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Abstract: Intelligent applications in several areas increasingly rely on big data solutions to improve
their efficiency, but the processing and management of big data incur high costs. Although cloud-
computing-based big data management and processing offer a promising solution to provide scalable
and abundant resources, the current cloud-based big data management platforms do not properly
address the high latency, privacy, and bandwidth consumption challenges that arise when sending
large volumes of user data to the cloud. Computing in the edge and fog layers is quickly emerging as
an extension of cloud computing used to reduce latency and bandwidth consumption, resulting in
some of the processing tasks being performed in edge/fog-layer devices. Although these devices
are resource-constrained, recent increases in resource capacity provide the potential for collaborative
big data processing. We investigated the deployment of data processing platforms based on three
different computing paradigms, namely batch processing, stream processing, and function processing,
by aggregating the processing power from a diverse set of nodes in the local area. Herein, we
demonstrate the efficacy and viability of edge-/fog-layer big data processing across a variety of
real-world applications and in comparison to the cloud-native approach in terms of performance.

Keywords: big data; computing platforms; IoT; serverless

1. Introduction

In the last few years, a new class of applications that use unprecedented amounts
of data generated from mobile devices and Internet of Things (IoT) sensors has been
widely deployed in many areas, bringing better quality of life to humans through the
automation of daily tasks and enabling time and energy savings, as well as monitoring,
efficient communication, better decision making, etc. [1–3]. This type of application, which
is present in various domains, such as healthcare monitoring, smart cities, industry, and
transportation [4], not only involves performing intensive computation on large amounts
of sensor data but also occasionally requires the output to be processed in real time to
provide faster interactions and better user experiences. To provide the necessary computing
resources, such as virtual machines and storage resources, including object-based storage
and databases for these types of applications, cloud solutions are considered, as they are
capable of storing and processing data in the cloud and sending the results back to the IoT
devices [5,6]. Most existing systems use big data management platforms, which deal with
large amounts of big data processing in the cloud computing platform or in self-hosted,
dedicated clusters or data centers [7,8]. However, some IoT applications, such as smart
cities and machinery automation, are real-time applications, and the adoption of cloud
computing for such applications can result in high latency because sensor data need to be
transferred to a cloud data center in a remote location. Thus, cloud solutions may no longer
be appropriate for these types of applications due to the limitations caused by network
bandwidth consumption and latency constraints [9].

Another noteworthy issue with cloud-based processing is that all users’ data tend
to be sent to the cloud. Specifically, there is potential for security and privacy issues and
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an increase in the communication payload and costs. The storage of sensitive data in the
cloud raises concerns about data vulnerability. In a centralized and shared environment,
there is a risk of unauthorized access or data breaches. Regarding data privacy, the ge-
ographic locations of cloud servers may impact data privacy. Navigating international
data protection laws and ensuring data residency compliance becomes a complex task in
terms of protecting sensitive information. In addition, transferring large volumes of data to
and from the cloud can incur significant costs. Organizations must carefully manage data
transfer to reduce their expenses. These issues are particularly relevant in the context of
data processing applications, such as healthcare and sensitive data handling, where the
importance of security and low latency necessitates more focused consideration [10–14].
Concerns about sensitive information being exposed to remote cloud data centers highlight
the limitations of cloud-based processing.

To overcome this challenge, fog and edge computing, which move the processing
and storage tasks to locations that are closer to the data source, have been introduced as
complements to cloud computing to provide storage and computing capabilities [9,15,16].
In these types of computing, any local device, however small, is considered capable of some
processing tasks. Edge/fog computing helps users to perform data processing at lower
latency and in the most appropriate way. At present, edge- and fog-layer devices are only
used for some preprocessing tasks, such as filtering, feature processing, and compression.
Computationally intensive tasks such as big data analytics and machine learning training
are sent out to the cloud, as they cannot be efficiently run on low-performance local
edge and fog devices [17,18]. Data processing in a layer architecture allows real-time
and lightweight tasks processed on edge devices that need high storage capacities and
processing capabilities to be moved to the cloud. However, important drawbacks related to
the high bandwidth consumption involved in sending large quantities of data between local
devices and cloud providers emerge. If the data can be stored and processed locally, closer to
the IoT devices, the data transmitted through the network would be significantly reduced.

We can observe a recent breakthrough in edge- and fog-layer computing devices as
the processing abilities of these devices have become increasingly efficient and capable [16].
In addition, most of the data or applications pass through the edge/fog-layer devices
as a gateway before connecting to the cloud. Edge/fog computing is potentially a good
solution for data processing problems, thanks to its recently developed resource-scaling
capabilities. This provides the possibility of deploying edge- and fog-layer big data man-
agement platforms using local edge/fog devices as computing and storage nodes. Such
a big data management platform can not only help to reduce latency, bandwidth con-
sumption, and cloud budgets but can also be applied in some environments without an
Internet connection.

IoT applications that span various domains, ranging from smart cities to industrial
environments and healthcare systems, continuously produce massive volumes of data,
including sensor readings, images, videos, and other types of information. Data processing
platforms handle large volumes of diverse data, making them well-suited for the processing
of the varied data generated by IoT sources. IoT deployments often involve distributed
environments with numerous devices spread across different locations. The distributed
computing models of big data processing allow them to efficiently process data across
distributed clusters, accommodating the distributed nature of IoT deployments. As many
IoT applications demand real-time or near-real-time processing to enable swift responses
and decision making, centralized data management approaches encounter challenges in
the efficient handling of information. Thus, by strategically integrating computational
capabilities closer to the data source, within the edge and fog layers, it is possible to facilitate
local data processing, reducing the necessity of transmitting all data to centralized cloud
infrastructure. This not only addresses latency concerns but also optimizes bandwidth
usage, making it particularly beneficial in scenarios where network resources are limited.
Furthermore, the decentralized nature of edge/fog computing contributes to enhanced
security and privacy by allowing sensitive data to be processed closer to their origin. In
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summary, the cooperative interconnection between IoT applications, data management,
and edge/fog computing represents a strategic approach to meet the evolving demands of
efficient, real-time, and secure data processing within the dynamic landscape of the Internet
of Things.

In addition, the requirements of big data processing, such as the training of ma-
chine learning models [19–21], stream processing [22], and event processing [23,24], raise
scalability issues and require significant computing and storage resources [25,26]. Fortu-
nately, big data management and processing platforms such as Apache Spark [27], Apache
Flink [28], and Apache OpenWhisk [29] address these concerns by facilitating distribution
and collaboration. In such systems, big data processing tasks are performed using the
collaborative power of nodes in clusters. With recent increases in the resource capacity
of edge/fog devices and the capability of big data processing platforms, it has become
increasingly important to explore the deployment of big data processing platforms on
resource-constrained edge/fog devices. The opportunity to combine recent advances in
edge/fog devices’ computing capabilities and big data processing platforms motivates
the work described in this paper. To address data processing across all computing en-
vironments, while previous works have focused on specific data processing paradigms
(batch, stream, or function processing) [30–36] and the capabilities of resource-constrained
devices [37–39], our research addresses the need for a comprehensive examination of the
performance of these platforms across three paradigms: batch processing, stream process-
ing, and function processing. This comprehensive approach, coupled with the inclusion of
various applications, such as image classification, object detection, and image resizing, adds
a layer of comprehensiveness to the evaluation. This work helps to elucidate the efficiency
gains and potential benefits that the collaborative deployment of local computing resources
across different computing layers can offer in the field of big data processing. The specific
research gap that our work addresses is the need for a comprehensive understanding of
big data processing in diverse computing environments, considering different paradigms
and applications.

In this paper, we ask the following question: Can edge- or fog-layer devices host big
data management platforms for data science applications, such as image classification,
object detection, and event-based image processing? To answer this question, we present an
extensive comparison between edge-/fog-layer big data management platforms and other
cloud-based solutions regarding their performance. We evaluate three big data management
and processing platforms—Apache Spark, Apache Flink, and Apache OpenWhisk—based
on three different computing paradigms, namely batch processing, stream processing,
and function processing, as demonstrated in Figure 1. Real-world applications such as
image classification, object detection, and image processing are used to evaluate the big
data platforms in edge, fog, and cloud layers. To the best of our knowledge, this is
the first study that not only examines the performance of different big data processing
platforms for different types of applications in resource-constrained environments but also
comprehensively explores their deployment in computing layers, namely edge, fog, and
cloud computing layers, using real-world applications.

Figure 1. Overall organization of data processing platform deployment.
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This study primarily focuses on conducting a thorough comparative and analytical
analysis of big data platform deployment across edge, fog, and cloud computing layers
rather than introducing new methods or technologies. We emphasize the evaluation of
edge/fog computing big data processing platforms and aim to offer practical recommenda-
tions derived from experimental findings. While this work may not present new methods,
its significance lies in providing valuable insights into the comparative efficiency and
applicability of big data processing platforms across different computing layers. The com-
prehensive nature of this study, covering three computing paradigms across various layers
with real-world applications and detailed experimental findings, contributes practical
guidance for decision making in big data platform deployment.

In summary, we make the following contributions in this paper.

• We conduct an extensive performance comparison of the edge-/fog-based processing
of big data management frameworks against other cloud-based solutions. Our analysis
covers the deployment of three different big data platforms based on three data
processing applications.

• We present interesting findings that suggest that an edge- and fog-based big data
management platform is a viable and promising option for applications where local
processing power of local data is desired.

• We further explore the impact of the deployment of edge- and fog-based big data
management frameworks and present recommendations regarding how to better
use big data management frameworks for data science applications. In addition,
we discuss the research challenges and opportunities in building a more practical
edge-/fog-based big data management system.

The remainder of this paper is structured as follows. Section 2 summarizes some
related studies. Section 3 explains the details of our methodology for the evaluation of the
performance of big data management platforms. Section 4 describes the experiments that
we carried out and the results of the experiments. Section 5 presents the discussion and
recommendations based on the implications and results of our experiments. Finally, our
conclusions and suggestions for future work are included in Section 6.

2. Related Work

The related work is split into three categories. First, we review works that investigate
the capability and performance of resource-constrained single-board computers. Then, we
focus on studies that propose design improvements for big data processing platforms that
cater to resource-constrained edge devices. Afterward, we consider works that perform
comprehensive and comparative benchmark studies of big data processing platforms.

2.1. Capability of Resource-Constrained Devices

Due to the increasing capabilities of low-cost, single-board computers and their ben-
efits in terms of cost, low power consumption, small size, and reasonable performance,
several works [37–39] have studied the capabilities and performance of low-cost edge-layer
devices for deep learning and machine learning interference. The works reported in [37,38]
focused on the inference of deep learning models in various low-cost devices, such as
the Raspberry Pi 4, Google Coral Dev Board, and Nvidia Jetson Nano, and evaluated
their performance in terms of the inference time and power consumption. Their main
focus was to implement the inference parts of deep learning models in edge devices in
order to achieve real-time processing. The authors of [39] conducted a comprehensive
survey of design methodologies for AI edge development, emphasizing the importance of
single-layer specialization and cross-layer codesign, which includes hardware and software
components for edge training, inference, caching, and offloading. Several insights were
highlighted with respect to the quality of AI solutions in the edge computing layer. While
the deployment of low-cost edge devices is still a relatively new paradigm for advanced
applications, it has found widespread interest, particularly in function processing. Some
approaches [40–44] have been developed for edge-layer serverless platforms. Specifically,
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all of these works attempted to develop edge-layer serverless platforms that can support
edge AI applications. Moreover, increasing attention has been paid to the capabilities and
viability of single-board computers; several works [45–47] have explored the characteristics
and possibilities of deploying different big data applications in resource-constrained envi-
ronments. In contrast to our work, these works did not investigate the deployment of big
data processing platforms using the collaborative power of local nodes in edge, fog, and
cloud layers.

2.2. Improvement of Big Data Processing Platforms for Edge Devices

Some previous studies have evaluated data processing platforms under different
application scenarios and proposed design changes to off-the-shelf software platforms to
cater to the requirements of applications in edge/fog computing layers. In [30], the authors
proposed a serverless edge platform based on the OpenWhisk serverless platform to
address the challenges of real-time and data-intensive applications in fog/edge computing.
The proposed platform comprised additional components for latency-sensitive computation
offloading, stateful partitions, and real-time edge coordination. The platform was evaluated
in terms of its resource utilization footprint, latency overhead, throughput, and scalability
under different application scenarios. The results show that the serverless architecture
reduced the burden of infrastructure management, allowed greater functionality to be
deployed on fog nodes with limited resources, and fulfilled the requirements of different
application scenarios and the heterogeneous deployment of fog nodes. To optimize stream
processing in the edge/fog environment, the authors of [31] proposed Amnis, a stream
processing framework that considers computational and network resources at the edge.
It extended the Storm framework in terms of stream processing operator allocation and
placement for stream queries. Compared to the default operator scheduler in Apache
Storm, it performed better in terms of end-to-end latency and overall throughput. These
works targeted only individual data processing paradigms, such as batch processing,
stream processing, or function processing. Our work differs by investigating big data
processing platforms for all three of these computing paradigms, namely batch processing,
stream processing, and function processing, based on various applications across the
computing layers.

2.3. Comparative Studies of Big Data Processing Platforms

Some previous works have included benchmark studies of the performance of stream
processing systems, such as [32], which evaluated the performance of three stream pro-
cessing platforms, namely Apache Storm, Apache Spark, and Apache Flink, in terms of
throughput and latency. In [34], these aspects were also evaluated for Apache Spark and
Apache Flink. With respect to batch processing platforms, the work reported in [33,34]
included a comprehensive study of two widely used big data analytics tools, namely
Apache Spark [27] and Hadoop MapReduce [48], on a common data mining task, i.e.,
classification. With respect to function processing platforms, the work reported in [35,36]
provided a benchmarking framework for the characterization of serverless platforms in
both commercial cloud and open-source platforms. The work that is most related to ours
is [49], which evaluated computing resources across the computing continuum using three
applications: video encoding, machine learning, and in-memory analytics. It also provided
recommendations based on the evaluation results regarding where to perform the tasks
across the computing continuum. The authors utilized a real test bed named the Carinthian
Computing Continuum (C 3) to extend cloud data centers with low-cost devices located
close to the edge of the network. They recommended offloading the applications to edge
and fog resources to reduce the network traffic and CO2 emissions, with an acceptable per-
formance penalty, while the cloud was used for lower execution times. Another work [50]
mainly evaluated big data processing possibilities on a Raspberry Pi-based Apache Spark
and Hadoop Cluster and examined the impact on storage performance of employing three
different external storage solutions. Then, the cluster performance was compared with
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that of a single desktop PC using microbenchmarks such as Wordcount, TeraGen/TeraSort,
TestDFSIO, and Pi computation.

However, neither of these works included a comprehensive investigation of the per-
formance of existing big data processing platforms for the three computing paradigms,
namely batch processing, stream processing, and function processing, based on various ap-
plications (e.g., image classification, object detection, image resizing). Therefore, exploring
the operating performance of batch, stream, and function processing in the current edge,
fog, and cloud layers is of great significance for research and industrial applications in the
field of big data processing. We are particularly interested in the potential improvement in
performance obtained by deploying big data platforms.

3. Target Data Processing and Computing

In this section, we first discuss the three data processing paradigms applied in most
processing scenarios, such as IoT and big data processing. Then, we briefly describe
computing in the edge/fog layer, which can bring benefits in terms of reducing the latency
and bandwidth consumption when sending a large amount of data to the cloud.

3.1. Three Data Processing Paradigms

In the area of data processing, three basic data processing paradigms, namely batch
processing, stream processing, and function processing, have become prominent, each
offering distinct methodologies to handle information efficiently [51]. The first paradigm,
batch processing, involves the systematic analysis and processing of data in predetermined,
fixed-size sets. It is well-suited for tasks that can tolerate a degree of latency and operate on
collected data. In contrast, stream processing is designed for real-time analysis, enabling
the continuous processing of data as they flow, making it particularly suitable for appli-
cations requiring immediate insights or actions. The third paradigm, function processing,
represents a paradigm shift toward event-driven computing, where discrete functions or
microservices are triggered by specific events, offering a highly responsive and modular
approach to data processing. These three paradigms offer a broad range of tools that can be
used to handle a variety of data processing needs, from large-scale, periodic analyses to
real-time, event-driven applications.

3.1.1. Batch Processing

Batch processing involves the intensive computation of high-volume, repetitive data
processing tasks. Nowadays, data are generated from several sources, and there is a
huge demand for the storage, processing, and querying of big data. The use cases for
batch processing include machine learning, deep learning, big data analytics, and high-
throughput data processing. Batch processing, which is designed for the handling of large
volumes of data in situations where real-time processing is unnecessary, takes on a strategic
role when deployed on collaborative local edge/fog devices. This deployment approach,
represented by applications such as machine learning training, minimizes the need for
extensive data transmission to centralized cloud servers. By harnessing the collective
power of local devices, this strategy enhances data security and privacy while optimizing
resource utilization. The MapReduce model and its implementations, such as Apache
Hadoop [48] and Apache Spark [27], are the de facto solutions for big data batch processing.
This approach to distributed computing provides a robust and scalable framework for the
handling of large datasets by dividing complex processing tasks into manageable subtasks
across a cluster of nodes. Apache Hadoop, an open-source software framework, pioneered
the practical implementation of the MapReduce model, offering a distributed file system
(Hadoop Distributed File System) and MapReduce programming. Similarly, Apache Spark
emerged as a powerful alternative, introducing in-memory processing capabilities that
significantly accelerate data processing workflows. These solutions offer platforms for the
development, storage, and deployment of big data applications from large-scale analytics
to machine learning applications. Commercial cloud providers such as Amazon EMR,
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Google Cloud Dataproc, and Azure HDInsight offer services for batch processing. These de
facto big data solutions can also be hosted on private clusters or a private cloud. Big data
batch processing platforms are organized with the master–workers distributed computing
architecture. It consists of one or more master nodes that are responsible for distributing
tasks to the workers and managing the workers. The workers perform the actual data
processing tasks assigned to them. Generally, the data are partitioned and distributed
among the nodes, resulting in the parallel processing of data by the nodes.

Among the many big data platforms available for batch processing, we selected
Apache Spark, which is an open-source, distributed computing system that has gained
widespread popularity for the efficient processing of large-scale datasets. Its technological
underpinnings are grounded in a resilient distributed dataset (RDD) abstraction, which
allows data to be distributed across a cluster of machines while ensuring fault tolerance
and parallel processing [27,52]. In the context of edge and fog computing, where resource
constraints and network variability pose significant challenges, Apache Spark offers several
features to overcome these obstacles. One notable feature is its ability to optimize data
locality, minimizing data transfer across the network [53]. Furthermore, Spark’s flexibility
in terms of deployment in various types of infrastructure, including edge devices and fog
nodes, makes it adaptable to diverse computing environments [46].

3.1.2. Stream Processing

Stream processing is becoming increasingly common as businesses nowadays need
to process large amounts of data in real time. It helps to develop responsive applications
and accelerate decision making. The most common and popular use cases for data stream
processing include real-time data analytics, fraud detection, cyber security, stock market
monitoring, healthcare monitoring systems, and sensor data processing. Big data stream
processing platforms such as Apache Spark [27], Storm [54], Flink [28], and Kafka [55]
are available for stream processing, and each of them is designed to efficiently handle
the continuous flow of data from diverse sources. Apache Spark is not only proficient
in batch processing but also possesses robust stream processing capabilities, making it a
comprehensive choice for hybrid scenarios. Apache Storm specializes in real-time data
processing, providing fault-tolerant and scalable solutions for streaming applications.
Apache Flink stands out with its sophisticated event-time processing and state management
features, which are ideal for scenarios requiring the precise handling of event sequences.
Kafka, while primarily recognized as a distributed event streaming platform, complements
these frameworks by serving as a distributed messaging system, facilitating the seamless
integration and transport of streaming data. In addition, all the commercial and public
cloud providers provide services for stream processing application development, such as
Amazon Kinesis, Azure Stream Analytics, and Google Cloud Dataflow. Streaming systems
process data as soon as they arrive and produce the processing results shortly afterward.
In other words, streaming processing provides data management tasks to consume, process,
and produce data securely and reliably. Stream processing starts by consuming data from
an integrated data source, performing single or multiple stream processing actions on them,
then publishing the results back to the data sink.

Among stream processing platforms, we selected Apache Flink to deploy in edge, fog,
and cloud layers. Apache Flink is a powerful, open-source stream processing framework
designed to efficiently process large-scale data with low latency and high throughput.
Its technological underpinnings revolve around a distributed data stream processing model,
providing fault tolerance and stateful processing capabilities. In the context of edge and
fog computing, where resource constraints and network challenges are significant, Apache
Flink offers support for event-time processing, which enables accurate handling of events
across distributed and potentially unreliable environments [28]. This is important for
applications at the edge, where time-sensitive data processing is essential. Furthermore, in
the case of scenarios where intermittent connectivity or device failures may occur, Flink’s
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state management ensures resilience and consistency, overcoming challenges related to
network variability and device reliability [56].

3.1.3. Function Processing

The serverless computing model has emerged as a subset of the cloud computing
model in which the cloud service provider takes responsibility for managing underlying
servers and the scaling of applications, while the developers can build and run functions
on demand. The most common use cases for serverless computing include event-driven
IoT applications, data analytics, and machine learning inferences. The main cloud service
providers have services for function processing, such as Amazon Lambda, Google Cloud
Functions, IBM Cloud Functions, and Azure Functions. Moreover, some open-source
serverless platforms, such as Apache OpenWhisk [29], OpenFaaS [57], and KNative [58],
are also available for deployment in private environments. Apache OpenWhisk, with its
event-driven programming model, allows for the execution of functions in response to
events, offering a scalable and modular approach to serverless computing. OpenFaaS,
known for its simplicity and ease of deployment, extends the capabilities of serverless
platforms to private environments, enabling users to efficiently build, deploy, and scale
functions. KNative extends Kubernetes to provide a set of building blocks for serverless
applications. In serverless computing, developers write their business logic code as a set of
functions. Each function performs a specific task when it is called by a function invocation
event, such as image uploading, an HTTP request, an incoming message, or database state
changes. These functions are deployed in serverless computing platforms along with their
triggers and function invocation methods. When a function is invoked, it is executed on
the running server. The execution process is abstracted from the user/developer and only
returns the invocation results to the user.

We chose Apache OpenWhisk for function processing, which is an open-source server-
less computing platform designed to execute functions in response to events, offering a
flexible and scalable approach to distributed computing. In the context of edge and fog
computing, where resource constraints are common, OpenWhisk’s serverless architecture
allows for efficient and dynamic resource utilization. This is particularly beneficial in
scenarios where devices at the edge have limited computational capabilities. Furthermore,
OpenWhisk’s ability to break down applications into small, independent functions aligns
with the requirements of edge and fog computing [29]. This modular approach allows for
the deployment of lightweight functions to edge devices, ensuring that computational tasks
are distributed optimally. The event-driven nature of OpenWhisk makes it well-suited
for real-time processing, which is crucial in edge and fog computing applications [59]. By
responding to events in near-real-time, OpenWhisk can efficiently handle tasks that require
immediate responsiveness.

3.2. Computing in the Edge/Fog Layer

Computing in the edge/fog layer has been introduced to overcome the limitations
imposed by centralized cloud computing by performing processing as close to the data
source as possible, resulting in a reduction in the round-trip latency when sending data to
the cloud and returning the results to IoT devices. It plays an important role in addressing
the challenges of real-time and near-real-time data processing and analysis in Internet
of Things (IoT) applications. An overview of the layered architecture of edge–fog–cloud
computing is shown in Figure 2.

Edge/fog devices can be considered local or gateway devices that are close to the
data source; in some cases, they can be devices at one or two hops along the network to
the cloud. Edge devices such as IoT sensors, gateways, and routers execute computations
locally, making rapid decisions and providing immediate responses. Applications that need
more substantial local processing, data aggregation, and advanced analytics are ideally
suited for fog computing. It facilitates the interpretation of data in real time, enabling
quicker insights and decisions. While edge computing is best for quick, localized decision
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making, as it is located closer to the data source, fog computing bridges the gap between
the edge and the centralized cloud by enabling more sophisticated processing, aggregation,
and analysis. Generally, fog computing has greater processing power and storage capacity
than edge computing.

Figure 2. Overview of edge/fog computing layers.

Initially, fog/edge computing is used as a complement to cloud computing. Small
computing tasks and preprocessing tasks that are lightweight are usually executed in this
layer before being delegated to the cloud layer. However, the recent increase in the resource
capability of low-cost devices offers the potential to use resources as much as possible
and provides capabilities for local devices. This can lead to significant achievements in
terms of reducing the latency, bandwidth consumption, and the network cost involved
in sending large amounts of data to the cloud. As data travel from their point of origin
(e.g., sensors) to applications, they pass through many computing devices, each of which
is a potential target of computation. By keeping sensitive data localized and lowering the
likelihood of data breaches, edge/fog computing improves the security and privacy. In
order to ensure that devices can function independently when not connected to the Internet,
it also provides offline functionalities.

Big data platforms play a crucial role in edge and fog computing, offering scalable and
efficient solutions to process and analyze vast amounts of data closer to their source. In
summary, big data platforms optimized for edge and fog computing environments offer
proximity, reduced latency, efficient resource utilization, scalability, flexibility, and support
for real-time decision making.

4. Experiments and Results
4.1. Experimental Methodology

We use real-world applications to understand and compare the performance of big
data processing platforms in each computing layer. Specifically, we use image classification
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as batch processing, object detection as stream processing, and image processing as function
processing. Although our experimental design is centered around image-related appli-
cations within three fundamental data processing paradigms, it is applicable to a broad
spectrum of use cases. The image-related applications serve as representative examples to
showcase the platforms’ performance across diverse scenarios. The findings and recom-
mendations derived from our study are generalizable to a variety of applications within the
selected data processing paradigms. In the following subsection, we present (a) detailed
description of the experimental environment, including hardware configurations, software
versions, and any relevant settings; (b) the tools, frameworks, and techniques utilized
during the research; and (c) the metrics used to evaluate the performance of real-world
applications deployed on big data processing platforms.

4.1.1. Image Classification

Over the years, machine learning and deep learning have been increasingly used for
classification and detection problems that include training and inference tasks. Due to the
intensive resource usage of the training task, it is generally performed on high-performance
computers and GPU servers. However, training on edge devices is gaining importance at-
tracting attention in various applications, such as edge AI, IoT, and autonomous systems, as
it enables real-time processing, reduced latency, and enhanced privacy by keeping data and
computation local. The training of machine learning models at the edge involves dealing
with resource constraints and customized algorithms that cater to edge devices [39]. In this
work, we deploy image classification training on Apache Spark because machine learning
and deep learning training are some of the scenarios associated with batch processing.
Apache Spark ships with machine learning libraries but not for complicated deep learning
training. There are some frameworks available to provide deep learning on Apache Spark,
such as BigDL [60] and TensorFlow on Spark [61]. However, the use of distributed deep
learning libraries such as BigDL, Horovod, and TensorFlow on Spark is still not compati-
ble with edge devices due to their limited computational resources, including processing
power, memory, and storage. These libraries are designed for the training of very large and
complex deep learning models. More edge-friendly solutions and optimizations are still
being explored [39]. Thus, we utilize a multilayer perceptron for the training of images.
Although a multilayer perceptron is of low computational complexity, it is beneficial for
quick experimentation, model prototyping, and scenarios involving limited computational
resources. The selection of the MNIST dataset for image classification in our experiments
is justified by its widespread use and established reputation as a benchmark dataset in
the field of machine learning [62–64]. The MNIST dataset consists of a large collection
of hand-written digits (0–9) in a consistent format, making it suitable for training and
evaluating image classification models. Its simplicity and well-defined nature facilitate
experimentation in Apache Spark’s big data platform in edge, fog, and cloud computing
layers. The MLP model consists of four layers and is trained for 1000 iterations. As this
model showed nearly 95% accuracy in all the experiments on edge-, fog-, and cloud-layer
computation, we focused on execution time as the key performance metric for the training.
In our research, the primary focus is the evaluation of the efficiency and computational
performance of big data platforms in edge, fog, and cloud computing layers for the training
machine learning models as a representative example of the batch processing paradigm.
The choice of execution time as a key performance metric is rooted in its direct reflection of
the computational efficiency of the batch-processing-based training process [65].

4.1.2. Object Detection

Object detection and surveillance have become common applications associated with
the widespread deployment of surveillance cameras. Autonomous video surveillance is
the process of analyzing video sequences using object detection, segmentation, and classifi-
cation for various applications. As object detection from multiple surveillance cameras is
one of the use cases of stream processing, we deploy an object detection application on the
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Apache Flink stream processing platform. The application is adopted from [66], and it is a
traffic detection application that employs the YOLO V2 model for the detection of images
from a traffic flow. In addition to the YOLO V2 model, we also evaluate the Tiny YOLO
model to better understand both of the models’ performance on resource-constrained de-
vices. YOLO V2 is used for the detection of larger numbers of object categories, while Tiny
YOLO is designed for limited categories of objects with faster detection. We investigated
the inference workflow and performance of YOLO-based object detection for edge, fog,
and cloud layers. A traffic video that consisting of 5792 sequence frames was used as the
test dataset for object detection. We used the prediction time per frame and detection rate
performance metrics to evaluate the Flink streaming application’s performance in each
computing paradigm. Prediction time per frame is an important metric when dealing with
real-time streaming applications like video analytics or object detection, where low latency
is paramount [67]. Prediction time per frame provides insights into the responsiveness of
the Flink platform’s stream processing application, ensuring the timely processing of in-
coming data. The detection rate is a metric used to assessing the accuracy and effectiveness
of the Flink streaming application in identifying relevant patterns or objects within the
streaming data [68].

4.1.3. Image Processing

Image processing applications are some of the most widely used serverless appli-
cations. The serverless image processing function is triggered when an image is stored
or updated in the database or object storage. The image processing application used in
this work is adopted from [69] and modified to be executed in an open-source serverless
platform. As the deployment of the AWS image recognition collection has limitations
prohibiting its execution in the edge and fog layers, we adapted the application to include
simple image processing functions, namely metadata extraction, metadata transformation,
metadata storage, and image resizing. Thus, our adapted application only consists of four
image processing functions. The functions are chained together to process a request. In the
cloud layer, we used step functions to create a workflow that connects all four functions.
For the storage of metadata in the database, in the cloud layer, we used DynamoDB, and in
the edge and fog layers, we used CouchDB, which is included in the OpenWhisk platform.
We submitted 50 function invocations with a Poisson arrival rate of 0.5. In the cloud layer, a
Python script that can invoke the step functions is hosted in an ec2 instance in the same re-
gion. We used the latency performance metric to measure the performance of the serverless
platform in each layer. Latency directly measures the time taken for a serverless platform
to respond to a request. In scenarios where user experience and responsiveness are critical,
such as web applications or interactive services, latency is a fundamental metric. Latency is
a widely accepted and standardized metric for the benchmarking and comparison of the
performance of serverless platforms [70,71].

4.1.4. Experimental Testbed Configuration

Table 1 shows the hardware/software configurations of our experiments. To emu-
late local node collaboration, for the edge and fog layers, we set up a compute cluster
of compute units in each layer using LAN. The cloud layer was an EMR cluster. On the
cluster in each computing layer, we deployed the big data processing platforms to facilitate
collaborative processing and distributed computing tasks. Our primary focus in this pa-
per is to analyze and compare the performance of existing big data processing platforms
across edge, fog, and cloud computing layers. We carefully selected widely used, existing,
off-the-shelf platforms for the following three data processing paradigms: Apache Spark
for batch processing, Apache Flink for stream processing, and Apache OpenWhisk for
function processing. For batch processing, the ability of Spark to distribute computations
across a cluster of nodes enhances its suitability for decentralized computing scenarios,
facilitating parallel processing and optimizing performance, aligning with the distinctive
characteristics of edge/fog computing layers. Flink’s distributed stream processing capa-
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bilities contribute to scalability, allowing it to effectively harness the collaborative power
of nodes within the edge and fog clusters. The lightweight nature of Apache Flink aligns
with the resource constraints often present in edge devices, making it an optimal choice for
deployment and resource-efficient stream processing. The selection of Apache OpenWhisk
for function processing in edge and fog computing layers is underpinned by its serverless
architecture and suitability for the execution of small, event-driven functions in resource-
constrained environments. It is one of the most widely used and popular open-source
serverless platforms. These platforms are deployed across edge, fog, and cloud computing
layers, and our experiments are designed to reflect real-world scenarios. There were some
differences in the platforms’ software versions, as we chose the latest available versions in
the fog and cloud environments at the time of the experiment and manuscript preparation.
As these were minor variations, we assumed that there was no impact on the comparative
performance of the platforms.

Table 1. Experimental environment.

Data Processing Paradigm Edge Fog Cloud

Batch Processing

Raspberry Pi (four-node
cluster; CPU: four cores/node;

Mem:
8 GB/node; Spark 3.3.1)

Ubuntu VM (four-node
cluster; CPU: four cores/node;

Mem:
8 GB/node; Spark 3.3.1)

Amazon EMR (four-node
cluster; c5a.xlarge type;

CPU: four cores/node; Mem:
7.5 GB/node; Spark 3.3.2)

Stream Processing

Raspberry Pi (four-node
cluster; CPU: four cores/node;

Mem:
8 GB/node; Flink 1.16.0)

Ubuntu VM (four-node
cluster; CPU: four cores/node;

Mem:
8 GB/node; Flink 1.16.0)

Amazon EMR (four-node
cluster; c3.2xlarge type; CPU:

8 cores/node; Mem:
15 GB/node; Flink 1.17.0)

Function Processing
Raspberry Pi 4 (standalone;

CPU: four cores; Mem: 8 GB;
Lean OpenWhisk [72])

Ubuntu VM (standalone;
CPU: four cores; Mem: 8 GB;

OpenWhisk 1.0.0)
AWS Lambda

To simulate a distributed computing environment that reflects real-world conditions, a
four-node cluster provides a balance between resource availability and complexity, allowing
us to observe the scalability and performance of both Apache Spark and Apache Flink
in a multinode setup and enabling us to assess the parallel processing capabilities of
these big data processing frameworks, providing valuable insights into their behavior in a
distributed computing environment representative of practical deployment scenarios. For
the function processing platform, the standalone setup in our experiments is driven by the
nature of function processing, where a single function is the primary unit of computation,
and parallelization is not applicable.

4.2. Results

In this section, we compare the performance of the big data processing platforms using
real-world applications by deploying them in each layer of the computing paradigm.

4.2.1. Image Classification as Batch Processing

In this experiment, the processing time in the MNIST training classification problem
using the multilayer perceptron was measured. The experimental results are shown in
Figure 3. The reported results are the average of ten application runs, and as there was no
other application workload in the system, we did not find significant variability between
runs. The experimental results show that the speed increased when we set the the number
of cluster nodes from one to four, and throughout our experiments, we did not note
any changes in accuracy when deploying Spark in different computing layers or any
changes in the number of nodes when parallelizing and spreading the training tasks
across the nodes. The fog layer is superior to the edge layer in terms of performance,
primarily due to the greater resource limitations associated with edge devices. As expected,
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edge computing, constrained by the capabilities of individual devices, faces challenges
in efficiently handling resource-intensive tasks. The cloud layer demonstrates a steady
improvement as the number of nodes increases. This scalability advantage of the cloud
allows it to harness the collaborative power of multiple nodes in the cluster, resulting
in enhanced overall performance. In an EMR (elastic MapReduce) cluster within the
cloud layer, the computational resources are insufficient to handle the image classification
task with only one node. The error indicating “not enough resources to process the task”
suggests that the specific image classification task may have higher resource requirements
than the available capacity of a single node within the EMR cluster. A two-fold speedup
in the edge layer was observed when we performed processing in two nodes rather than
one node. By distributing the image classification tasks across the nodes, we leveraged the
parallel processing capabilities, allowing for the simultaneous execution of computations.
This parallelization significantly reduces the overall processing time compared to a single-
node configuration. The use of more nodes allows for more efficient resource scaling. In
cases of increased demand or larger datasets, the system can dynamically allocate resources
across nodes, providing scalability and further enhancing the overall speed of image
classification. However, the parallelization of an application involves several factors, such
as the communication overhead, the size of the data, and the uneven distribution of data
across the nodes, as the data have to be distributed and shared between nodes over the
network. Thus, Apache Spark does not show a consistent speedup due to several factors
inherent in distributed computing and the characteristics of the Spark framework. The
limited speedup observed in the fog layer, in contrast to the edge layer, can be attributed to
the virtual nature of the compute instances and the network infrastructure connecting the
virtual VM, characterized by a virtual private network.

Figure 3. Impact of the number of nodes on performance.

Spark’s configuration parameters, including the executor memory and executor cores,
are key parameters in terms of optimizing the performance of applications. The executor
memory is the amount of memory allocated to each Spark executor node, and the executor
cores represent the number of CPU cores allocated to each executor node, which influences
the parallelism and concurrency of the tasks. The executor memory and cores can be
adjusted based on the nature of the workload, ensuring that the Spark application performs
optimally under varying conditions. As Spark’s performance in the cloud and in clusters
of computers has been extensively studied [73,74], we focused on the most resource-
constrained device and performed detailed experiments on the edge-layer Spark cluster.
In this experiment, we set the number of executor nodes to four and the memory size to
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6 GB. We measured the execution (training) time by varying the number of cores in each
worker node from one to four. As shown in Figure 4, increasing the number of cores in
each executor significantly increased the performance. Compared with our obtained results
shown in Figure 3 and reported in this section, we can observe that training on one node
with four cores took 3690 s, and training with four nodes with one core took 2467 s to
complete. Training on one node had a longer execution time than with one core each and
four nodes under the same executor memory size, which highlights the promising results
obtained from the collaborative power of local computing devices when training a machine
learning task in a distributed and collaborative way.

Figure 4. Impact of executor cores on performance.

To investigate the impact of the executor memory size on the performance, we mea-
sured the training time by varying the memory size of the Spark executor from 1 GB to
6 GB. We set the number of worker nodes to four, and the number of executor cores per
node was four. The execution was repeated five times, and in the graph, it is plotted
as the average value. As shown in Figure 5, increasing the size of the memory in each
executor node did not speed up the execution. In addition, we found that execution with 2G
memory took longer than with 1G, and execution with 5G memory took longer than with
4G. Although the image classification application was trained for 1000 iterations using the
MLP model, this pattern was not caused by Spark image classification tasks. We observed
the memory utilization in five-second intervals using the SAR (system activity report)
command in Linux and confirmed that the actual memory utilization in all Spark worker
nodes consistently remained below 1 GB throughout the entire execution period. Please
note that the parallel training of MNIST classification tasks on Spark worker nodes does
not fully consume all allocated memory, and the excessive allocation of memory beyond
the necessary amount does not bring about benefits in terms of performance. Thus, we can
conclude that increasing the Spark executor memory size cannot guarantee a speedup in a
distributed environment. However, the current analysis, we did not specifically incorporate
memory-intensive data analytic tasks. The observed patterns in Figure 5 primarily arose
from the execution of the image classification training application, and as mentioned above,
the actual memory utilization during this execution remained below 1 GB. If we execute
memory-intensive data analytic tasks, changing the memory size impacts the system per-
formance. This is particularly important in resource-constrained edge environments, where
resources are limited and need to be carefully managed.
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Figure 5. Impact of executor memory size on performance.

4.2.2. Object Detection as Stream Processing

Figure 6 shows a comparison of the prediction times per frame between edge, fog,
and cloud layers for the object detection stream processing application. We deployed
the object detection application using both the YOLO V2 and Tiny YOLO models on
Apache Flink, and the detailed application parameters are described in Section 4.1.2. We
repeated the execution 10 times for each computing paradigm to obtain more accurate
average. Although we intended to set the same CPU and memory size for all computing
layers, the cloud layer failed to allocate resources for the hosting of object detection models
with the same CPU and memory size as the fog layer. Thus, we chose the c3.2xlarge
instance type as a larger instance type in the region. It can be easily concluded that the
fog layer outperformed the cloud layer and edge layer. For the YOLO V2 model, the
average prediction time per frame was 0.765 s in the cloud layer, 0.367 s in the fog layer,
and 2.138 s in the edge layer. For the Tiny YOLO model, the average prediction time was
0.23 s, 0.11 s, and 0.76 s in the cloud, fog, and edge layers, respectively. The observed lower
performance in the edge layer, as anticipated, can be attributed to the resource limitations
of edge Raspberry devices. Thus, the edge layer may struggle to meet the time-sensitive
demands of certain applications. However, if the primary focus is on efficient resource
utilization and time is not a critical factor, deploying on-edge devices remains a feasible
option. This tradeoff emphasizes the need to carefully consider the specific requirements
of an application and choose the computing layer accordingly. In contrast, both the fog
and cloud layers, with more robust resources, showcase superior performance. However,
for both models, i.e., YOLO V2 and Tiny YOLO, we found that the average prediction
time of the cloud layer was approximately two times that of the fog layer, although we
deployed the Flink cloud layer with a large number of CPU cores and a large amount of
memory. This needs to be explored further in the future, but possible reasons are the actual
specifications of the CPU, the CPU architecture, and the instance type. In the fog layer, the
specifications of the CPU were as follows: 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz.
We noticed that although we deployed four worker nodes as a cluster, only one worker
node was occupied with jobs because of the single-input video stream. To exploit the full
advantages of streaming platforms for object detection cases, multiple video streams that
can be distributed and parallelized to nodes in the cluster need to be ingested through the
use of a message-queuing platform such as Kafka.

Furthermore, to examine the real-time detection rate in the computing layers, we set
the frame transition to 200 milliseconds and measured the number of frames that could
be successfully detected and predicted from a total of 5792 frames. As shown in Table 2,
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the fog-layer detection rate was higher than that of the cloud layer, and the edge-layer
detection rate was only 4.49% . In the edge layer, the detection rate was significantly lower
compared to the fog layer and cloud layer. We observe that in all three computing layers,
all frames could not be detected during real-time video playback. In this case, a message-
queuing system such as Apache Kafka can be deployed for the temporary storage and
processing of video frames. In addition, the speed requirements for object detection from
surveillance cameras vary depending on the specific use case and scenario. In real-time
applications such as autonomous vehicles, low latency and high processing speeds are
critical in making instantaneous decisions. There are also application scenarios that do not
require instant decisions, such as environmental monitoring. Without such information, it
is unfeasible to conclude whether a given edge or fog deployment is suitable for the use
case in absolute terms.

Figure 6. Average prediction time per frame.

Table 2. Detection rate (percentage).

Computing Layer Detection Rate

Edge 4.49

Fog 35.50

Cloud 16.72

In summary, the consistent deployment of the same object detection model and the
application of identical data preprocessing steps ensure a standardized approach to object
detection across all layers. Moreover, network latency is not a relevant factor, as the
workloads are input from the same machine. Thus, the primary factor contributing to the
observed differences lies in the varying computational resources available in each layer.
Differences in hardware capabilities can directly impact the prediction time and detection
rate. The computational resources, processing power, memory, and storage capacity play
a pivotal role in determining the efficiency and speed of executing resource-intensive
tasks associated with object detection. The cloud layer does not showcase accelerated
performance despite using a more powerful VM type. Differences in the underlying
infrastructure, hardware specifications, or hypervisor configurations between the cloud
VM and fog layer VM contribute to the performance outcomes. The edge layer is capable
of accommodating a stream processing platform and its applications while exhibiting
variations due to more constrained computational environments.
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4.2.3. Image Processing as Function Processing

We evaluated the impact of the deployment of the function processing platform in
the edge, fog, and cloud computing layers on performance by executing the application
workload described in Section 4.1.3. Figure 7 reports the function invocations for latency
with a different arrival rate of the lambda value in the Poisson distribution. There are
three main observations. First, fog-layer function processing deployment is more efficient
than deployment with the other two platforms, i.e., the edge and cloud layers. In our
experimental analysis, with varying arrival rates of Poisson distribution (0.5, 0.05, and
0.005), our observations indicated that deploying function processing in the fog layer
resulted in improved efficiency compared to deployments in both the edge and cloud
layers across all tested arrival rates. The limitations in terms of resources within the edge
layer were anticipated, contributing to its expected lower efficiency. Regarding the cloud
layer, despite setting the same memory size (128 MB) for each function in the application
across all computing layers, as serverless platforms allocate CPU power proportionally to
the amount of memory provisioned, variations in performance may stem from the compute-
unit specifications, such as actual specifications of the CPU, the CPU architecture, and the
instance type, which differ between the cloud and fog layers. Similar patterns were also
observed in the stream processing experiments, further emphasizing the impact of actual
underlying hardware performance. The efficiency gain is particularly obvious, as evidenced
by the significantly lower latency in the fog layer when compared to both the edge and
cloud layers. This finding positions the fog layer as an efficient platform for function
processing to improve responsiveness, making it well-suited for applications where timely
interactions are required for user satisfaction. It also allows for improved accommodation
of varying workloads and adaptation to changing application requirements. Secondly, in
the cloud layer, the maximum invocation latency for the image processing sequence of
functions is around 9–10 s. This maximum latency was observed in the first few invocations,
and a latency of 6 s (which is double the mean value) was also found between the distant
arrival times. This was because of the cold-start latency; however, we observed that it
was constantly handled with varied arrival rates and never exceeded 9 to 10 s during
several executions of our image processing application. A cold start is the time needed for
the initialization of the container and execution environment in the serverless platform.
Cold-start latency is experienced when a function is invoked for the first time or after a
significant period of inactivity. For instance, if the function is idle for a specific amount of
time, the system decontainerizes the container that is assigned for the function, and all the
resources are deallocated for the scaling down of resources. Potential strategies may involve
prewarming techniques [75], resource allocation optimization [76], or the utilization of
serverless-specific features designed to address cold-start challenges [77]. However, in the
edge layer, it largely depends on the arrival rate of the function invocation requests. This is
because the distant arrival of function invocation requests leads to high latency due to long
cold-start times and resource limitations in the edge layer. Thirdly, stable latency is more
significant with regular and uniform function invocations. Function invocation patterns
have a strong influence on the overall latency distribution of application execution. If they
are too frequent, the processing and handling of many requests at the same time results in
high latency. If the function invocation request arrival is distant, the cold start dominates
the average latency, and it is not negligible, as function execution takes approximately two
times longer than the average execution time.
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Figure 7. Function invocation latency.

To examine the overhead of serverless platform deployment in the edge and fog layers,
we measured the CPU and memory utilization without the execution of function workloads.
We measured this before and after the deployment of the serverless platforms. Our obser-
vations are described in Table 3. We found that in the edge layer, Lean OpenWhisk [72]
does not consume as much memory as the fog layer does. It only consumes approximately
3% of the total memory in the Raspberry Pi after the deployment of all the containers and
the controller, the Nginx server, CouchDB, and the Nodejs runtime environment. This is
because the serverless edge layer combines a controller and revoker in one container and
only loads the Nodejs runtime environment.

Table 3. Serverless platform deployments.

Description Edge Fog

CPU <1% <1%

Memory 3.13% 23%

5. Discussion and Recommendations

In this section, we discuss the limitations of this research and provide guidance for
future research and the deployment of big data processing platforms in edge, fog, and
cloud layers.

5.1. Discussion

In this section, we discuss the limitations and scope of this work.

• Training of large and complex models: For batch processing, we can only leverage an
MLP model, which encompasses the Spark machine learning library, because there are
compatibility issues with edge-layer devices when using a distributed deep learning
library on Spark, such as BigDL, Horovod, or TensorflowonSpark, while we can easily
leverage them in the fog and cloud layers to exploit the collaborative power of nodes
in the cluster for the training of large and complex models.

• Non-parallelizable tasks: Our target context and environment involve the utilization
of locally available resources in a collaborative way to solve big data problems. Thus,
the tasks needed to be parallelized and distributed among the cluster nodes. However,
the tasks were not parallelizable and needed a single computing power source to run;
these types of tasks are not suitable for the target environment.
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• Cluster setup overhead: We argue that the setup of a big data processing cluster can
be achieved with little effort, as long as it is placed within the local network, allowing
for collaborative utilization of locally available devices.

5.2. Recommendations

In this section, we present our recommendations based on our results, as well as the
implications of our experiments. Generally, the deployment of big data platforms in fog
computing layers leads to better performance and is appropriate in most cases.

According to our results, as reported in in Section 4.2.1, we specify the following
recommendations for the batch processing paradigm :

• Deploying Spark in the edge computing layer can be a reasonable option if (a) the
dataset size for training is small, (b) a long training time is tolerable for the business
objective, and (c) only machine learning algorithms included in the Spark MLlib library
are used. Our experiments reported in Section 4.2.1 were conducted under such a
scenario and confirmed that training can be performed in the edge layer, achieving
reasonable performance.

• When training large and complex models, it is necessary to use a distributed deep
learning library on Spark, which is still not available or compatible with edge resources.
Fog-layer Spark deployment is recommended for model training, where we can utilize
the collaborative power of nodes in the cluster and a distributed deep learning library
for speedup, as the cloud EMR cluster incurs high costs when sending large amounts
of data to the cloud.

• Cloud EMR clusters are more suitable for the processing of extremely large datasets
and when the throughput is important.

Based on our experiments, as presented in Figure 6 and Table 2 in Section 4.2.2, we list
the following recommendations for the stream processing paradigm:

• Fog-layer-based stream processing achieves the best performance in terms of both
the prediction time and detection rate. Although we can appropriately deploy the
Flink streaming platform in the edge layer, the prediction time and detection rate
are significantly low due to the size of the object detection model, which is hosted in
resource-constrained devices.

• The advantage is pronounced only when multiple video streams are distributed to
several nodes in the cluster and when real-time data analytics tasks that do not involve
large computations in each individual task are distributed and parallelized among the
nodes in the cluster.

In reference to the obtained results reported in Section 4.2.3, we present the following
recommendations for the function processing paradigm:

• The fog computing layer is recommended for function processing, in which we observe
the lowest latency for function invocations compared to the edge and cloud layers.

• Function processing is best-suited for applications with uniform and regular arrival
patterns. Specifically, for the applications, the time between function invocations is
not too long (i.e., function inactivity time), which can lead to cold-start latency, and
the time between function invocations is not too short, which can lead to increased
latency when serving multiple synchronous requests at the same time.

6. Conclusions

In this work, we conducted a comprehensive comparison of the deployment of big
data processing platforms for three computing paradigms, namely batch processing, stream
processing, and function processing in resource-constrained environments, namely edge
and fog computing layers, versus cloud-based deployments. For big data processing plat-
forms, we used three off-the-shelf big data platforms, namely Apache Spark for batch
processing, Apache Flink for stream processing, and Apache OpenWhisk for function pro-
cessing. The evaluation results demonstrate that deploying big data processing frameworks
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in resource-constrained environments by utilizing the collaborative power of local low-cost
devices is a viable and promising option for the three investigated processing paradigms.
Finally, we discussed our recommendations in regard to building more practical big data
frameworks for resource-constrained edge and fog computing environments and provided
insights into the performance of applications in each computing layer.

As part of our future work, we would like to investigate the training of large and
complicated deep learning models in edge and fog computing layers by leveraging the
local nodes’ computational capabilities to collectively contribute to the training processes
of resource-intensive deep learning models. Furthermore, the computing continuum across
edge, fog, and cloud computing layers could be studied, with a specific focus on observ-
ing the implications of big data processing tasks across this continuum. Understanding
how big data processing tasks traverse and interact within this multilayered computing
architecture is important in terms of optimizing the performance, minimizing the latency,
and enhancing the overall efficiency of data processing workflows. This research direction
involves the dynamics of data movement, task distribution, and resource utilization as
large amounts of data move from edge devices to fog nodes and, ultimately, to cloud infras-
tructure. Another research direction involves proposing and implementing design changes
on each data processing platform, tailored to resource-constrained edge and fog computing
environments. In the context of big data solutions, optimizing these platforms for edge and
fog environments by carefully considering the constraints of these environments, including
their restricted computational capabilities and storage limitations, is crucial due to the
unique challenges posed by limited resources and the need for efficient data processing.
In addition, we plan to extend the scope of our experiments by incorporating diverse
application scenarios. This expansion will ensure a more comprehensive evaluation of big
data processing platforms, allowing us to obtain insights into their performance across
various use cases and real-world applications.
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EMR Elastic MapReduce
DL Deep learning
IoT Internet of Things
GPU Graphical processing unit
AI Artificial intelligence
MLP Multilayer perceptron
YOLO You Only Look Once
AWS Amazon Web Services
LAN Local area network
VM Virtual machine
CPU Central processing unit
Mem Memory
MLLib Machine learning library
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