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Abstract: To address the stress–structural failure phenomenon that can be induced by the excavation
of a left-side tunnel section of a 610 m crushing station, an unmanned aerial vehicle was used in
this study to collect the geological conditions and rock mass information of the working face, and
important geometric information such as the attitude and spacing of rock mass were extracted. Based
on the identified attitude and spacing information, a three-dimensional rock mass structure and
numerical simulation model of the 610 m crushing station left-side tunnel section were constructed
using discrete element numerical simulation software (3DEC) (version 5.0). The results show that the
surrounding rock instability of the left-side tunnel section of the 610 m crushing station is controlled
by both the stress field in the contact zone between reddish-brown granite stratum and the gray-
black-gray gneiss stratum. The cause of stress–structural failure is that the joint sets (JSet #2 and
JSet #3) are most likely to form unfavorable blocks with the excavation surface due to unloading
triggered by the excavation. Therefore, stress–structural failure disasters in jointed strata sections are
one of the key issues for surrounding rock stability during crushing station excavation. It is suggested
to adopt ‘optimized excavation parameters + combined support forms’ to systematically control
stress–structural failure after unloading due to the excavation from three levels: surface, shallow,
and deep. The stress–structural failure mechanism of deep rock mass is generally applicable to a
large extent, so the results of this research have reference value for engineering projects facing similar
problems around the world.

Keywords: Jinchuan II mine; stress–structure failure; 3D reconstruction; numerical simulation

1. Introduction

With rapid economic growth and increasing population base, China’s demand for
resource extraction is also growing. However, it also faces challenges such as resource de-
pletion, environmental degradation, and safety hazards in production. Therefore, the trend
of resource extraction in China is progressing in a green, efficient, and safe direction [1,2].
The Jinchuan II mine is one of the largest polymetallic deposits in China, with abundant
resource potential and considerable development value in its deep ore bodies. However,
as the mining depth increases, deep rock mass is subjected to the effects of ‘three highs
and one disturbance’ (high ground stress, high ground temperature, high permeability
pressure, strong mining disturbance), which leads to stress–structure failure phenomena.
This not only affects mining efficiency and safety but also poses threats to underground
engineering structures and underground/surface environments [3–5]. Thus, investigating
the stress–structure failure phenomena and the underlying mechanisms in the left-side
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tunnel section of the 610 m crushing station can provide theoretical guidance and technical
support for deep mining in Jinchuan II mine.

Stress–structure failure, which refers to the sudden and unpredictable instability and
collapse of a rock mass, is an important issue in deep-rock mechanics and mining theory, as
well as one of the technical challenges in deep mining operations [6–8]. To date, domestic
and foreign scholars have conducted extensive theoretical analyses, numerical simulations,
experimental studies, and on-site monitoring regarding this issue, achieving notable re-
sults [9–22]. For example, Zhao et al. [10] established a stress analysis model for deep hard
rock deposits and analyzed the influence of different factors on stress distribution. Hu [13]
investigated the damage mechanism and instability of surrounding rock under deep high-
stress conditions, and proposed a surrounding rock stability evaluation method based on
damage variables. Yang et al. [16] discussed the critical technologies and countermeasures
for backfill mining in high-stress ore bodies in large nickel mines and provided reasonable
support measures and parameters. Xiao et al. [17] investigated stress–structure failure
during the excavation process of the underground powerhouse of Baihetan hydropower
station and found that tensile fracturing is the most active rock mass fracture mechanism
in the evolution of stress–structure failure. Martin et al. [19] found that the Hoek–Brown
brittleness parameter can be used to estimate the depth of brittle failure around a tunnel,
supporting demand load caused by stress–structure-induced failure. Li et al. [21] found
that when propagating cracks intersect existing joint sets, stress–structure rock bursts are
considered structural failures and analyzed using a catastrophic model. However, there
are still three research gaps concerning stress–structural failure induced by deep mining:
(1) the lack of in-depth analysis and systematic summarization for specific mining areas
or deposit conditions; (2) insufficient consideration of complex situations and nonlinear
effects resulting from the comprehensive effects of multiple factors; (3) the lack of targeted
prevention and control measures and suggestions. And, in the existing literature, there is
no specific systematic, detailed, and comprehensive analysis and discussion regarding the
stress–structural failure induced by deep mining in the left-side tunnel section of the 610 m
crushing station at Jinchuan II mine.

Thus, to address the stress–structural failure phenomena that can be induced by the
excavation in the left-side tunnel section of the 610 m crushing station, this research is
based on the collection of geological conditions and rock mass information of the working
face using unmanned aerial vehicles (UAVs); combined with the application of discrete
element numerical simulation software (3DEC), a three-dimensional rock mass structure
and numerical simulation model are constructed. And the research aims to investigate
the deformation characteristics, failure mechanisms, and instability modes of a deep rock
mass under high-stress conditions. Moreover, in light of the simulation results, measures
and suggestions for preventing and controlling stress–structural failure in a deep rock
mass are proposed. This can provide theoretical guidance and technical support for deep
mining in Jinchuan II mine, as well as reference value for deep mining under similar
conditions elsewhere.

2. 610 m Crushing Station

The 610 m crushing station is an important project constructed by Jinchuan II mine
to improve production efficiency and reduce costs, as shown in Figure 1. This project is
located at the 610 m horizontal plane and mainly extracts the middle and lower sections of
the ore body. It is primarily distributed within the porphyry and the contact zone between
the porphyry and surrounding rocks. And it exhibits irregular flattened or lens-like shapes
and is found within multiple stages of fault structures; the main valuable elements are
nickel, copper, cobalt, and platinum group elements, among others. The rocks in the 610 m
crushing station are striped mixed rocks: light flesh red, granular metamorphic structure,
and striped structure. The main mineral components are orthoclase, plagioclase, quartz,
and hornblende, with partial chloritization. Some regional rocks are interspersed with
clayey materials, and the engineering geological conditions are locally poor. The use of
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high-strength and high-rigidity anchor bolt and cable support technology can effectively
address the issue of rock mass instability under deep high-stress and fracture conditions.
The construction of the 610 m crushing station has not only improved the ore-processing
capacity and resource utilization rate but also saved energy consumption and transportation
costs, reduced environmental pollution and safety risks, and laid a solid foundation for the
sustainable development of Jinchuan II mine.
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Figure 1. Information of 610 m crushing station.

3. Instability of the Crushing Station and Attitude of the Rock Mass
3.1. Stress–Structural Failure Phenomenon

During the excavation of the 610 m crushing station, stress–structural failure occurred,
and the failure area was located in the opening section. This tunnel section mainly devel-
oped strata with alternating soft and hard layers of steeply inclined medium–thin-layered
granite and gneiss. The on-site stress–structural phenomenon is illustrated in Figure 2. It
can be observed that the loosening of blocks, opening of structural planes, and large block
falling occurred on the right side of the working face and roof arch (facing the working
face). An on-site investigation found that the freshly exposed working face has an obvi-
ous lithological interface. The right side of the lithological interface is gray-black gneiss
(Figure 3a), which is distributed in the middle and right side of the roof arch, accounting
for more than two-thirds of the working face area. The gneiss formation is characterized by
a medium–thick-layered/blocky structure, and the rock mass minerals are mainly flaky
black mica interspersed with fine quartz veins. The lower left portion of the interface is
reddish-brown, medium-grained, altered granite (Figure 3b). The current exposed position
of the working face is mainly concentrated on the left side of the roof arch. The minerals are
mainly potassium feldspar and quartz, showing a medium–thick-layered structure with a
compact texture. There are few interlayer planes, and joints cut the working face rock mass
into flat hexahedral blocks. Based on the rock mass, surrounding rock failure, and support
system damage revealed by on-site investigations, it can provide strong support for the
construction of an unexcavated tunnel section in the left-side of the 610 m crushing station,
ensuring its construction safety.
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Figure 3. Field sampling: (a) gray-black gneiss; (b) reddish-brown, medium-grained, altered granite.

3.2. Attitude of the Rock Mass

UAV technology and 3D reconstruction technology were used to obtain image informa-
tion of the exposed rock mass surface of the 610 m crushing station working face, consistent
with research results of Kong et al. [23]; i.e., a digital outcrop model generation method for
rock exposures based on UAV-SfM photogrammetry was developed. And a high-precision
and high-resolution 3D digital surface model of the 610 m crushing station was constructed
(Figure 4). Important geometric information such as the attitude and spacing of structural
planes (sets) of the rock mass was extracted (Figure 5). Through the statistical analysis
of the structural attitude of the rock mass, a total of five dominant structural sets were
identified and are listed in Table 1.
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Table 1. Summary of dominant structural plane in mixed rock strata of 610 m crushing station.

Petrofabric
Name

Lithology Level, m Structure Type
Attitude (Dip-Direction◦ (D-D)∠Dip◦ (D))

JSet #1 JSet #2 JSet #3 JSet #4 JSet #5

Migmatite zone Granite, gneiss 610 Layered,
layered–fractured 212∠57~63 220∠67~85 150∠66~85 70∠15~19 295∠75

The specific parameters for the dominant joint sets are as follows:

(1) JSet #1 is a joint set with an attitude of 212◦∠57~63◦, which is a typical interlayer
joint set, as shown by the light-blue joint set in Figure 5b. The joint set is distributed
in a granite formation and there is a relatively large spacing between the joint sets,
ranging from 25 to 35 cm. It has a certain cohesion strength, and both the opening and
closing properties are developed. The tensional joint surfaces are filled with muddy
and sandy debris, while the closing joint surfaces exhibit an intermittent joint pattern.

(2) JSet #2 is a joint set with an attitude of 220◦∠67~85◦, which is a reverse dipping
structural surface to the working face with a spacing of 25–55 cm. As shown in
Figure 5, this structural surface (in light green) penetrates through both granite and
gneiss strata, and intersects with joint sets JSet #2, #4, and #5, cutting out blocks on
the working face. Additionally, the joint surfaces of this joint set are smooth and
exhibit striations.

(3) JSet #3 is a joint set with an attitude of 150◦∠67~85◦. In the model constructed in
Figure 5, three joints of this set (in light gray) are identified with a spacing of over
20 cm. It has a dip direction parallel to the working face and also intersects with the
oblique interlayer joint set (JSet #3), which is more developed in the gneiss formation.

(4) JSet #4 is a joint set (in light purple) with an attitude of 70◦∠15~19◦. It is mainly
developed in the gneiss strata, with some incisions into the granite strata near the
lithological contact zone, but quickly terminates. The spacing between joint sets varies
significantly and exhibits a certain degree of randomness. And the spacing ranges
from 25 to 45 cm in Figure 5.

(5) JSet #5 (in purple red) has an attitude of 295◦∠75◦. It is mainly developed in the gneiss
strata, with some incisions into the granite formation near the lithological contact
zone, but quickly terminates. As shown in Figure 5, the spacing between joint sets
varies significantly and exhibits a certain degree of randomness. The structure of this
joint set is closed without any obvious filling materials.

4. Analysis of the Instability Mechanism in the 610 m Crushing Station
4.1. Principles of the Numerical Simulation

3DEC is a piece of 3D numerical simulation software that can be used to simulate the
response of discontinuous media under static or dynamic loads such as rock underground
engineering excavation, rock slope instability, rock foundation engineering, and masonry
structure analysis [24,25]. Its numerical method is based on the discrete element method,
which divides discontinuous media into multiple rigid or deformable blocks and describes
the interactions between blocks through contact models. The contact models can consider
normal and tangential forces, effects like friction and cohesion, as well as the geometric
characteristics and material properties of the contact surfaces. The blocks can be described
using either built-in material models or user-defined material models to depict the stress–
strain relationship within the blocks. Additionally, 3DEC software adopts an explicit time
integration method to solve the motion equations and employs iterative algorithms to
update contact states and forces [26–28].

4.2. Numerical Model of the Left-Side Tunnel Section of the 610 m Crushing Station

To analyze the mechanism of stress–structural failure in the left-side tunnel section of
the 610 m crushing station and identify the key controlling factors, a 3D rock mass structure
and numerical simulation model of the left-side tunnel section were constructed using the
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explicit discrete element method (3DEC) (Figure 6). The model was then used to simulate
the excavation of the left-side tunnel section. The model dimensions (length, width, and
height) were 50.0, 16, and 50.0 m, respectively. In order to reduce the boundary effect and
increase calculation efficiency, the focused research area was divided around the model
tunnel, with dimensions of 20.0 m × 16 m × 20.0 m. The size of the excavation tunnel
section is shown in Figure 6, and joint sets are defined within the focused research area.
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4.3. Geo-Stress and Displacement Boundary Conditions

For the numerical simulation of the left-side tunnel section of the 610 m crushing
station in Jinchuan II mine, the boundary conditions for geo-stress and displacement were
set based on the on-site geological conditions. Specifically, according to the ‘Engineering
geological analysis and surrounding rock stability study of the 610 m crushing station
project in Jinchuan II Mine’ and combined with mechanical parameter inversion, the values
of the geo-stress σx, σy, and σz in the numerical model were determined to be 42.16 MPa,
25.00 MPa, and 15.52 MPa, respectively. To simulate the real geo-stress environment,
corresponding displacement constraints were applied at the boundaries of the model.
Specifically, the velocity vectors of the blocks on the model boundaries were constrained to
zero throughout the simulation process, thereby ensuring that the simulation conditions
were consistent with the site conditions.

4.4. Joint Set and Mechanical Parameters
4.4.1. Geometric Parameters of the Joint Set

Based on on-site investigations and the identification of joint planes in Section 3.2, the
numerical model was set up accordingly, taking into account the lithological interface and
joint planes at the 610 m crushing station. The geometric parameters of the identified joint
planes and lithological interfaces are shown in Table 2, and the joint settings in the model
are shown in Figure 7.

Table 2. Joint set parameter setting information table in 3DEC.

Type Set Number Attitude (D-D ◦∠Dip ◦) Face-Centered Coordinates Joint Spacing, m Joint Distribution

Lithologic
interface JSet#1 212∠63 (−1.0, 7.0, 2.0) — Granite–gneiss

interface

Joint plane

JSet#2 329∠77 (−0.72, 7.55, 3.26) 0.41 Gneiss
JSet#3 181∠69 (−0.09, 7.32, 4.07) 0.48 Gneiss
JSet#4 271∠66 (−0.71, 7.46, 2.55) 1.34 Gneiss
JSet#5 190∠19 (1.35, 7.36, 3.13) 1.83 Gneiss
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4.4.2. Mechanical Parameters

Based on ‘Engineering geological analysis and surrounding rock stability study of
the 610 m crushing station project in Jinchuan II Mine’, the mechanical parameters of the
model were initially considered and then optimized to achieve consistency between the
simulation results and the on-site investigation results. The Mohr–Coulomb constitutive
model was adopted for both the blocks and joints, and the rock mechanical parameters and
joint mechanical parameters are shown in Tables 3 and 4.

Table 3. Mechanical parameters of rock mass in 3DEC.

Lithology Elasticity
Modulus, GPa Poisson’s Ratio Cohesion, MPa Friction Angle, ◦ Tensile

Strength, MPa
Dilatancy
Angle, ◦

Granite 40.43 0.24 6.07 33.57 5.10 0.00
Gneiss 30.69 0.26 0.41 31.79 0.81 10.00

Table 4. Joint mechanical parameters in 3DEC.

Joint
Position

Normal
Stiffness, GPa

Shear
Stiffness, GPa Cohesion, MPa Friction Angle, ◦ Tensile

Strength, MPa
Dilatancy
Angle, ◦

Interface 10.00 10.00 0.30 30.00 0.60 10.00
Gneiss 10.00 10.00 0.20 30.00 0.60 10.00

4.5. Analysis of the Instability Mechanism
4.5.1. The Migration Law of Working Face Blocks

As per Figure 8, the numerical simulation in the left-side tunnel section of the 610 m
crushing station reveals noticeable displacements in the left and right sidewalls, as well as
the floor, following excavation. These displacements occur in the direction of the positive
Y-axis for the sidewalls, the negative Y-axis for the floor, and the positive Z-axis. Specifically,
from the cross-sectional displacement contour diagram of the left-side tunnel section in
Figure 8a, it can be seen that the middle area of the tunnel floor has a larger displacement
value compared to other areas, and the distribution of large displacements extends inward
to a depth of 1.0–2.0 m. In terms of the distribution range, the area with the largest
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displacement is from the tunnel floor to the left and right sidewalls, and then to the roof
arch area. The reason for the distribution of larger displacements is due to the interaction
between joint sets (JSet #2 and JSet #3), as shown in Figure 7, in relation to the excavation
face. This interaction results in a significant displacement of the rock mass, exerting major
control on the movement of the blocks in this section. According to the displacement and
velocity vectors in the left-side section of the 610 m crushing station shown in Figure 8b,
there are signs of sliding and collapsing of the blocks formed by joint sets on the working
face towards the free surface. This phenomenon is mainly concentrated in the middle area
of the working face. Additionally, apart from the potential occurrence of block sliding and
collapsing on the working face, the blocks in the area from the tunnel floor to the left and
right sidewalls are also experiencing sliding and collapsing phenomena.
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4.5.2. The Mechanism of Stress–Structure Interaction around the Tunnel

The maximum/minimum principal stress around the tunnel controls the location
and depth of the surrounding rock failure and affects the movement mode of the rock
mass [29–33], which is supported by the research of Xiao et al. [17], in particular the stress–
structural failure (the maximum stress concentrations) occurring during the excavation pro-
cess in the Baihetan hydropower station in China. The distribution of maximum/minimum
principal stress around the left-side tunnel section of the 610 m crushing station tunnel is
shown in Figure 9.
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left-side tunnel section and the maximum principal stress nephogram of cross-section (the section
is 0.5 m from working face); (b) the minimum principal stress of left-side tunnel section and the
minimum principal stress nephogram of the cross-section (the section is 0.5 m from working face).

The distribution of the maximum principal stress results (Figure 9a) indicates that due
to tunnel excavation, there is stress unloading. Within the depth range of 5.0 m from the left
and right sidewalls of the tunnel, the maximum principal stress values are mostly between
20 and 35 MPa. On the other hand, the maximum principal stress values on both sides of
the tunnel roof arch are mostly between 12 and 17 MPa. At a depth of approximately 2 m
from the bottom of the roof arch and the left and right sidewalls, there is a certain degree of
stress concentration, with the maximum principal stress values ranging from 50 to 55 MPa.
The distribution of the minimum principal stress reveals a pattern of stress relaxation in
the surrounding rock (Figure 9b). The depths at which the lowest values of the minimum
principal stress are distributed can reach up to 2.8 m in the tunnel perimeter area.
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4.5.3. Damage Distribution Law of the Excavation

The formation of an excavation’s damaged zone in the surrounding rock is closely
related to the stress redistribution, rock conditions, and support methods. Fan et al. [34]
used the surrounding rock damage zone to characterize the stress–structural failure in
Jinping II diversion tunnels. This paper adopted a similar approach, and the distribution
of the excavation damaged zone in the surrounding rock and the displacement vector
diagram are shown in Figure 10. From Figure 10, it can be observed that the deepest portion
of the damaged zone is mainly concentrated on the right sidewall, reaching a depth of
2.8 m. The depth of the damaged zone near the roof arch is mostly around 2.2 m, while it is
around 1.5 m near the tunnel floor. The rock mass damage is mainly in the form of shear
failure, with some zones experiencing tensile failure. The tensile failure zones are mostly
on the right side of the roof arch, the lower portion of the left and right sidewalls. From
Figure 10c, it can be seen that the locations with larger block displacements are mainly
concentrated in the left and right sidewalls and the floor area of the tunnel, and there is
also some contraction towards the free face of the tunnel in the perimeter area.
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5. Conclusions

The stress–structural failure mechanism that occurs in the excavation of the left-side
tunnel section of 610 m crushing station in Jinchuan II mine is investigated herein. The
main causes and key controlling factors contributing to the formation of the mechanism
and failure characteristics are discussed. The main conclusions, suggestions, and future
research directions are as follows:

The instability of the surrounding rock in the left-side tunnel section of the 610 m
crushing station is controlled by the contact area between the reddish-brown granite
stratum and the gray-black-gray gneiss stratum, as well as the in-situ stress field. The stress–
structural inducement is that the excavation and unloading of the crushing station causes
joint sets (JSet #2 and JSet #3), and the excavation face causes the formation of unfavorable
blocks. Thus, stress–structural failure caused by jointing in the formation of the tunnel
section is one of the key issues concerning the instability of the surrounding rock during
the excavation of the crushing station. To ensure overall stability during the excavation of
the left-side tunnel section of the 610 m crushing station, it is recommended to adopt an
‘optimized excavation parameter + joint support form’ approach to systematically control
stress–structural failure at three levels: the surface layer, shallow layer, and deep layer. The
following specific measures are recommended: controlling the dosage of explosives used
for excavation by blasting; reinforcing advanced support with anchoring; strengthening
the surface layer with steel arches and shotcrete; and strictly limiting sidewall damage.
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The perspective in future research about stress–structural failure in deep engineering
should be centered on advancing the understanding of underground rock mechanics and
structural behavior, with a clear goal of enhancing safety and operational reliability. Several
key areas of focus can be considered: advanced numerical simulation techniques (discrete
element and computational fluid dynamics); material characterization and modeling (the
development of constitutive models that capture the complex behavior of rock under
high-stress conditions); in-situ monitoring and instrumentation (advancements in sensor
technology and real-time monitoring systems); and in-situ monitoring and instrumentation.
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