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Abstract: In the last few decades, the concept of Wireless Network-on-chip (WiNoC) has emerged
as a promising alternative for Multiprocessor Systems on Chip (MPSOC) to achieve reliable and
scalable communication. Worth recalling in this regard is that our research team has already designed,
verified and evaluated Multistage Interconnection Networks (MIN) in this field. With respect to
the present work, we consider proceeding with further exploring our thoughts on this research
area. Firstly, we propose the design and performance evaluation of a hybrid (wireless/wired) MIN,
analysing how this augmented network can potentially improve not only the average delay, but also
energy consumption. Secondly, we continue with examining the implementation of our advanced
DELTA-based MIN architecture on Deep Neural Network (DNN) accelerators, while accounting for
its potential regularity and scalability in simultaneously maintaining an effective power efficiency
and lower latency throughout the DNN operating process. In this context, several metrics have
been evaluated in regard to three DNN application cases through implementation of their main
respective modules.

Keywords: Network-on-chip; wireless/wired NoC; Multistage Interconnection Network; DNN
accelerators

1. Introduction

In recent times, there has been a significant interest from both industry and academia
in developing efficient Network-on-chip (NoC) designs. These NoCs facilitate intercon-
nectivity among fine-grained computing cores (CCs), which operate in parallel to enhance
the overall computation process [1,2]. It is estimated that the number of integrated PEs in
a System on Chip (SoC) would exceed a thousand by the next decade [3]. In this regard,
architects have proposed innovative NoC designs that enable efficient and dependable
communication for massive parallel applications. Equipped with specific built-in inter-core
data routing, these designs are intended to help in noticeably reducing packet traffic and
transmission delay. Following these advancements, other interconnect technologies have
emerged, including Wireless/RF, Hybrid Wireless, and Photonic NOCs [4–7]. These NoCs
provide a robust platform for scaling the number of cores in a chip [8].

Multistage Interconnection Networks (MINs) have been utilized for communication in
supercomputers [9], the MasPar [10], and CRAY Y-MP series [11,12]. Additionally, MINs are
used in NoCs to connect computing cores (CC) to memory modules or CC to CC in parallel
architecture. They are also applied to manage IO data exchange, as a crucial aspect of
massively parallel SoCs. Among the special features characterizing a MIN are its topology,
switching strategy, routing algorithm, scheduling mechanism, fault tolerance [13,14], and
dynamic reconfigurability [15]. Other keyfeatures include the constant number of hops
separating any pair of terminal nodes, regularity, and scalability when increasing the
number of cores in a chip.
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In the domain of massive parallel applications, Deep Neural Networks (DNNs) have
been utilized in various fields such as pattern recognition, prediction, and computer vi-
sion [16–18]. These accelerators have traditionally been deployed via ASIC or FPGA
designs. However, the performance of artificial neural networks is often constrained by
significant communication overheads and storage requirements. For the purpose of im-
proving the reducing interconnection complexity, a regular and scalable NoC stands as a
convenient applicable mechanism fit for implementation [19–21]. Owing to their noticeable
data computation and communication distinguishing capacities, DNN accelerators are
liable to provide rather effective computational flexibility, design simplicity, and high scala-
bility advantages. Most of the recently elaborated research works have been predominantly
focused on exploring efficient NoC topologies likely to minimize power consumption and
maximize bandwidth performance through the incorporation of DNN computing. By
integrating accurate core mapping and robust routing algorithms, these NoC designs turn
out to be capable of maintaining highly flexible communication among PEs, enabling the
handling and processing of diverse DNN models with varying data flows by means of a
single architecture. Moreover, the system’s computational power and performance features
could be adjusted to match and cope with the underlying DNN models. Hence, the present
work is intended to enrich the relevant literature by providing a twofold contribution. On
the one hand, it puts forward a novel Delta-MIN-based design of a hybrid (wired/wireless)
NoC. On the other hand, it serves to maintain an effective performance evaluation of DNN
accelerators by integrating them within the Delta MIN framework.

The remainder of this paper is organized as follows: Section 2 provides a general
overview of Multistage Interconnection Networks (MINs), along with their respective prop-
erties and implementation process. Section 3 explores the review of the related literature
in this cross-topic area. Section 4 presents the design of the advanced Delta MIN-based
hybrid Network-on-chip. Section 5 examines the implementation procedure of the NOC
developed on the Deep Neural Network accelerator. As to the final section, it is devoted to
depicting the major conclusions that are drawn.

2. Taxonomy of Mutistage Interconnection Networks (MINs)

This section provides highlights of the networks applied in the design process of a
Hybrid Delta MIN for a multicore system on a chip.

2.1. MIN Graph Cartography

The MINs applied in our architecture involve N input and N output nodes, and they
are mapped using r × r switches. These dynamic architectures have N/r switches at each
stage level, with logr(N) stages of switches represented by d. The different stages are
interconnecting on permutation functions. As illustrated on Figure 1, a cross-bar chart of
an abstract model of an N × N-size MIN is depicted, with r being equal to 2. In a MIN, a
pathway between a source and a destination is easily recognised by straightly enabling
the stage i corresponding switch once the ith bit of the destination address turns out to be
equal to one; otherwise, it remains in a cross-mode state.

2.2. Banyan Property

Figure 2 illustrates a taxonomy of MINs , as envisioned throughout the present section.
A banyan MIN is a type of design that is intended to guarantee the preservation of a
single path between each source and final target. Typically, a banyan MIN with a size
of N × N is constructed using r2 crossbars. According to the banyan MIN set specification,
an interesting class recognised as Delta networks can be mapped [22].
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Figure 1. A detailed model of Multistage Interconnection Network (MIN).

Multistages interconnections networks

Non blocking networks Blocking networks

Non banyan networksBanyan networks

Non delta networksDelta networks

BaselineButterflyOmega

Figure 2. Taxonomy of MINs.

2.3. Delta Class MIN

Various MINs display noticeable differences as to the switch stages'connecting wires.
A comparative analysis of a diversity of Delta MINs (Figure 3) is available in ref. [23]. With
respect to our advanced architecture, i denotes the ith the output of a crossbar in a MIN,
while Cj designates a stage j relating crossbar. Accordingly, we define the Delta property in
the following way: if one input of Cj is linked to the output of Cj−1.

A comparative study of various Delta MINs, including Baseline, Omega, and Butterfly,
is provided in Table 1. The most common modes of link permutations, performed on a 2 × 2
switch-bearing MIN with elements, include the perfect (represented as σ), butterfly (repre-
sented as β), baseline (represented as δ), and identity (represented as I) permutation, as
detailed below:
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Figure 3. A Delta MIN model with eight nodes.

• The perfect shuffle: it is a kind of a bit-shuffling procedure, wherein, the kth bit of an in-
put sequence (xn−1xn−2 . . . x1x0) is swapped with the (k− 1) : σk(xn−1xn−2 . . . x1x0) =
xn−2 . . . x1x0xn−1.

• The butterfly: permits the kth bit of the input sequence (xn−1xi+1xixi−1 . . . x1x0) with the
(k − 1)th bit, while preserving the order of the other bits: βk

i (xn−1xi+1xixi−1 . . . x1x0) =
xn−1 . . . xi+1x0xi−1 . . . x1xi .

• The baseline: swaps the kth bit of the input sequence ( xn−1xi+1xixi−1 . . . x1x0) with
the (k − 2)th bit, preserving the order of the other bits: δk

i (xn−1xi+1xixi−1 . . . x1x0) =
xn−1 . . . xi+1x0xi−1 . . . x1.

• The identity: helps maintain the input sequence relevant mapping: I(xn−1xn−2 . . . x1x0) =
xn−1xn−2 . . . x1x0.

A summary of the three Delta MINs associated swapping functions over stages, as
previously designed, verified, and evaluated by our research team, is illustrated in Table 1.

Table 1. Swapping Delta MINs Functions.

Links Stage 0 Stage (d + 1) Stage k ∈ [1 . . . d]

Baseline I I δk
(d−i)

Omega I σk σk

Butterfly I σk βk
(d−i)

3. Related Works

A great deal of research has recently been conducted in the area of multicore systems
on chips, particularly the relevant design and interconnection evaluating architecture, in a
bid to construct optimally effective communication platforms. A major area of growing
interest has been the design of novel alternatives to Network-on-chip (NoC) fit for imple-
mentation with massive computing architectures entailing reliable data exchange between
cores and memories. NoCs are capable of bearing an increasing number of computing cores
on a single chip, thereby achieving high levels of parallelism and speeding up execution
time. Contrarily, however, conventional shared buses consume greater amounts of energy
due to the complexity of wire interconnections on the chip, thus, bringing about only
lower throughput levels. Additionally, the temporary registers implanted in shared buses
usually consume a greater area and higher energy levels, resulting in poor scalability. This
is likely to stand as a major hindrance to the maintenance of effective communication via
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future Multi-Processor Systems on Chip (MPSoC) designs [24–28]. To cater to these needs,
Multistage Interconnection Networks (MINs) have emerged as a potential solution for the
increasing demand for scalability and reliability in static Network-on-chip (NoC) archi-
tectures, to meet the exponential growth in massive parallel computing. The evaluation
of MINs can be performed based on various metrics, including energy, area, throughput,
fault-tolerance, network complexity, and cost-effectiveness. Most often, the functional for-
malization of MIN-based networks has been developed by identifying intrinsic properties
of all MIN topologies. It has also been validated via the ACL2 theorem, to prove that
the environment does actually comply with the network formal specification perquisite
of integrating architectural parameters, with a significant impact on design costs [29,30].
Comparative studies have also been established to assess MIN systems in relation to static
topologies, mainly in terms of reliability, performance. A comprehensive review of MIN
systems in matters of reliability, fault-tolerance, and cost perspective evaluative aspects is
available in the relevant literature [31,32].

As to the MPSoCs with heterogeneous cores, however, they have been designed to im-
plement irregular topologies with hybrid wired/wireless interconnection [33]. Other research
studies have been focused on comparing MINs architectures with other topologies [34–36].
In ref. [36], V. Dinh et al. introduced extra features to the Noxim simulator [37] to evaluate
particular applications in an NoC system. They proposed a specialized design for relevant
basic routing algorithms to explore their impact on performance metrics. Their major
aim was to substitute longer channels with single-hop Radio Frequency transmissions
among routers.

With the significant increase in computational requirements necessary for operating
and boosting the various related applications, researchers are now experimenting with the
implementation of artificial intelligence techniques in System on Chip designs to further en-
hance their performance. A major suggested approach consists in integrating Deep Neural
Network (DNN) accelerators in NOC-Based MPSOC to manage computation and commu-
nication within the chip, thereby, enhancing computational flexibility and scalability [38].
The effectiveness provided by this integration process rests on its accounting for various
network-associated features such as routing and scheduling strategies, node partitioning,
data packetization, buffer sizes, QoS, and others. To achieve an effective adequation be-
tween the reconfigurability features and performance constraints, the accelerators need
to be coupled with a structural network mapping. Moreover, by deploying parallelized
multicore, the speed of operations over the chip could be improved even more. In this
respect, several studies have attempted to explore the deployment of Deep Neural Net-
work (DNN) in order to achieve highly efficient on-chip interconnects. For this purpose,
crossbar communication is commonly used owing to the regularity and scalability of DNN
operations [39,40]. Mesh, tree, and Clos networks have also been implemented with DNN
accelerators to improve chip performance through efficient memory access, low-latency
multicast communication, power efficiency, and computing flexibility [41–43]. Regard-
ing reconfigurable architectures, studies have suggested replacing the crossbar with wire
switchers in experimentation. Different types of interconnections, such as optical, wireless,
or 3D networks, have recently been proposed and applied in DNN computing [44,45]. An-
other mapping algorithm tested for its effectiveness has also been put forward in ref. [46],
while a communication-on-chip system focused on topology reconfiguration has been
advanced in ref. [47].

As already stated, one could well note that the Multistage Interconnection Networks
(MINs), classified into regular, scalable, and reconfigurable topologies, do not seem to be
treated in terms of chip communication improvement purposes through wireless nodes,
and appear to be exclusively evaluated through the perspective of applying Deep Neural
Networks accelerators.

In recent research, Network-on-chip can be used as a communication backbone for chip
multiprocessors, to improve the computational performance of neural network accelerators
by dissociating communication and computing data. NoC features namely, scalability,
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efficiency, reliability, and modularity, that enable computing components to exchange a
huge amount of data, ultimately achieving enhanced energy efficiency and performance.In
this context, the integration of CNNs or DNNs on NoC platforms have been illustrated so
far [45,48–54]. Several hybrid parameters have to be carefully considered in the mapping
process. First, the clustering of layers on computing elements (PEs) is managed by mapping
algorithms. On the other hand, the NoC is specified by its topology, which defines the
placements of routers and links, routing algorithm, and memory scheduling. Consequently,
according to this mapping process, computation is executed on PEs as they routed over
the NoC following an adapted DNN dataflow. In ref. [55], Chen et al., propose a simulator,
baptized NN-Noxim. This tool details several constraints, such as classification precision,
energy, and transmission delay, based on a hybrid configuration related to the DNN
mapping model and NoC parameters. Neuron computation and data communication in
the fully connected layers have been simulated and evaluated. This simulator has been
extended in ref. [56] to integrate convolution and pool layers. However, these developed
tools only support static NoCs, such as the mesh topology.

In the following section, we present our envisioned novel design of the Delta MIN-
based NoC that incorporates wired and/or wireless interconnection. We also provide a
relevant performance evaluation process. The assessment procedure has actually proven
the noticeable benefits brought about by the idea of integrating radio hub nodes into
the process of ensuring resilient and adaptative communication among the Delta MINs
different incorporated stages [48].

4. Design of Hybrid Network-on-Chip Based on Delta MINs

In this section, the design flow of our advanced hybrid (Wired and Wireless) commu-
nication architecture based on Delta Multistage Interconnection Network is thoroughly
detailed. The model is conceived to involve a number of relevant parameters, particularly,
a special topology and structure, traffic model, dynamic behavior, and simulation. A set
of metrics has been configured and evaluated. The model is implemented on the Noxim
simulator. An extended version of Noxim is used, which includes radical improvements,
related mainly to signals mapping, wireless communication within Delta MIN stages, and
a specific routing algorithm to maintain flexible data transfer between cores (Figure 4).

NoC Configuration 

Noxim specifies parameters using a 

Configuration file in YMAL format 

NoC Topology and structure 

N

N N

N
Interconnections

Play an essential configuration class including the size of network 

and the interconnection type between nodes( Tile , Radio-hub)

NOXIM classifies

Tile-Tile

Tile-Hub

Hub-Hub

Model numerous 

heterogeneous topologies

Such as: 

• Mesh ,

• Torus, Twisted torus,

• Delta Networks …. 

High Level of Flexibility

Mixing several interconnections (Tile-Hub, Hub-Hub) 

Noxim specifies parameters using a 

configuration file in YAML format

Figure 4. Noxim Simulator Design Flow.

The Delta MIN has been implemented by adding new signal mapping using SystemC
to allow for various network topologies to be constructed (e.g., Butterfly, Omega, and
Baseline) (Figure 5). Another required extension has been the design of the switch nodes,
necessary to manage routing alternatives in the network. After introducing the topology,
necessary for maintaining connection between the links and switches, we proceed with



Appl. Sci. 2024, 14, 56 7 of 16

incorporating radio nodes to enhance the wireless feature option throughout the Delta MIN
networks. It is worth noting that wireless nodes represent switching components capable
of exclusively maintaining a unique hop communication with distant switch nodes, which
entails several hops to pass through a wired network configuration (Figure 6).
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Figure 5. Wired and Wireless Communication on Delta MIN.

Then, we resume by introducing radio nodes, respectively, to the source and to the
target. Subsequently, we set up transmission channels shared by these nodes, maintaining
that they do not interfere with each other. To monitor the effect of increased numbers of
wireless nodes on the architecture, a set of configuration models, Ti, has been implemented,
each generating a single communication flow between the source and the target. Note-
worthy, also, is that each data stream is routed via an ad-hoc communication channel, a
critically useful alternative in our study to monitor wireless communication in Delta MINs
networks. The successive steps, necessary to transmit data between switch and radio-hub
are displayed in Figure 6. A radio node is connected with the switch through its wired gate.
The information passing among radio nodes is accomplished via radio channels in which
flow control is managed through a token implemented on the medium access control unit
(MAC). A radio hub can route data using several communication channels. Connection is
maintained by means of a token ring algorithm. Thus, a radio node can exchange informa-
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tion through the channel’s related token ring. Obviously, a radio node must capture the
token to reactivate a transmission through a specific communication channel.

    R

Wireless 
Interface

Token Based
MAC

Token in Token out

TX/RX
Logic

From
router

To
router

rl

Radio Hub 0

Wireless 
Interface

Token Based
MAC
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router
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Radio Hub 1

R

Channel 0

core

core
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core

Next stage
routers

Previous stage 
routers

Figure 6. Communication on Delta MIN.Detail of wireless communication by means of two radio-
hubs sharing a wireless channel connected to switches in the first and last stage.

After that, three traffic model patterns (Hot-spot, Fixed, and Random) are selected to
assess the efficiency performance of the envisioned communication scheme. Each of these
scenarios would be applied in accordance with various Network configurations (Table 2).
Our main motivation behind opting for these parameters lies in ensuring the truthiness
of values, as already integrated and explored in several previously published research
works. The network size denotes the number of cores liable to generate traffic to activate
the computation processing. For each Network configuration, a Mesh of switch nodes is
needed to implement the MIN communication architecture.

Table 2. Simulation Parameter Space.

Parameter Value

Network size [cores/(switches × stages)] 32/(16 × 5), 64/(32 × 6), 128/(64 × 7)
64/256 radio-hubs number 4, 8, 16
1024 radio-hubs number 16, 32, 64
Switching technique Wormhole
Radio Access Control Mechanism Token Packet
Wireless data rate [Gbps] 16
Packet length [flit] 8
Flit size [bit] 64
Router input buffer size [flit] 4
Radio-hub input, antenna buffer size [flit] 4
Simulation Time 100,000 cycles
Repetitions 10

Figure 7 displays the average delay measurements reached on matching several
network sizes and traffic patterns generated by following four wireless configuration
profiles (T1, T2, T3, T5). As a first stage of the analysis, the effect of increasing the number
of radio-hubs for a defined traffic configuration is evaluated. Accordingly, the random
traffic scenario (TT − 32/64/128), for instance, turned out to highlight that increasing the
number of radio-hubs (switching from T1 to T5) appeared to display a minor effect on
average delay, particularly, at the breakpoint where saturation occurs.

Furthermore, it has been spotted that, for certain traffic models, each node randomly
chooses a destination, the effect of the transition from profile T1 to T5 is only perceptible
when the wireless option is activated, and the improvement in the saturation breakpoint
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would be justified by a pressure alleviation within stage switches of the MIN commu-
nication platform. Finally, however, it is worth noting that a significant amount of data
exchanged may skip the wired switches nodes when the number of radio-hubs increases.
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Figure 7. Performance Evaluation of Hybrid Delta MIN for table-based (TT) traffic for 32, 64, and 128
cores.

5. Evaluation of DNN Accelerators under Delta-Based MINs

Implementation of the DNN accelerators is fit for application, particularly with ASIC
or FPGA designs. In the present section, we highlight the importance of introducing
the Interconnection process into machine learning operations, in conformity with the
exponential growth of parallel computation on chip. Figure 8 illustrates a sample example
of Neural Network architecture dubbed LeNet-5. Designed to recognize handwritten digits,
the scheme has been used by several banks to identify hand-written numbers on checks.
Every number is digitized into 32 × 32 pixel grey scale input images. This neural network
is managed on a seven-level convolutional network.

The subsequent section provides an extensive account of the evaluation process for
the DNN accelerators within the framework of our hybrid Delta MINs. This involves
incorporating the main modules into a NoC-based NN accelerator. To the best of our
knowledge, we have undertaken a comprehensive investigation, focusing especially on the
necessary steps required to conduct the experiments and perform an in-depth analysis. This
analysis involves conducting a comparison between the Delta MIN design and a parallel
Mesh topology.

32 × 32 × 1

greyscale input 

images

Conv 1 Pool 1 Conv 2 Pool 2 FC 1 FC 2

6 Filters 5 × 5

Stride = 1

28 × 28 × 6

Filter 2 × 2

Stride = 2

14 × 14 × 6

16 Filters 5 × 5

Stride = 1

10 × 10 × 16

Filter 2 × 2

Stride = 2

120 nodes 84 nodes

5 × 5 × 16

10 values 

From 0 to 9

Softmax

10
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Experimental analyses are performed on a number of the NoC architectural charac-
teristics, including the topology and scale of the network, to assess the impact of Neural
Network inference on latency end energy levels of the chip-based communication. In
the context of interconnected architecture, a node can be a processing element (PE), or a
memory (M). The PE plays a fundamental role in the performance of the computational
engine used in the NoC-based DNN accelerator. Indeed, it is heavily deployed at the level
of the three main layers of the DNN, more specifically, the (conv., max/aver, and fully conn.)
layers. The special mapping process of each layers will be specified in the NoC, along with
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5. Evaluation of DNN Accelerators under Delta-Based MINs

Implementation of the DNN accelerators is fit for application, particularly with ASIC
or FPGA designs. In the present section, we highlight the importance of introducing
the Interconnection process into machine learning operations, in conformity with the
exponential growth of parallel computation on chip. Figure 8 illustrates a sample example
of Neural Network architecture dubbed LeNet-5. Designed to recognize handwritten digits,
the scheme has been used by several banks to identify hand-written numbers on checks.
Every number is digitized into 32 × 32 pixel grey scale input images. This neural network
is managed on a seven-level convolutional network.

The subsequent section provides an extensive account of the evaluation process for
the DNN accelerators within the framework of our hybrid Delta MINs. This involves
incorporating the main modules into a NoC-based NN accelerator. To the best of our
knowledge, we have undertaken a comprehensive investigation, focusing especially on the
necessary steps required to conduct the experiments and perform an in-depth analysis. This
analysis involves conducting a comparison between the Delta MIN design and a parallel
Mesh topology.
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Figure 8. NeuralNetwork LeNet 5 Design.

Experimental analyses are performed on a number of the NoC architectural charac-
teristics, including the topology and scale of the network, to assess the impact of Neural
Network inference on latency end energy levels of the chip-based communication. In
the context of interconnected architecture, a node can be a processing element (PE), or a
memory (M). The PE plays a fundamental role in the performance of the computational
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engine used in the NoC-based DNN accelerator. Indeed, it is heavily deployed at the level
of the three main layers of the DNN, more specifically, the (conv., max/aver, and fully conn.)
layers. The special mapping process of each layers will be specified in the NoC, along with
the relevant identification of the data flows. We will also provide a detailed explanation of
the flowing process of two main data paths: intra-NoC or data flows between the DNN
and NoC-based processors, as well as the off-NoC or data flows maintained between the
DNN–NoC and the main memory. At the level of the convolutional layer, a set of filters
and the input feature map represent the inputs of the convolutional layer. Figure 9 outlines
a convolution layer flow using six filters. In this example context, a 4 × 4 Mesh is applied
as an NoC configuration involving a single shared Memory and fifteen PEs. At the first step
level, the input feature map loading process is being drawn from the main memory. The
MI is allotted the task of sending the input feature map to the PEs required at this layer’s
level. The filters are loaded from the main memory at the second step level and then sent
to a particular PE. After getting all the necessary filters, each PE undertakes to compute
an output feature map channel. In the ultimate step, every PE encloses all the filters to
undertake the computing process of a fit channel out of the output feature map to be stored
back in the main memory. The output feature map would stand as the input feature map
for the next neural network-associated layer.

Both the average pool and max pool are considered for a pooling layer. We consider a
1 : n mapping, binding the processing elements (PEs) and the feature map channels. It is
worth specifying, at this level, that a PE is able to operate several feature map channels, i.e.,
every PE receives the input feature map channel that is currently stored in its local memory.
Thus, no PE-to-PE traffic would persist. As already stated, the fetch of the feature map
channel could be completed at the level of the main memory if the local storage element is
not large enough. At the pooling layer level, the operations performed are either average or
max types of operations among the input feature map lying data. The amount of operations
depends on the input feature map size, the layer scale and stride parameters. For the fully
connected layer level, the output neurons bear inputs corresponding to the size of the input
feature map. In this context, we consider establishing a 1 : n mapping between PEs and
neurons, denoting that a PE can process multiple neurons. Thus, every PE is required to
fetch a number of weights, from the main memory that corresponds to the input feature
map size, as shown in Figure 10.

Designing an efficiently reliable and resilient interconnection for NoC architecture
remains an important challenge, especially for applications with real-time constraints,
high throughput, and power efficiency needs. To resolve these issues, various specific
NoC technologies, particularly Photonic NoC, Hybrid, and Wireless, have been proposed,
each displaying proper trade-offs in terms of throughput, communication latency, and
programming complexity. A survey of NOC technologies developed to meet industrial
requirements is presented in refs. [27,57]. With respect to our study context, our focus of
interest lies mainly in investigating the area of Wireless NoC [58–60] (WiNoCs), initially
designed to provide promising solutions to the challenges faced by traditional NoC archi-
tectures. In general, Wi-NoCs involve an enhanced model of radio-hub switches with a
wireless interface, allowing for radio transmission to be maintained within the chip. While
Wi-NoCs have been explored for common direct topologies, their implementation in Delta
MIN-based topologies still remains an unexplored domain, to the best of our knowledge. A
key advantage of Wi-NoCs is their low power consumption, which can be further improved
by effectively managing power-off wireless routers when they are in an idle state, as high-
lighted in ref. [61]. Indeed, WiNoCs offer high bandwidth availability and reliability, and
the reliability of wireless links can be improved by implementing an optimum-radiation
phased array antenna, as demonstrated in ref. [62]. While hybrid wired/wireless links are
more common in WiNoCs, a distinctive pure wireless link topology has been introduced
in ref. [63]. The special feature distinguishing these solutions lies mainly in the graph
of links substitution and/or the distinct architecture of the mapping of wireless nodes.
The Experimental platform is a reconfigurable NoC-based machine learning, used to as-
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sess different configurations of communication architectures in terms of performance and
energy. A refined version of a high throughput accelerator for pervasive convolutional
neural networks (CNNs) and Deep Neural Networks (DNNs), baptized DianNao [49], has
been mapped into the computing module of Noxim [50] simulator. We focused on this
accelerator, due to the wide range set of applications. Also, considering the implementation
of large-scale layers composed of millions of synapses, the flexibility of interactions with
memory, and by exploiting locality at the registers placed close to processor elements, our
study broadly evaluates WiNoC-based DNN accelerators by investigating the design space
that encompasses various reconfigurable parameters.
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The analysis is organized under the form of a function of latency and energy con-
sumption in communication, computation and memory access (local memory and main
memory access).

Figure 11 displays the average latency spent in every layer relevant to the neural
network AlexNet. Regarding the memory interfaces’ (MIs) locations, they are placed at
the four NoC corner levels for the traditional Mesh architectures. As for the Delta MIN
topology, the four MIs are uniformly spread into the MINs cores. It is worth recalling that
the latency is split into three essential elements, namely, communication, computation, and
memory. Clearly, for a given NN and network size, the main memory access represents the
predominant spot of latency for fully connected and convolutional layers concerning the
Delta MIN and Mesh topologies.
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The average energy of the AlexNet DNN application mapped into two NoCs is shown
in Figure 12. As the access to the main memory increases, the total energy consumption
increases for the fully connected layers. The significant energy contribution of the memory
is placed in the fully-connected layer as each PE requires a fetch operation from the
main memory a specific amount of weights. The inversion point is meaningful for the
convolutional layers. This is because, although as local memory access increases, the energy
per access to the local memory slightly increases, and consequently, the global average
energy decrease. Thus, there is an optimal use of the local memory element, which has
an impact on the mapping of the layers on the Network-on-chip. However, the average
energy values for the two NoCs show a small amount of shrinking for DELTA-based MIN.

Also, we specify two experimental platform configurations based on MIN and Mesh
NoCs to vary Cores components from 64 to 1024. For the AlexNet application, the proces-
sors spread parallelism in computation in each layer, as the NoCs size increases. However,
the packets routed through the network have a consequent negative impact on the com-
munication load. As can be noted, latency tends to record slight increases with increased
NoC size, along with the communication inferences and the main memory. This behavior
is also valid not only for the implemented NoC model, but also the Mesh, and Delta MIN,
as well as all the other Neural Network configurations (Figure 13). Noteworthy, also, is
that the main memory appears to represent the predominant source of latency, followed by
communication. As regards computation latency, no clear increase or decrease has been
noted. It is actually this dimension feature that makes the accessibility of a large number of
PEs expand the size of the NoC.
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6. Conclusions

In this research, the Design and Performance evaluation of Delta-based MINs are
assessed through the process of incorporating new modules into the Noxim simulator. The
regularity and scalability of these NoCs, along with their noticeable performance recorded
at both of the energy and delay-associated metrics, motivated us to apply them as effective
mechanisms fit for integrating Deep Neural Network accelerators. A potential research vein
would involve considering larger DNNs, such as ResNet (2015), to be measured through
extra architectural parameters. Additional significant features will be devoted on using
these networks communication for deep learning computations, with the aim of building
large-scale systems.
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