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Abstract: This paper presents an extension of the validation domain of a previously validated three-
dimensional probabilistic semi-explicit cracking numerical model, which was initially validated for
a specific concrete mix design. This model is implemented in a finite element code. The primary
objective of this study is to propose a function that enables the estimation of the critical fracture
energy parameter utilized in the model and validate its effectiveness for various concrete mix designs.
The model focuses on macrocrack propagation and introduces significant aspects such as employing
volume elements for simulating macrocrack propagation and incorporating two key factors in
governing its behavior. Firstly, macrocrack initiation is linked to the uniaxial tensile strength ( ft).
Secondly, macrocrack propagation is influenced by a post-cracking dissipation energy in tension.
This energy is taken equal to the mode I critical fracture energy (GIC) based on the linear elastic
fracture mechanics theory. Importantly, both ft and GIC are probabilistic properties influenced by the
volume of concrete under consideration. Consequently, in the numerical model, they are dependent
on the volume of the finite elements employed. To achieve this objective, numerical simulations
of fracture mechanical tests are conducted on a large double cantilever beam specimen. Through
these simulations, we validate the proposed function, which is a crucial step towards expanding the
model’s applicability to all concrete mix designs.

Keywords: numerical model; probabilistic characteristics; macrocrack propagation; volume effect;
finite element method

1. Introduction

Concrete, commonly treated as homogeneous in macroscopic numerical models for
simplicity, is inherently heterogeneous. Inner defects arise from cement paste hydration
and restrained shrinkages, causing cracks even before external loads are applied. Given the
inherent formation of cracks, modeling their initiation and propagation presents a critical
challenge in predicting concrete behavior. The importance of crack formation has instigated
a variety of studies, resulting in diverse constitutive models. Techniques for simulating
the cracking process in concrete structures fall into two broad approaches, implicitly or
explicitly addressing kinematic discontinuity, resulting in continuum or discrete models.

In continuum models, cracks are implicitly represented, and the failure process is
considered by the degradation of material stiffness, altering its constitutive equation. Some
models in this field are damaged models [1,2], the smeared crack model [3,4], and the
plasticity model [5]. Conversely, in discrete cracking models, cracks are explicitly treated as
geometrical entities, manifesting as discontinuities of displacement at interfaces between
finite elements or integrated into the finite element formulation. Some discrete models are
the cohesive crack model or fictitious crack model [6,7], extended finite element method
(XFEM) [8], embedded finite element method (EFEM) [9] and lattice models [10].
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Additionally, probabilistic models address the significant scale effect in concrete
structure cracking by employing random distribution functions of material properties
to explicitly consider concrete heterogeneity. In this work, a semi-explicit probabilistic
cracking numerical model, based on the finite element approach, developed and validated
in previous studies [11,12], is employed. This model specifically focuses on the macrocrack
propagation problem, incorporating several crucial characteristics.

One significant feature of the model is its representation of macrocrack propaga-
tion using volume elements, which offers a realistic portrayal of the phenomenon. The
model employs two criteria governing macrocrack propagation, as follows: (1) macrocrack
initiation is linked to the uniaxial tensile strength, ft and (2) macrocrack propagation is
influenced by post-cracking dissipation energy in tension. The complete propagation of the
macrocrack occurs when all post-cracking dissipation energy has been consumed.

The evolution of post-cracking dissipation is governed by a simple damage approach.
A distinctive aspect of the model’s damage approach is that the post-cracking dissipation
energy is derived from linear elastic fracture mechanics (LEFM), specifically utilizing
the mode I critical fracture energy, referred to as GIC. Both ft and GIC are probabilistic
mechanical characteristics that depend on the size of the mesh elements. While the mean
value of GIC is considered an intrinsic characteristic of concrete independent of the mesh
element size, its standard deviation is influenced by the size effects.

This probabilistic semi-explicit cracking model differs significantly from classical
smeared crack or damage models [1,2,4,13–20]. Indeed, physically speaking, these diffused
crack models, which are deterministic, consider that, for each loading level, an equivalence
exists between a microcracking evolution (represented by a certain dissipation of energy)
and a localized crack creation.

Previous experimental and numerical studies [21–24] have successfully determined
and validated the probabilistic properties of ft (mean and standard deviation values) for
concretes with a compressive strength of up to 130 MPa, depending on the size of the mesh
elements. However, acquiring equivalent information regarding GIC has proven to be a
challenge. This critical parameter, which is directly linked to concrete’s crack resistance [25],
poses complexity in accurate estimation within brittle heterogeneous materials due to their
nonlinear behavior. This complexity is evident due to the substantial fracture process
zone, whose size is considerably large compared with the specimen’s dimensions and
resulting in the manifestation of the size effect [26]. Consequently, deriving an accurate
value of GIC, for concrete, unaffected by these factors is demanding. Typically defined
as the energy consumption during crack propagation in an infinite specimen, obtaining a
size-independent assessment necessitates tests on specimens substantially larger than the
fracture process zone size [27,28].

Therefore, the primary objective of this paper is to determine the probabilistic proper-
ties of GIC based on the size of the mesh elements. By addressing this knowledge gap, this
research aims to contribute to a comprehensive understanding of the probabilistic proper-
ties of GIC in relation to macrocrack propagation in concrete. The findings obtained from
this study provide a substantial contribution to the field of concrete structure modeling.

2. Determination of the Probabilistic Properties of GIC

In previous research [12], the standard deviation of GIC was determined using an
inverse analysis for a specific concrete mix design, where the mean value of GIC was
known. To further investigate the probabilistic properties of GIC, an analytical relation
was proposed to establish a connection between the standard deviation, σ, of GIC , and the
degree of heterogeneity of the mesh element. In this work, the degree of heterogeneity, re,
is defined as follows:

re = Ve/Va, (1)

where Va is the volume of the largest aggregate size present in the concrete, and Ve de-
notes the volume of the mesh element. The analytical relation proposed to establish this
connection between σ and re is as follows:
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σ(GIC) = (A ln(re) + B)× µ(GIC), (2)

where A = −8.538; B = 70.88 and µ(GIC) is the mean value of GIC.
The relation described in Equation (2) has been proposed specifically for GIC =

1.25 × 10−4 MN/m and for the size of the largest aggregate equal to 12 mm (in terms of
diameter). These concrete parameters were derived from experimental research, which
enabled the determination of the intrinsic value of GIC [29,30]. It is crucial to note that in
the model, the volume of finite elements must exceed the largest aggregate volume.

Based on Equation (2), it is natural to propose the following relation for the coefficient
of variation of GIC:

σ(GIC)

µ(GIC)
= (A ln(re) + B), (3)

It is crucial to note that the use of Equation (2) does not lead to the determination of
intrinsic values of σ(GIC). These values are inherently linked to the specific mechanical
model proposed and the chosen type of finite elements, such as linear elements in the
present case. Consequently, Equation (2) cannot be indistinctively applied within the
framework of other mechanical models.

From Equation (3), it can be observed that the coefficient of variation of GIC becomes
negligible when the degree of heterogeneity (re) reaches a value of 4000. Notably, it is
important to reiterate that as GIC is an intrinsic material property and, being size-effect
independent, it is not dependent on the re in terms of its mean value.

In previous research [29], focusing on the probabilistic properties of ft, which is
dependent of the material heterogeneity degree and, therefore, can be expressed as ft(re);
Equations (4) and (6) were proposed to evaluate the mean value, µ( ft(re)), and coefficient
of variation, σ

µ ( ft(re)), respectively.

µ( ft(re)) = a(re)
−y, (4)

in Equation (4), a = 6.5 MPa and y is provided by Equation (5), where fc represents the
concrete compressive strength in MPa and α = 1 MPa.

y = 0.25 − 3.6 × 10−3
(

fc

α

)
+ 1.3 × 10−5

(
fc

α

)2
, (5)

σ

µ
( ft(re)) = c(re)

−d, (6)

in Equation (6), c = 0.35 and d are provided by Equation (7), as follows:

d = 4.5 × 10−2 + 4.5 × 10−3
(

fc

α

)
− 1.8 × 10−5

(
fc

α

)2
, (7)

The validity of Equations (4)–(7) has been confirmed for concrete with a compressive
strength of fc ≤ 130 MPa and a maximum aggregate size of 10 mm or larger. Consequently,
by establishing a correlation between Equations (3) and (7) and Equations (4)–(7), it is
feasible to estimate the coefficient of variation of GIC as a function of re for concrete that
satisfy the aforementioned criteria.

This estimation can be accomplished by establishing an expression through algebraic
manipulation using Equations (3)–(7). Based on this procedure, considering the same
heterogeneity degree associated with the coefficient of variation of tensile strength and
critical fracture energy, Equation (8) is proposed. The deduction of this equation is presented
as a Supplementary Material.

σ

µ
(GIC(re)) = A

[
1
d

ln
(

cµ( ft(re)

σ( ft(re)

)
+

B
A

]
, (8)
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3. Validation
3.1. Experimental Test Chosen for the Validation

To validate the proposed strategy for estimating the coefficient of variation of GIC, a
structural problem that has been previously studied by the author [29,30] was selected to
be simulated. This specific experiment was previously used to determine Equation (2) for a
regular concrete mix design [12,21], defined as Concrete 1. However, for this validation
process, a high-strength concrete mix design was employed, defined as Concrete 2. Details
regarding the compositions of both concrete mixtures can be found in Table 1, while the
properties of Concrete 2 are outlined in Section 3.3. The test entails inducing a macrocrack
propagation in a large double cantilever beam (DCB) concrete specimen. Widely acknowl-
edged as a method to measure Mode I fracture toughness in unidirectional composites
under both static and cyclic loading conditions [31,32], it involves applying a tensile load
normal to the specimen’s notch surface.

Table 1. Description of the mixtures used to determine Equation (2) and perform the validation.

Constituent
Concrete 1 Concrete 2

Quantity

Aggregate 1 (4–12 mm) 1105 kg/m3 -
Aggregate 2 (5–20 mm) - 1265 kg/m3

Sand (0–5 mm) 700 kg/m3 652 kg/m3

Cement 400 kg/m3 421 kg/m3

Water 190 L/m3 112 L/m3

Silica fume - 42.1 kg/m3

Superplasticizer (dry powder) - 7.6 kg/m3

In the field of LEFM, one of the major challenges lies in experimentally determining the
critical fracture energy (GIC) of concrete. It has been widely acknowledged that such tests
need to be conducted on large concrete specimens to obtain accurate results [6,29,30,33–40].
This is primarily due to the higher degree of homogeneity achieved in concrete with larger
aggregate sizes. Consequently, the process zone at the tip of the propagating macrocrack,
which is crucial for determining GIC, extends to approximately 30 cm [30].

The distinguishing feature of this double cantilever beam (DCB) specimen lies in its
considerable dimensions: 3.5 m length, 1.1 m width, and 0.3 m thickness, rendering it
suitable for simulation purposes. The specimen’s geometric details and applied loading
conditions are depicted in Figure 1. During the test, crack propagation occurred from the
bottom to the top. The load application point (P) was positioned 0.175 m from the beam’s
lower side, where the crack opening measurements were taken. Initially, section thinning
was employed to guide the crack and maintain it in the median plane. However, this
method was found to be inadequate, leading to the introduction of longitudinal prestressing
through post-tension using multiple cables. The value of the applied prestressing force was
1230 KN.

An interesting aspect of the experimental study developed by [30] was the evaluation
of the process zone using acoustic emission techniques. This assessment revealed that
the process zone had dimensions of approximately 30 cm in length and 12 cm in width,
estimating the volume of the process zone (Vpz) at around 3600 cm3. The size of this
process zone was associated with a maximum aggregate size of 12 mm, resulting in a
maximum aggregate volume (Va) of 1.13 cm3. Furthermore, the determination of GIC
in [30] provided a mean value of µ(GIC) = 1.25 × 10−4 MN/m and a standard deviation of
σ(GIC) = 0.073 × 10−4 MN/m. Remarkably, these experimental findings aligned with the
theoretical values discussed in Section 2, specifically indicating a standard deviation of GIC
reaching zero for a re approximately equal to 4000.
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Figure 1. Detail of the geometry and of the loading conditions related to the DCB specimen.

3.2. Probabilistic Numerical Model

The three-dimensional semi-explicit probabilistic model, extensively described in [12],
is developed in the finite element method (FEM) context and integrates heterogeneity and
volume effects using a probabilistic approach. The code is written in FORTRAN language.
The model belongs to the fracture mechanics family of models and primarily deals with
the propagation of mode I macrocracks. However, it does not take into account mode II
fracture propagation in its current version. Although it shares similarities with linear elastic
fracture and non-linear fracture models, it distinguishes itself from damage or smeared
crack models by not attempting to simulate the microcracking process.

The model utilizes three-dimensional (3D) linear tetrahedral elements to simulate
macrocrack propagation. It employs a criterion based on the mode I critical fracture energy,
GIC. For each volume element, the dissipation of the cracking energy, following the linear
elastic behavior, was modeled through a softening behavior that initiated when the tensile
strength, ft, was reached. This softening behavior, exhibiting a descending branch, was
depicted by a linear relationship between the principal tensile stress and strain. The
governing principle behind this linear relation is a classical isotropic damage law, uniquely
characterized by the random assignment of GIC and ft to the mesh elements due to the the
model’s probabilistic nature. The basic steps of the FEM code can be seen in Algorithm 1.

Once the dissipative energy associated with this softening behavior reached the value
of GIC, the stiffness matrix of the element reduced to zero. As a result, macrocrack prop-
agation was modeled through a sequence of fully damaged elements, rather than the
opening of interface elements as traditionally performed in fracture mechanics models.
This characteristic defines the model as a non-explicit cracking model, as opposed to an
explicit cracking model. It is important to note that in this numerical model, the utiliza-
tion of a simplistic damage approach was solely aimed at dissipating the energy related
to the softening behavior until reaching the GIC value, and it did not hold any physical
significance. The objective of the present model did not involve explicitly modeling the
microcracking process.

It is worth emphasizing that in the model, all mechanical criteria were assessed at
the centroid of the linear volume elements. Besides, the rationale behind considering ft
and GIC as probabilistic lay in accounting for the material’s inherent heterogeneity and
integrating scale effects, directly linked to this material’s characteristic. As illustrated
in [21], the variation in tensile strength values stemmed from this phenomenon. Thus, the
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intensity of the scale effect diminished with a higher material quality (higher fc values) and
reduced heterogeneity (measured as the ratio of the specimen’s volume to the volume of
the maximum aggregate).

Algorithm 1: Basic steps of the FEM program
1: Variables initialization
2: Read input data
3: Distribute random tensile strength ; // according to Weibull distribution
4: Distribute random critical fracture energy ; // according to lognormal

distribution
5: istep = 0 ; // load step counter
6: while the number of load steps is not achieved do
7: istep = istep + 1
8: i = 0 ; // iteration counter
9: while the balance between external and internal forces is not achieved do

10: i = i + 1
11: Evaluate the linear solution of displacements
12: Update the total displacements
13: Update the damage of the elements
14: Update the stiffness matrix
15: Update the vector of residual forces
16: end while
17: end while

Furthermore, given the probabilistic nature of the numerical model, a Monte Carlo
(MC) technique was employed to ensure statistically robust results. The core principle of
this approach entailed running numerous numerical simulations of a particular structural
problem, encompassing varied spatial distributions of mechanical material properties
defined by identical parameters of the probability distributions. The resulting outcomes
were subsequently subjected to comprehensive statistical analysis.

An overview of the model’s formulation, highlighting its key aspects, is presented
in Figure 2. As depicted in Figure 2a, the material heterogeneity was represented by each
finite element and was quantified through the heterogeneity degree re, as illustrated in
Figure 2b. Figure 2c represents the random distribution of the tensile strength and fracture
energy to mesh elements, and the energy dissipation resulting from the cracking process,
which is governed by an isotropic damage law. This constitutive law takes into account the
tensile strength and the volumetric density of dissipated energy, symbolized as gIC. The
value of gIC is determined using an energetic regularization technique [41], calculated as
follows: gIC = GIC/le, with le being the elementary characteristic length, determined in
this context as le = (Ve)1/3. Finally, as portrayed in Figure 2d, the model yielded global
structural responses through the implementation of a Monte Carlo approach. Additional
details about the model can be found in [12].

3.2.1. Distribution of Random Material Properties

For the tensile strength, the material behavior was represented using the Weibull
distribution. The probability density function, fw(x, b, c), for a random variable x ≥ 0 is
presented in Equation (9).

fw(x, b, c) =
b
c

( x
c

)b−1
e−(

x
c )

b
(9)
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Figure 2. An overview of the formulation of the 3D probabilistic macroscopic model for “semi-
explicit” cracking of concrete is provided in this figure. (a) illustrates the material heterogeneity, while
(b) shows the correlation between the degree of heterogeneity, volume effects, and the utilization of
random mechanical properties distribution. (c) presents the random distributions and the elementary
behavior of energy dissipation during damage evolution. Finally, (d) demonstrates an example of the
global behavior obtained using the Monte Carlo method.

The terms b > 0 and c > 0 are the shape and scale parameters of the distribution,
related to the dispersion and mean value of x, respectively. The mean µw and standard devi-
ation σw of the distribution are evaluated, respectively, according to Equations (10) and (14).

µw = cΓ
(

1 +
1
b

)
(10)

σw =

√
c2Γ

(
1 +

2
b

)
− µ2 (11)

For the critical fracture energy, the lognormal distribution was chosen to describe the
material behavior. Its probability density function, fL(x, µL, σL), is presented in Equation (12),
where µL is the mean and σL is the standard deviation of the variable’s natural logarithm.
The expected mean value EL(X) and variance VarL(X) of the distribution are presented in
Equation (13) and Equation (14), respectively.

fL(x, µL, σL) =
1

µLσL
√

2π
e
− (ln(x)−µL)

2

2σ2
L (12)

EL(X) = eµL+
σ2

L
2 (13)

Var(x) =
(

eσ2
L − 1

)
e2µL+σ2

L (14)

3.2.2. Estimation of the Model Parameters

To ensure a consistent application of the model, it is crucial to precisely determine the
parameters governing both the Weibull and lognormal distributions. These distributions
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typically involve two parameters each. However, considering fracture energy as an intrinsic
material property implies a constant mean value. Consequently, once its mean value
is known, the task entails determining the scale and shape parameters of the Weibull
distribution and the standard deviation of the lognormal distribution.

The assessment of Weibull distribution parameters involves an iterative numerical proce-
dure designed to solve a nonlinear system of equations. This system merges equations that
define the distribution’s mean and standard deviation, described in Equations (10) and (14),
with the analytical scale law introduced by [21], described in Equations (4)–(7). This scale
law estimates the expected mean and standard deviation values for a specified concrete
volume; here, it is applied to the finite element scale. This formulation originates from an
experimental investigation intended to establish a relationship between concrete hetero-
geneity and the phenomenon of the scale effect. Through this procedure, each finite element
received specific parameters (b, c) defining the Weibull distribution that characterizes its
behavior. Additional information about the analytical expressions and the implementation
of the iterative procedure can be found in [12]. Conversely, the methodology outlining
the estimation of standard deviation for the lognormal distribution is detailed in Section 2,
while the approach to estimate its mean value is described in Section 4.

3.3. Numerical Simulations

The numerical simulations conducted in this work for validation purposes focused
on a high strength concrete with the following properties: fc = 105 MPa, E = 53.4 GPa,
maximum aggregate size = 20 mm, and GIC = 1.52 × 10−4 MN/m. These concrete parame-
ters were obtained from [42] and were suitable for performing the numerical simulations
using the present model (as discussed in Section 2). It is worth noting that the mechanical
characteristics and maximum aggregate size of this particular concrete differed significantly
from those used in the simulations [12] from which Equation (2) was derived. Therefore,
if Equation (8) was validated for this new high-strength concrete, it could be considered
valid for a wide range of typical concretes.

Figure 3 displays both frontal and 3D perspectives of the finite element mesh utilized
in the simulation, pinpointing the locations where the prestressing force and imposed
displacements were applied. The mesh comprised 19,564 tetrahedral solid elements with
linear interpolation. The simulation of the DCB test involved several boundary conditions to
accurately represent its behavior. These conditions included the restriction of displacements
along the X axis within the YZ plane, along the Y axis within the XZ plane, and along
the Z axis at the central nodes in the XZ plane. Additionally, there were restrictions on Z
axis displacements at nodes where prescribed displacements were applied. Moreover, the
simulation incorporated the application of prescribed forces specifically in the Y direction,
exerted on the elements situated on the specimen’s bottom surface.

The Monte Carlo simulation consisted of the execution of 30 independent finite element
analyses. As shown in [12], this number of MC samples was sufficient to produce a
consistent outcome concerning the variability of the average curve from the numerical
simulations. For this level of mesh refinement, Monte Carlo simulations employing 30 or
more finite element analyses did not exhibit significant variability in the average curve. The
loading force versus notched opening displacement curves obtained from the Monte Carlo
simulation results are presented in Figure 4. These numerical curves were then compared
with the experimental data obtained from [42] for a comprehensive evaluation. Additionally,
Figure 5 provides an example of the crack pattern obtained from the numerical simulations,
with cracked elements represented in red and uncracked elements in blue.
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Figure 3. 3D Finite element mesh of the DCB specimen—frontal and 3D view.

Figure 4. Loading force versus notched opening displacement curves — numerical and experimen-
tal results.

Upon examining the graph presented in Figure 4, several significant observations
emerge. Firstly, the peak loads evident in the numerical curves consistently exhibited lower
values in contrast with those observed in the experimental curve. This aligned with the
findings reported in [12]. A depiction of the Monte Carlo (MC) outcome conducted for
100 samples is presented in Figure 6, further supporting this observation.
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Figure 5. Example of numerical crack propagation pattern.

Figure 6. Loading force versus notched opening displacement curves—Numerical and experimental
results from [12].

As explained in detail in [12], this difference can be attributed to the fact that the
proposed model primarily focused on macrocrack propagation rather than the localization
process, which was responsible for the peak load. Therefore, for a valid comparison, it was
important to consider the behavior of the descending branch of the curves, representing
macrocrack propagation.

Moreover, for simplification purposes, the numerical modeling of the notch tip was
represented as a line. In contrast, the actual DCB specimen featured a notch tip thickness
of 0.5 mm, as depicted in Figure 3. This discrepancy led to higher stress concentrations
at the numerical front tip compared with the experimental values. Additionally, it is
noteworthy that, after a small notch opening, the experimental curve aligned within the
range of the numerical curves. This observation concurred with the findings detailed in [12].
Consequently, based on these outcomes, it can be inferred that Equation (8) was validated
for this specific high-strength concrete, and by extension, for other usual concretes.
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4. Determination of the Mean Value of GIC

In Section 2, it was mentioned that in order to calculate the standard deviation of GIC,
it was essential to know its mean value. However, as discussed in Section 3, obtaining
an intrinsic value of GIC through direct testing was challenging and required large-scale
fracture mechanics tests, which were time-consuming and costly. Therefore, to address this
issue, it is crucial to develop a strategy for determining the intrinsic value of GIC using
simpler tests and establishing relationships between GIC and other readily measurable
mechanical characteristics of concrete. A recent work was performed to determine this
intrinsic value of GIC from the knowledge of the compressive strength, fc, or the tensile
splitting strength, fts [42]. From this work, the following relations were proposed:

GIC = 9.5 fts + 90, (15)

GIC = 0.4 fc + 110, (16)

in Equations (15) and (16), the unit of GIC is in J/m2 and fts and fc are in MPa. It is
important to recall that these relations were determined for concretes with the following:
4 ≤ fts ≤ 6.5 MPa and 50 ≤ fc ≤ 105 MPa. They could be considered valid only when
the compressive and tensile splitting tests were conducted on cylindrical specimens with
dimensions of 16 × 32 cm2 (standard tests). The direct link between toughness and com-
pressive or tensile strength may be considered overly simplistic. However, this link was
both possible and relevant due to the similar underlying physical mechanisms governing
these mechanical characteristics.

The transition from diffuse microcracking to localized macrocracking is responsible
for the development of compressive and tensile strengths. In the case of GIC, it is associated
with the existence of a process zone at the front tip of the macrocrack. The macrocrack
can propagate only when the total dissipative energy in this process zone (microcracked
zone) was reached, indicating a process of cracking localization and, therefore, macroc-
rack propagation.

There are no inherent physical or mechanical limitations that restrict the applicability of
Equations (15) and (16) to concretes with lower compressive and tensile strengths. However,
it should be noted that these relations are not valid for fiber-reinforced concretes [30].
Additionally, considering that Equations (4)–(7) were established for concretes with a
maximum aggregate diameter greater than or equal to 10 mm, and Equations (15) and (16)
were established for concretes with maximum aggregate diameters of 12 mm and 20 mm,
the presented equations were satisfactorily applicable to concrete mixtures with maximum
aggregate diameters between 10 mm and 20 mm. In the case of larger aggregates, it is
necessary to verify their applicability.

5. Conclusions and Discussion

In this study, our primary objective was to enhance the applicability of a semi-explicit
macroscopic probabilistic model by devising strategies to estimate both the mean and
standard deviation of GIC, which are parameters of the model. For this aim, an equation
to estimate the coefficient of variation of GIC in relation to re, the mean and standard
deviation of the tensile strength was proposed. The methodology’s validation involved a
simulation of an experimental DCB test using high-strength concrete with fc = 105 MPa.
The simulation confirmed the main assumption of the study, enabling an extension of the
model’s applicability to diverse concrete mixtures. Additionally, a strategy to estimate
the mean value of GIC was introduced, enabling the assessment of this value using more
readily available data, such as compressive strength, fc, or tensile splitting strength, fts.
Thus, this paper offers an approach to address an ongoing issue in the literature regarding
the definition of material inputs for modeling concrete cracking, considering the size effects
and material heterogeneity.

The numerical model employed in this study, based on finite element theory, is de-
signed to analyze the propagation of macrocracks in concrete structures. It incorporates the
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random distribution of material properties over the mesh, accounting for crack propagation
through energy dissipation. The random mechanical properties considered in the model are
the tensile strength, ft, and the mode I critical fracture energy, GIC. The model assumes that
the mean value of GIC remains constant regardless of scale, while its standard deviation
varies based on the volume of the mesh elements.

In conclusion, this study extends the applicability of a 3D probabilistic semi-explicit
cracking numerical model to concrete mixtures with compressive strengths below 130 MPa
and the largest aggregate diameter ranging between 10 mm and 20 mm. The findings
contribute to describing the macrocrack propagation in concrete elements. However, for
effective application of the model in real concrete structures, further advancements are
necessary, particularly in modeling steel rebars and concrete/steel bond. Moreover, future
research should focus on extending the model to simulate macrocrack propagation in
fiber-reinforced concrete.
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