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Abstract: Autonomous navigation and localization are the foundations of unmanned intelligent
systems, therefore, continuous, stable, and reliable position services in unknown environments are
especially important for autonomous navigation and localization. Aiming at the problem where GNSS
cannot continuously localize in complex environments due to weak signals, poor penetration ability,
and susceptibility to interference and that visual navigation and localization are only relative, this
paper proposes a GNSS-aided visual dynamic localization method that can provide global localization
services in unknown environments. Taking the three frames of images and their corresponding
GNSS coordinates as the constraint data, the GNSS coordinate system and world coordinate system
transformation matrix are obtained through horn coordinate transformation, and the relative positions
of the subsequent image sequences in the world coordinate system are obtained through epipolar
geometry constraints, homography matrix transformations, and 2D–3D position and orientation
solving, which ultimately yields the global position data of unmanned carriers in GNSS coordinate
systems when GNSS is temporarily unavailable. Both the dataset validation and measured data
validation showed that the GNSS initial-assisted positioning algorithm could be applied to situations
where intermittent GNSS signals exist, and it can provide global positioning coordinates with high
positioning accuracy in a short period of time; however, the algorithm would drift when used for
a long period of time. We further compared the errors of the GNSS initial-assisted positioning and
GNSS continuous-assisted positioning systems, and the results showed that the accuracy of the GNSS
continuous-assisted positioning system was two to three times better than that of the GNSS initial-
assisted positioning system, which proved that the GNSS continuous-assisted positioning algorithm
could maintain positioning accuracy for a long time and it had good reliability and applicability in
unknown environments.

Keywords: visual navigation and positioning; GNSS; assisted positioning; BA optimization; horn
coordinate transformation

1. Introduction

Existing satellite positioning and navigation systems such as GPS (Global Positioning
System), GLONASS (Global Orbiting Navigation Satellite System), BDS (Beidou Navigation
Satellite System), Galileo (Galileo Satellite Navigation System), QZSS (Japanese Quasi-
Zenith Satellite Navigation System), and IRNSS (Indian Regional Satellite Navigation
System), together with corresponding ground-based and satellite-based augmentation
systems, comprise the infrastructure for global PNT (positioning, navigation, and timing)
services [1,2]. The development of satellite navigation and positioning systems have
changed people’s ways of life, the styles of battlefield perception, and the modes of traffic
management, which has promoted the development of science and technology, economies,
and societies. However, at the same time, satellite positioning and navigation systems have
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natural vulnerabilities, such as weak signals, poor penetration abilities, and susceptibility
to interference [3]. In some complex environments, such as urban canyons, tunnels, or
battlefields with strong interference, GNSS (Global Navigation Satellite System) signals are
weakened or even rejected, which causes the position information obtained by the GNSS
receiver to be unavailable, and thus, it is necessary to rely on other navigation methods
(e.g., Wi-Fi [4], UWB (ultra-wide band) [5], 3D LiDAR and vision [6], etc.) to obtain reliable
global position coordinates.

Visual navigation and localization comprise a passive and reliable localization model [7]
that can realize autonomous navigation and localization in a location environment after
acquiring video or image sequences, and visual navigation and localization have the
advantages of possessing anti-interference abilities, being capable of high accuracy, and
being low cost, and so they are widely used in the field of autonomous intelligence [8].
However, the state estimation positions obtained by visual localization are relative, it is
difficult to determine the global position of a carrier, and there is a drift phenomenon in the
long-term localization of a visual navigation error.

Two navigation and localization methods, GNSS and vision, have their own advan-
tages and disadvantages, and they can form complementary advantages [9,10]. GNSS
can inhibit the rapid accumulation of visual navigation errors, and visual navigation can
achieve continuous navigation when GNSS is subjected to occlusion and interference,
which improves the navigation and localization continuity and accuracy of GNSS.

There are many experts and scholars that have conducted GNSS and visual navigation
research. For example, in the literature, the authors of [11] utilized GNSS as an external
absolute positioning system to provide scale information for monocular visual odometers,
and this assisted the visual odometers used for navigation and positioning.

There have been more studies on GNSS and vision for loose combinations of navi-
gation and localization. Agrawal and Konolige [12] firstly proposed a GNSS/VO loose
combination system which used a cart equipped with a GNSS receiver and a binocular
camera for experiments, and they confirmed that the performance of the GNSS/VO loose
combination system was better than that of a pure visual VO system. Aumayer et al. [13] in-
vestigated the performance of a binocular-vision-assisted GNSS for continuous navigation
in harsh environments, and it loosely combined pure visual navigation results with GNSS
results. The experiments showed that when the GNSS accuracy was reduced to 10 m in a
weak GNSS environment, the accuracy of the visual navigation results was better than 1 m,
and so the visual navigation system could well assist the GNSS for continuous navigation.

In addition, Schreiber et al. [14] used a tightly combined GNSS/inertial system which
utilized pseudo-ranging or carrier-phase raw observations, and the final experiments
proved that when the number of satellites was less than four, the tightly combined local-
ization solution could still be carried out. Wang Lei et al. [15] proposed that the feature
points in images with known world coordinate systems were regarded as “visual pseudo-
satellites”, and they could be tightly combined with GNSS ranging signals to realize
continuous navigation in weak GNSS environments. In the literature, the authors of [16,17]
utilized a tight combination in the case of insufficient satellite observations to carry out
navigation research on a combined GNSS and vision system.

In conclusion, there have been more studies related to the combination and assistance
of vision and GNSS. However, most of these studies were based on vision/GNSS loosely
coupled or tightly coupled in general frameworks, and this required GNSS signals to be
present for a long time to be used for navigation and localization; therefore, these are not
applicable to cases where GNSS is not available or only opportunistic signals are present.
To address the above problems, we used intermittently available GNSS positioning results
as constraint data to assist with vision for localization, realizing that the global position of
an unmanned carrier can still be obtained when GNSS data are not available.

Specifically, we made the following contributions: we proposed a general framework
for GNSS-assisted visual dynamic localization, stating that the overall process consisted of
five parts (initialization, a GNSS coordinate system and world coordinate system conver-
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sion, frame sequence tracking and position and orientation estimation, local optimization,
and frame sequence GNSS coordinate-solving).

We took three frames of images and their corresponding GNSS coordinates as the
constraint data, and we calculated the transformation matrix between the GNSS coordinate
system and the world coordinate system through the Horn coordinate transformation.
Then, the relative position and orientation relations of the image sequence in the world
coordinate system could be obtained using epipolar geometry constraints, homography
transformation, PNP (perspective-n-point) positions, and orientation solving. Finally, the
position parameters of the carrier in the GNSS coordinate system under the GNSS rejection
were obtained.

We validated this study’s algorithm based on a dataset and the measured data, re-
spectively. The validation results showed that the algorithm was applicable to the case
of the presence of intermittent GNSS opportunity signals, and it could provide global
position services with high short-term positioning accuracy. However, due to the scale
drift of the visual odometer itself, this algorithm was not applicable to the case of complete
GNSS signal rejection when the visual localization results could not be constrained and
corrected. Then, we further compared the errors of the GNSS initial-assisted positioning
and GNSS continuous-assisted positioning, and the results showed that the accuracy of the
GNSS continuous-assisted positioning was two to three times higher than that of the GNSS
initial-assisted positioning, which proved that the GNSS continuous-assisted positioning
algorithm could maintain positioning accuracy for a long time, and it had good reliability
and applicability in unknown environments.

The rest of this paper is organized as follows. The framework of the GNSS-assisted
visual dynamic positioning method is given in Section 2. In Section 3, the algorithm flow
is established, including initialization, the GNSS coordinate system, the world coordinate
system conversion, the frame sequence tracking and position and orientation estimation,
the local optimization, and the frame sequence GNSS coordinate-solving. In Section 4,
through dataset validation, the applicability of this paper’s algorithm is demonstrated. In
Section 5, through discussing our experiments with real data, it is further verified that the
GNSS continuous-assisted algorithm improved the accuracy by a factor of two to three with
respect to the GNSS initial-assisted algorithm. Finally, conclusions and further research
arrangements are drawn in Section 6.

2. GNSS-Assisted Visual Dynamic Localization Method Framework

In this study, three frames of images and their corresponding GNSS coordinates were
used as constraint data, and the transformation matrix between the GNSS coordinate
system and the world coordinate system (the camera coordinate system of the first frame
of the image was used as the world coordinate system) was computed using the Horn
coordinate transformation [18]. The relative positions and orientations of the subsequent
image sequences in the world coordinate system were obtained through epipolar geometry
constraints [19], homography transformation [19], and a 2D–3D positional solution model.
Combining the GNSS coordinate system and the world coordinate system transformation
matrix, the position data of the carrier in the GNSS coordinate system when GNSS was not
available were finally obtained. Figure 1 shows the overall process framework, illustrating
that the overall process consisted of the following five parts: initialization, the GNSS
coordinate system and world coordinate system conversion, tracking and position-solving,
local optimization, and the GNSS coordinate-solving for the frame sequences.
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2.1. Initialization

Initialization is the process of obtaining a position estimation from the first three frames
of an image, and it includes feature extraction and matching, relative position-solving
with epipolar geometry constraints and a homography matrix, and, finally, triangulated
feature points.

As Figure 2 shows, I1, I2, and I3 were three frames of an image with GNSS posi-
tioning data, and their corresponding camera photocenter positions were C1, C2, and C3,
while the GNSS coordinates were Xn

C1
, Xn

C2
, and Xn

C3
. Here, the camera coordinate system

OC1 XC1YC1 ZC1 at C1 was assumed to be the world coordinate system OW XWYW ZW .
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2.1.1. Positional Solution Using Epipolar Geometry Constraints

Orb feature point extraction and matching were performed for I1, I2, and I3 to obtain
matching homonymous points. Taking the k-th homonymous point as an example, the
normalized coordinates of the pixels in I1, I2, and I3 were noted as xC1

k , xC2
k , and xC3

k .
The following constraints were established based on the pair of epipolar geometry

equations, as (1) shows below:

xC2
k

TEC2
C1

xC1
k = 0 and EC1

C2
= KTFC1

C2
K = [tC1

C2
]
×

RC1
C2

, (1)
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where EC1
C2

represents the essential matrix from I1 to I2, FC1
C2

represents the fundamental

matrix from I1 to I2, RC1
C2

represents the rotation matrix from the movement of C1 to C2, and

tC1
C2

represents the translation vector from the movement of C1 to C2.

The SVD decomposition was performed on the essential matrix EC1
C2

to obtain the four

combinations corresponding to RC1
C2

, tC1
C2

. Usually, any point can be substituted to determine
the depth of a point, and when the constraint that the feature point needs to be in front of
the camera is utilized, the only correct result of the pose to solve RC1

C2
, tC1

C2
is selected.

2.1.2. Positional Solving Using a Homography Matrix

If the homonymous points are in the same plane, then the positional solution can be
performed according to the homography matrix, as (2) shows below:

xC2
k = HC2

C1
xC1

k (2)

where HC2
C1

denotes the homography matrix from I1 to I2.

The SVD decomposition of the homography matrix HC2
C1

is performed as follows in (3):

HC2
C1

= UDVT and D = RD +
tDnD

T

d
, (3)

where U and V are orthogonal matrices and D is a diagonal matrix.
Here, the SVD decomposition was performed with D as the new single response

matrix, and RC1
C2

and tC1
C2

under the single response relation could be obtained.

2.1.3. Model Scores

RC1
C2

= URDVT , n = VnD, tC1
C2

= dUtD (4)

The epipolar geometry constraint and homography matrix were introduced as (4)
shows above. In a real scenario, it is necessary to judge which model to choose for a
positional solution according to the distribution of feature points in a shooting scene.

Here, we performed model scoring by judging the number of interior points. Equation (5)
shows the defined ratio, and score H and score F represent the H matrix and F matrix scores,
respectively:

ratio =
scoreH

scoreH + scoreF
(5)

Here, the ratio threshold was set to 0.6 based on the results of several experiments, and
when the ratio was greater than 0.6, the homography matrix was selected for solving.

2.1.4. Scale Determinations

Although the above yielded the translation vector tC1
C2

, tC1
C2

was a translation vector
that lost scale. According to the Euclidean transformation distance preserving property,
the baseline length of the C1 motion to C2 in a GNSS coordinate system and the Euclidean
distance of the translation vector of the C1 motion to C2 were equal; therefore, according to
Equation (6), the scale factor λ1,2 could be calculated as follows:∥∥∥tC1

C2

∥∥∥ = λ2,1

∥∥∥Xn
C2

− Xn
C1

∥∥∥ (6)

The real translation vector was as follows:

⌢
t

C1

C2
= tC1

C2
/λ2,1 (7)
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2.1.5. Triangulation of the Feature Points

When two images are known to have the same name, matching point, and camera
matrix, the 3D coordinates of the same name point can be solved. Here, using C1 as
the reference coordinate system, the camera matrices corresponding to I1 and I2 were
as follows:

P1 = K[I|0] and P2 = K[RC1
C2
|tC1

C2
] . (8)

Equation (8) was substituted into (9) to obtain the 3D coordinates, XW
k , in the world

coordinate system corresponding to the k-th feature point, as follows:

xC1
k = P1XW

k and xC2
k = P2XW

k . (9)

The least squares solution for the 3D coordinates XW
k was obtained by solving the

system of chi-square equations using SVD.

2.2. GNSS and World Coordinate System Conversion

According to the Horn absolute coordinate transformation, the rotation and translation
transformation parameters between two Cartesian coordinate systems can be solved if
there are three non-collinear coordinate points.

According to Equations (6) and (7), the real-scale translation vector for the movement
of C1 to C3 could be obtained in the same way as (10), as follows:

⌢
t

C1

C3
= tC1

C3
/λ3,1 (10)

The GNSS coordinate system and the world coordinate system were both rigid-body
coordinate systems, and so the transformation matrix consisted of the following two parts:
the rotation vector Rn

W and the translation vector tn
W . Here, the position Xn

C1
of C1 in the

GNSS coordinate system was known to be the translation vector tn
W , and the positions of C2

and C3 in the GNSS coordinate system were known to be Xn
C2

and Xn
C3

. The relation could
then be jointly established using Equation (11), as follows:

Xn
C2

= Rn
W

⌢
t

W

C2
+ tn

W and Xn
C3

= Rn
W

⌢
t

W

C3
+ tn

W . (11)

In addition, the rotation matrix Rn
W was a 3 * 3 orthogonal matrix that satisfied the

following constraints:∥∥∥Rn
W

1T
∥∥∥ = 1,

∥∥∥Rn
W

2T
∥∥∥ = 1, and

∥∥∥Rn
W

3T
∥∥∥ = 1, (12)

where Rn
W

1T , Rn
W

2T , and Rn
W

3T denote the first, second, and third column vectors of Rn
W ,

respectively.
The rotation vectors could be computed from the system by simultaneously using

Equations (11) and (12). We noted that the three frames of the image constrained here
were required to be sufficiently spatial, otherwise, a pathological transformation matrix
would result.

2.3. Subsequent Frame Sequence Tracking and Position-Solving

Here, the process of solving the algorithm for solving the subsequent image position
was analyzed as an example of solving image I4. The following position-solving was
carried out using a 2D–3D model.

As Figure 3 shows, it was assumed that I4 and I3 had matching points with the
same name, and here, the position n and orientations RC1

C4
and tC1

C4
in the world coordinate

system could be solved according to the RPNP algorithm. Then, RC1
C4

and tC1
C4

were further
obtained using BA (bundle adjustment) optimization with the RPnP (robust perspective-
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n-point) [19,20] computed value as the initial value and the reprojection error as the
objective function.
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We defined the reprojection error as follows:

e = x − PX and

1
2

n

∑
k=1

∥∥∥eC4
k

∥∥∥2
=

1
2

n

∑
k=1

∥∥∥xC4
k − P4XW

k

∥∥∥2
.

(13)

The P4 optimal solution was selected by performing BA optimization using a reprojec-
tion error.

2.4. Local Optimization

The keyframe [21] was a representative one, and it needed to be selected with enough
frames from the previous keyframe while being far enough away from the nearest keyframe.
At the same time, it needed to have enough co-visual feature points in the local optimization.
If the current frame was identified as a keyframe, a new 3D map point was created using
that frame. In this phase, the camera pose and 3D map points were adjusted by constraining
the minimization of the reprojection error, i.e., by using local optimization.

Using the itch frame camera poses, RC1
Ci

and tC1
Ci

, corresponding to the camera matrix Pi,
there were a total of m frames of images in the local map. The n map points corresponding
to frame i were XW

1 , · · · , XW
n . The reprojection error was as follows (14):

e = x − PX and

1
2

m

∑
i=1

n

∑
j=1

∥∥eij
∥∥2

=
1
2

m

∑
i=1

n

∑
j=1

∥∥∥xij − PiXW
j

∥∥∥2
.

(14)

2.5. Subsequent Frame Sequence GNSS Coordinate-Solving

When the position of the subsequent image in the world coordinate system was
obtained, the GNSS coordinates of the subsequent sequence of frames could be obtained by
solving jointly with Rn

W . The following equation took I4 as an example, and it solved the
position of C4 in the GNSS coordinate system as follows:

Xn
C4

= Xn
C1

+ Rn
WtC1

C4
(15)

3. The Overall Flow of the Algorithm

Based on the sorting and deduction of the above related contents, an overall framework
diagram and the implementation steps of the visual dynamic positioning algorithm flow
with GNSS assistance were created, as Figure 4 and Table 1 show.
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Table 1. Implementation steps of the visual dynamic positioning algorithm with GNSS assistance.

Implementation Steps of the Visual Dynamic Positioning Algorithm with GNSS Assistance

Step 1. With the known three frames as constraints, the camera coordinate system of Frame 1 was used as the world
coordinate system.
Step 2. Frame 1 and Frame 2 features were extracted and matched, and Frame 1 and Frame 3 features were ex-tracted and matched.
Step 3. The epipolar geometry constraint and homography matrix models were evaluated, and different models were selected for
the specific scenarios for the relative position estimation to obtain RC1

C2
, tC1

C2
, RC1

C3
, and tC1

C3
.

Step 4. The GNSS position coordinates Xn
C1

, Xn
C2

, and Xn
C3

of Frame 1, Frame 2, and Frame 3 were used as the constraint data and

combined with tC1
C2

and tC1
C2

to calculate the scale.

Step 5. Feature point triangulation was performed using RC1
C2

,
⌢
t

C1

C2
, RC1

C3
,
⌢
t

C1

C3
, and K, and the first three frames’ matching feature

points in the world coordinate system coordinates were obtained and put into the map point library.
Step 6. The transformation matrix Rn

W and tn
W between the GNSS coordinate system and the world coordinate system was

calculated using the known position coordinates of the three GNSS frames Xn
C1

, Xn
C2

, and Xn
C3

and RC1
C2

,
⌢
t

C1

C2
, RC1

C3
, and

⌢
t

C1

C3
.

Step 7. We added the next frame, determined if there were GNSS data, and if there were, we continued to Step 7; if GNSS data were
available for three consecutive frames, we returned to Step 1, and if not, we moved on to Step 8.
Step 8. The Frame 4 feature points were extracted, and feature matching was performed with the previous keyframe. RPNP was
utilized to solve the bitmap and BA optimization was performed. We took Frame 4 as an ex-ample to obtain its bit position in the
world coordinate system RC1

C4
, tC1

C4
.

Step 9. We determined if Frame 4 was a keyframe, and if it was, the feature points were triangulated with the pre-vious keyframe
and reconstructed and added to the map library. BA optimization was used to improve the keyframe bitmap and map point
location coordinates.
Step 10. Using the GNSS coordinates Xn

C1
of Frame 1 and Rn

W , tn
W obtained by Step 6, the coordinates of Frame 4 in the GNSS

coordinate system were calculated.
Step 11. We continued with Step 7 to obtain the GNSS coordinates for subsequent frames.
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4. Dataset Validation

We validated the algorithm using the TUM dataset [22], which is a dataset of indoor
and outdoor images collected by the Computer Vision Group of Ludwig Maximilian
University. The dataset contains calibration files, five types of data, and the real trajectory
of the camera captured by the motion-capture system. The true values of the motion capture
system were used instead of the GNSS data to validate the visual dynamic localization
method with GNSS assistance proposed in this paper. To verify the performance of the
algorithms for the GNSS continuous aid and GNSS initial aid, three frames of the GNSS
coordinates were randomly added for the constraints after the 78th frame. Table 2 shows
the TUM dataset camera parameters.

Table 2. Camera parameters for the TUM dataset.

Parameter Value

Resolution [640, 480] pix

Intrinsics

535.4 0 320.1
0 539.2 247.6
0 0 1


Distortion coefficients

[
0 0 0 0

]
4.1. Data Processing and Analysis
4.1.1. Feature Extraction and Matching

Frame 1, Frame 2, and Frame 3 were extracted orb feature points, and this setup
involved an eight-layer image pyramid on the extraction of the FAST corner points, with a
pyramid scale factor of 1.2. In this image, the resolution was 640 * 480, and we chose to
extract 1000 corner points, as Figure 5 shows.
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For the orb feature descriptor for the Frame 1 and Frame 2 feature point matching, a
total of 253 pairs of matching points were obtained, as Figure 6 shows. Frame 1 and Frame
3 were matched, and a total of 211 pairs of feature points were obtained, as Figure 7 shows.
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4.1.2. Triangulation

Frames 1 and 2 and Frames 1 and 3 were triangulated to obtain the corresponding
map points. Table 3 shows the specific data processing results.

Table 3. Data processing results of Frames 1 and 2 and Frames 1 and 3.

Frame 1 and Frame 2 Frame 1 and Frame 3

F
FC1

C2
=

 0.0000 −0.0001 0.0036
0.0000 0.0000 −0.0854
−0.0044 0.0863 0.9926

 FC1
C3

=

0.0000 0.0006 0.2247
0.0006 −0.0001 −0.3473
0.2349 0.3879 0.8114


H

HC1
C2

=

 1.0391 0.0102 0.0001
0.0061 1.0015 −0.0000

11.1037 10.8368 1.0000

 HC1
C3

=

1.0876 0.0036 0.0002
0.0583 1.0484 −0.0000
0.4203 −0.8851 1.0000


Ratio 0.7409 0.7496

Model Epipolar Geometry Epipolar Geometry

R t
RC1

C2
=

 0.9968 0.0273 −0.0746
−0.0254 0.9993 0.0271
0.0753 −0.0251 0.9968


tC1
C2

=

−0.9854
0.1196
−0.1213

T

RC1
C3

=

 0.9924 0.0521 0.1114
−0.0507 0.9986 0.0151
0.1121 −0.0093 0.9937


tC1
C3

=

−0.9957
0.0920
0.0114

T

Scale λ2,1 = 9.8177

⌢
t

C1

C2
=

−0.1004
0.0122
−0.0124

T
λ3,1 = 6.9966

⌢
t

C1

C3
=

−0.1644
0.00599
−0.0024

T

After triangulation, the map points were obtained, as Figure 8 shows. In the figure,
the position of the camera and the map points in the camera’s view are labeled.
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4.1.3. Motion Capture Coordinate System and World Coordinate System Transformation 
Matrix 

In accordance with Section 2.2, the transformation matrix between the motion cap-
ture coordinate system and the world coordinate system were solved as follows: 

0 0 1.0000
00.4721 0.8815

0.8815 0.4721 0

n
WR

 
 = 
− − 

− 


 

  

Figure 8. Map points after triangulation.
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4.1.3. Motion Capture Coordinate System and World Coordinate System
Transformation Matrix

In accordance with Section 2.2, the transformation matrix between the motion capture
coordinate system and the world coordinate system were solved as follows:

Rn
W =

 0 0 1.0000
−0.4721 0.8815 0
−0.8815 −0.4721 0


4.1.4. Subsequent Camera Poses

For the subsequent frames, after tracking and local optimization, the corresponding
camera poses were sequentially obtained in terms of position and attitude in the motion
capture coordinate system, as Figure 9 shows. The red meter sign indicates the GNSS
initial-aided positioning for the subsequent frame position, the blue circle indicates the
GNSS continuous-assisted positioning for the subsequent frame position, and the green
asterisk indicates the real pose data.
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As Figure 9 shows, at the beginning stage, the GNSS initial-aided positioning trajectory,
the GNSS continuous-assisted trajectory, and the true trajectory were nearly the same,
which proved the effectiveness of the proposed method. However, with the passage of time,
the GNSS initial-aided positioning trajectory appeared to drift obviously compared with
the GNSS continuous-assisted trajectory. This was because for the GNSS initial auxiliary
trajectory, the global position constraint was only effective at the beginning, and the overall
accuracy degradation problem was subsequently manifested due to the accumulation of
errors in the visual odometer itself.

4.2. Error Statistics and Analysis

An absolute error analysis of the GNSS initial-aided positioning trajectory and the
GNSS continuous-assisted trajectory with respect to the true trajectories was carried out. As
Figure 10 shows, the red meter sign indicates the GNSS initial-aided positioning error and
the blue circle indicates the GNSS continuous-assisted error. Overall, the x, y, and z axis
errors appeared to increase with the number of frames, but the GNSS continuous-assisted
error had a decreasing trend relative to the GNSS initial-aided positioning error.
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Here, a further statistical analysis of the GNSS initial-aided positioning error accuracy
and the GNSS initial-aided positioning error accuracy was carried out. The mean absolute
error (MAE) was defined as follows:

MAE =

n
∑

i=1

∣∣∣xGNSS
Ci

− xGNSS
Ci truth

∣∣∣
n

(16)

where xGNSS
Ci truth represents the true value of the GNSS coordinates of the camera center in

frame i.
To analyze the applicability of the GNSS-aided visual dynamic localization method

proposed in this study, Table 4 shows the following statistics for the different frame numbers’
(20, 70, 100, and 143) MAEs.

Table 4. Error statistics for the different frame rates.

Frame 20 70 100 123

GNSS initial-aided positioning error
MAE_x (m) 0.0223 0.0369 0.0844 0.1111
MAE_y (m) 0.0199 0.0681 0.0924 0.1230
MAE_z (m) 0.0114 0.0579 0.0833 0.1412

GNSS continuous-aided positioning error
MAE_x (m) 0.0245 0.0338 0.0586 0.0560
MAE_y (m) 0.0189 0.0651 0.0687 0.0820
MAE_z (m) 0.0156 0.0191 0.0501 0.0626

As Table 4 shows, from Frame 4 to Frame 20 and then to Frame 70, the mean absolute
errors and root mean square errors increased, but the overall error increased slowly. How-
ever, for GNSS initial-aided positioning, from 70 frames, and especially after 100 frames,
the error increased exponentially. For the GNSS continuous-aided positioning, the error
growth was slow, and compared with the GNSS initial-aided positioning error, the accuracy
was improved by two to three times. The proposed algorithm could provide stable and
continuous global location services.

5. Experiments with Real Data

To further verify the effectiveness of the algorithm in this study, the following real-
scene measured data were used for the algorithm verification. Here, a DJI M300 (It is
manufactured in China by Shenzhen DJI Innovation Technology Co., Shenzhen, China)
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aircraft was used, and it was equipped with a Searle camera with five lenses (front, back,
left, right, and down) and a high-precision PPK. The location of the collected image data
is the north gate of the Zhengzhou University of Aeronautics, and the aircraft flew at
a constant speed, collecting a total of 414 * 5 images and outputting the corresponding
high-precision GNSS position of each image at the same time.

In this experiment, the downward-looking lens image was the experimental data,
and of the 414 images collected, for the images with high-precision position labeling,
Figure 11a shows the trajectory below. The captured images could be 3D-reconstructed
for tilt photogrammetry, and the airborne 3D measurement was calculated using Context
Capture, as Figure 11b shows.
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In the following algorithm validation, the starting three frames of the image GNSS
coordinates were used as the initial constraints, and three frames of the image GNSS
coordinates were added as the continuous constraints at every subsequent interval of
35 frames.

5.1. Data Processing
5.1.1. Camera Calibration

In this study, the Camera Calibrator toolbox [23] in MATLAB was used by Zhang
Zheng for the checkerboard grid calibration, and the internal reference matrix was obtained
as follows: 6377.341875 0 2994.3

0 4251.56125 1978.42
0 0 0


The distortion parameter was as follows:

[ −0.03484541 0.06374797 −0.01231441 −0.00002336 0.00036276 ]

The overall error in calibration did not exceed 0.7 pixels, and the average error did not
exceed 0.4 pixels.

5.1.2. Image Distortion Processing

The original image was distorted using calibrated internal parameters, and Figure 12
shows the partially de-distorted image, where the left side is the original image and the
right side is the de-distorted image.
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5.1.3. Feature Point Extraction and Matching

The orb feature descriptor was used to match the Frame 1 and Frame 2 feature points,
and a total of 563 pairs of matching points were obtained. For Frame 1 and Frame 3, a total
of 458 pairs of feature points were obtained, as Figures 13 and 14 show.
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corresponding map points, as Figure 15 shows. 

Figure 14. I1, I3 feature point matching map.

The points of Frames 1 and 2 and Frames 1 and 3 were triangulated to obtain the
corresponding map points, as Figure 15 shows.
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5.2. Error Statistics and Analysis

After the global position of the frame was obtained by the algorithm, error maps
were obtained by determining the differences with the original GNSS coordinates, as
Figure 16 shows. In the error maps, the blue circles correspond to the GNSS initial-aided
positioning errors and the red asterisks correspond to the errors obtained from the GNSS
continuous-aided positioning errors.
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As Figure 16 shows, both the GNSS initial-aided positioning error and the GNSS
continuous-aided positioning errors gradually increased with time, and this was related
to visual odometer deviation. However, in general, the GNSS initial-aided positioning
errors and GNSS continuous-aided positioning errors did not exceed 1 m in the horizontal
direction and 2 m in the altitude direction. Compared with the results of the GNSS initial-
aided positioning, the precision of the GNSS continuous-aided positioning was obviously
improved. To further analyze the performance of the accuracy improvement after the BA
optimization, a statistical analysis of the MAE, RMSE, and maximum error (MAXE) was
carried out, as Table 5 shows, where the root mean square errors (RMSEs) were defined
as follows:
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RMSE =

√√√√√ n
∑

i=1
(xGNSS

Ci
− xGNSS

Ci truth)
2

n
(17)

Table 5. Error statistics results.

Error MAE/m RMSE/m MAXE/m

GNSS initial-aided positioning errors
x 0.3521 0.2686 0.9418
y 0.3492 0.1960 0.7052
z 0.5338 0.4157 1.4509

GNSS continuous-aided positioning errors
x 0.1016 0.0943 0.1823
y 0.0959 0.0704 0.1531
z 0.1650 0.1807 0.3005

As Table 5 shows, compared with the results of the GNSS initial-assisted positioning,
the average absolute error and root mean square error of the GNSS continuous-aided
positioning declined by two to three times, and the maximum error was not more than 0.4 m.
The accuracy of the GNSS continuous-aided positioning could satisfy the requirements of
continuous positioning services, and this also proved the availability and continuity of the
algorithm used in this study.

6. Conclusions

Autonomous navigation is the core technology for achieving an intelligent level of
unmanned environment perception and autonomous control, navigation, and position-
ing, which are the foundations of an unmanned system’s intelligence [24–28]. Under an
unknown environment, relying on intermittent GNSS position-assisted visual dynamic
positioning can provide reliable and continuous global position services for unmanned
carriers. In this paper, the GNSS-aided visual dynamic positioning method in unknown
environments was investigated using three frames of images and their corresponding
GNSS coordinates as constraint data. The main innovation was that the algorithm in this
study required only three frames of image GNSS coordinates for global position services.
Moreover, the GNSS continuous-aided positioning could suppress the accumulation of
visual positioning errors and provide continuous and stable navigation position services.
Both the dataset experiments and real data validation showed that although the GNSS
initial-aided positioning error and GNSS continuous-aided positioning error both appeared
larger and larger over time, in general, the GNSS continuous-aided positioning had an
error of no more than 0.3 m in the horizontal direction and no more than 0.5 m in the
state estimation in the altitude direction, and this could meet the navigation requirements.
Compared with the results of the GNSS initial-assisted positioning, the average absolute
error and root mean square error of the GNSS continuous-aided positioning declined by
two to three times, and the maximum error was not more than 0.4 m. The accuracy of
the GNSS continuous-aided positioning could satisfy the requirements of the continuous
positioning services, and it also proved the availability and continuity of the algorithm
used in this study.

In summary, the proposed algorithm can provide continuous and stable location
services. Compared with the GNSS initial-aided positioning results, the GNSS continuous-
aided positioning accuracy was significantly improved. The next step is to consider the
introduction of GNSS original observation data, and the optimization must have three
frames of GNSS coordinates as constraint requirements.
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