. We may also integrate
classical modules from deep learning into the KIII model to enhance its performance
and explore the applications of Convolutional Neural Networks and Recurrent Neural
Networks as they possess distinct advantages in handling spatial and temporal data,
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respectively. These advanced neural network architectures may play a crucial role in
the analysis of olfactory data.

• From a biomimetic perspective, we will explore whether the model’s structure, com-
pared to the anatomical structure of the real olfactory neural system, can be further
improved to increase its biomimicry.

• Efforts will be made to expand the application of the KIII model into additional
domains, particularly in areas related to olfaction.
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