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Abstract: The significant increase in the speed of high-speed trains has made the optimization of
pantograph–catenary parameters aimed at improving current collection quality become one of the
key issues that urgently need to be addressed. In this paper, a method and solutions are proposed
for optimizing multiple pantograph–catenary parameters, taking into account the speed levels and
engineering feasibility, for pantograph–catenary systems that contain dozens of parameters and
exhibit strong nonlinear coupling characteristics. Firstly, a surrogate model capable of accurately
predicting the standard deviation of contact force based on speed and 14 pantograph–catenary
parameters was constructed by using the pantograph–catenary finite element model and feedforward
neural network. Secondly, sensitivity analysis and rating of the pantograph–catenary parameters
under different speeds were conducted using the variance-based method and the surrogate model.
Finally, by combining the sensitivity analysis results and the Selective Crow Search Algorithm, joint
optimization of 10 combinations of the pantograph–catenary parameters across the entire speed
range was performed, providing efficient pantograph–catenary parameter optimization solutions for
various engineering conditions.

Keywords: current collection quality; pantograph–catenary parameters optimization; surrogate
model; sensitivity analysis

1. Introduction

The problem of the pantograph–catenary relationship becomes more prominent, and
the design of pantograph–catenary faces more technical challenges with further increases
in train speed [1–3]. The contact force between the panhead strip and the contact wire is a
direct reflection of the pantograph–catenary interaction. The mean contact force and the
standard deviation of contact force (SDCF) are the main evaluation indicators of current
collection quality [4–6]. A good pantograph–catenary performance refers to minimizing
the SDCF as much as possible while satisfying the requirements for the average contact
force. Therefore, to improve the current collection quality, it is common to optimize the
pantograph–catenary parameters to minimize the objective function, i.e., the SDCF.

To reduce the computational complexity and improve optimization efficiency in pa-
rameter optimization, it is effective to conduct a sensitivity analysis of the SDCF with
respect to pantograph–catenary parameters first. For example, the first-order sensitivities
of nine pantograph parameters for a GPU pantograph and a simple suspension catenary
at 100~400 km/h [7], and a DSA380 pantograph and a stitched suspension catenary at
350 km/h [8]; the first-order sensitivities of four catenary parameters and nine pantograph
parameters for a simple suspension catenary at 90~150 km/h [9]; the first- and second-order
sensitivities of four catenary parameters for a CX-type pantograph and a simple suspension
catenary at 300 km/h [10]. Existing reports indicate that the sensitivity to the equivalent
mass of the panhead vertical vibration is the highest among the pantograph parameters,
while other parameters show significant differences in sensitivity rating. The sensitivities
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to the span and contact wire density are higher than those to the pantograph parameters,
and the sensitivities to parameters such as the pre-tensions of the contact wire and mes-
senger wire are relatively high among the catenary parameters. However, differences in
the sensitivity analysis results of pantograph–catenary parameters arise from variations
in the operating speed, catenary type, and baseline parameters considered in different re-
ports. Additionally, as pantograph–catenary parameters involve multiple parameters with
strong nonlinear coupling, it is essential to investigate higher-order or total sensitivities
that characterize the interaction effects between pantograph–catenary parameters.

Typically, the objective of the joint optimization of pantograph–catenary parameters
is to minimize the SDCF. In terms of single-parameter optimization, the control variable
method can be used effectively [11]. In terms of multi-parameter optimization, the robust
design technique [12] and optimization algorithms [13,14] can be used to search for the
optimal solutions. As for optimization algorithms, the optimization iteration process in-
volves a significant number of dynamic calculations for pantograph–catenary samples.
The more parameters to be optimized, the greater the number of samples required. Clas-
sical pantograph–catenary finite element models consume approximately 10 core hours
per sample, resulting in substantial computational costs. To mitigate computational re-
source consumption, it is a viable approach to use the pantograph–catenary finite element
method to precompute a sufficient number of pantograph–catenary interaction samples
and then employ data fitting or machine learning algorithms to establish the functional
relationship between the SDCF and pantograph–catenary parameters. This approach can
significantly alleviate the computational burden in optimization iterations. Based on a
multi-layer feedforward deep residual neural network, a surrogate model of the SDCF
with respect to 11 catenary parameters was established [15]. Based on the response surface
method [16] or the Pseudo-monte Carlo method [17], a quadratic function of the SDCF on
several pantograph parameters could be established, and then the parameters’ optimal
solution could be obtained by solving the minimum value of the function. By using the
backpropagation algorithm [18] or the Selective Crow Search Algorithm to train radial basis
function neural networks [19], surrogate models of the SDCF with respect to six pantograph
dynamic parameters were established, which were then used for pantograph parameter
optimization, combined with optimization algorithms.

The paper is organized as follows: In Section 2, a surrogate model capable of accurately
predicting the SDCF based on operating speed and 14 pantograph–catenary parameters
was constructed using a combination of a feedforward neural network and a validated
pantograph–catenary finite element model. This surrogate model is intended to replace
pantograph–catenary dynamic finite element calculations. Next, with the surrogate model
and the variance-based method, both the first-order and total sensitivities of pantograph–
catenary parameters were calculated in Section 3, considering factors such as speed and
parameters interaction effects. Subsequently, based on the sensitivity analysis results,
the surrogate model, and the Selective Crow Search Algorithm, joint optimization of
10 pantograph–catenary parameter combinations for speeds ranging from 250 to 450 km/h
was performed in Section 4, providing pantograph–catenary parameter optimization rec-
ommendations across the entire speed range. Finally, Section 5 presents the conclusions.

2. Surrogate Model Training by Feedforward Neural Network
2.1. Design of Data Sets

The input parameters consisted of the speed (v), nine pantograph parameters, and
five catenary parameters, i.e., X = {m3, m2, m1, k3, k2, k1, c3, c2, c1, Tc, Tm, Ac, Am, L, v}T. The
output parameter was the SDCF at a low-pass filtering frequency of 20 Hz or 40 Hz. The
value of each input parameter Xr(r = 1, 2, . . ., 15) was determined according to engineering
practice (Table 1). Among them, mi, ki, and ci are the equivalent mass, stiffness, and damp,
respectively, and i = 1, 2, 3 represent the mass point of the frame rotation, upper frame
vertical vibration, and panhead vertical vibration; Tc and Tm are the tension of contact wire
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and messenger wire, Ac and Am are the cross-section area of contact wire and messenger
wire, and L is the span length.

Table 1. Value of input parameters.

Input Parameters Unit Value Range Value Interval Reference Value

v km/h
[250, 380] 2

/
(380, 450] 1

m3 kg [5, 11] 0.02 7.94

m2 kg [5, 20] 0.05 8.22

m1 kg [3, 20] 0.05 5.9

k3 N/m [4000, 14,000] 50 6650

k2 N/m [8000, 20,000] 80 13,181

k1 N/m [0, 200] 1 74

c3 N·s/m [0, 100] 0.5 85.31

c2 N·s/m [0, 50] 0.5 11.9

c1 N·s/m [10, 240] 1 67.41

Tc kN [27, 40] 1 30

Tm kN [19, 25] 1 21

Ac mm2 [121, 180] 29.5 151

Am mm2 [93.27, 147.12] 26.93 116.99

L m [48, 65] 1 55

The steps for data set design are as follows: First, draw 12,000 samples by using the
Latin hypercube sampling method [20]. Secondly, the time domain curves of contact force
for the above 12,000 samples were obtained using the pantograph–catenary finite element
method [21], and the lifting force exerted on m1 was adjusted during calculation to ensure
the deviation between the average contact force and the upper limit [6] was lower than
0.5 N. Based on those time domain curves after low-pass filtering at 20 Hz or 40 Hz, the
theoretical values of the SDCF could be calculated, and databases of the SDCFs at the two
low-pass filtering frequencies were constructed. Finally, the training set and the validation
set were divided from the data set based on the hold-out method, and the test set was
composed of the remaining examples. The ratio of the sample size of the three sets was
8:1:1. When dividing the training set and validation set, stratified sampling was used to
maintain the consistency of the data distribution and avoid introducing additional bias and
affecting the generalization ability of the surrogate model due to the data dividing.

2.2. Training of Surrogate Model

Map Xr of all samples of the three sets to the interval [−1, 1] and the processed input
parameter value can be obtained as

xr =
2(Xr − Xrmin)

Xrmax − Xrmin
− 1, (1)

where Xrmin is the lower limit of Xr in the value space, and Xrmax is the upper limit. Map σ to
the interval [0, 1] and the processed output parameter value, i.e., (σ − σmin)/(σmax − σmin)
can be obtained, where σmin and σmax are the minimum and maximum of σ for all examples.

A three-layer feedforward neural network (Figure 1a) was employed to construct a
surrogate model that predicts the SDCF based on pantograph–catenary parameters. The
r-th neuron xr in the input layer is connected to the first hidden layer's h-th neuron with a
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connection weight ωrh.
15
∑

r=1
ωrhxr − θh is applied to a specific activation function to compute

the output value of that neuron. Similarly, the output values from the previous hidden layer
are transmitted to the next hidden layer through connection weights until the output value
of the h-th neuron in the third hidden layer, bh, is obtained. bh is then transmitted to the
output layer with a connection weight υh, and the output value of the output layer's neuron

is calculated by applying
H3
∑

h=1
υhbh − γ to an activation function. After denormalization,

this yields the SDCF. Among them, H1, H2, and H3 are the neuron numbers of the three
hidden layers, θh is the threshold of the h-th neuron of the first hidden layer, and γ is the
threshold of the output layer’s neuron. The neuron numbers and activation functions of
hidden layers and output layers are shown in Table 2.
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Figure 1. Computational procedure. (a) Surrogate model based on feedforward neural network,
(b) Sensitivity analysis based on variance-based method, (c) Parameter optimization based on SCSA
and surrogate model.

Table 2. Hyper-parameter settings of neural network layer in surrogate model.

Neural Network Layer Number of Neurons Activation Function

1st hidden layer 20 tanh

2nd hidden layer 10 tanh

3rd hidden layer 5 sigmoid

output layer 1 relu

The training of the SDCF surrogate model was accomplished by taking the minimizing
of the mean squared error on the training set as the objective, using the connection weights
and thresholds for the hidden and output layers as the decision vectors, and employing
Adam Optimizer to find the optimal solution. Firstly, the connection weights and thresholds
were respectively initialized to a set of normally distributed random numbers with a mean
of 0 and a standard deviation of 0.05. Following the Adam update rules, these weights
and thresholds were updated, and the corresponding mean squared errors for the training
and validation datasets were computed. This process iterated until the maximum of
500,000 iterations. The optimizer's learning rate was set for 0.0005, and each training
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batch consisted of 1024 samples. It could be observed that as the number of iterations
increases, the mean squared errors for both the training and validation datasets tend to
converge (Figure 2). Finally, to mitigate overfitting, according to early stopping [22], all
connection weights and thresholds were set for the values when the mean squared error on
the validation dataset was minimal.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 13 
 

batch consisted of 1024 samples. It could be observed that as the number of iterations in-
creases, the mean squared errors for both the training and validation datasets tend to con-
verge (Figure 2). Finally, to mitigate overfitting, according to early stopping [22], all con-
nection weights and thresholds were set for the values when the mean squared error on 
the validation dataset was minimal. 

0 100,000 200,000 300,000 400,000 500,000
4

6

8

10

12

14

16

18

20

 

M
ea

n 
sq

ua
re

d 
er

ro
r (

N
2 )

Epoch number

20Hz 40Hz
  Train set
  Validation set

 
Figure 2. Variations curves of mean squared error of training and validation sets with the number 
of iterations. 

2.3. Performance Measure of Surrogate Model 
Calculate the predicted SDCF value, ˆ pσ , for all samples in the test set. Using the 

error, ˆ p pσ σ− , the error distribution interval within 0.95 probability, the mean square 

error ( )
1200 2

1

ˆ 1200p p
p

σ σ
=

−  , and the determination coefficient, 

( ) ( )
1200 12002 2

1 1

ˆ1 p p p
p p

σ σ σ σ
= =

− − −  , as evaluation indicators for the generalization ability of the 

surrogate model [23]. Among them, σp is the FEM calculated value of the SDCF, p = 1, 2, 
…, 1200, and σ  is their average value. 

The error of the surrogate model obtained at a low-pass filtering frequency of 20 Hz 
or 40 Hz on the test set follows a normal distribution approximately (Figure 3). The error 
distribution intervals of 0.95 probability were about [ −6.06, 5.11] N and [ −5.67, 6.12] N, 
the mean squared errors were about 7.93 N2 and 7.66 N2, and the determination coeffi-
cients were about 0.971 and 0.982, respectively (Table 3). Obviously, the surrogate models 
obtained by the feedforward neural network have strong generalization ability, and the 
error between the predicted results and the FEM values is small. 

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200
 20Hz
 40Hz

Pr
ed

ic
te

d 
va

lu
e 

of
 σ

 (N
)

FEM value of σ (N)

(a)

 
−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

0.20

0.25

0.30(b)

Pr
ob

ab
ili

ty
 d

en
sit

y

Deviation (N)

 20Hz
 40Hz

 
Figure 3. Comparison of σ between FEM values and predicted values (a) and Probability density 
distribution of errors in surrogate models (b) on the test set. 

  

Figure 2. Variations curves of mean squared error of training and validation sets with the number
of iterations.

2.3. Performance Measure of Surrogate Model

Calculate the predicted SDCF value, σ̂p, for all samples in the test set. Using the
error, σ̂p − σp, the error distribution interval within 0.95 probability, the mean square error
1200
∑

p=1

(
σ̂p − σp

)2/1200, and the determination coefficient, 1 −
1200
∑

p=1

(
σ̂p − σp

)2/
1200
∑

p=1

(
σp − σ

)2,

as evaluation indicators for the generalization ability of the surrogate model [23]. Among
them, σp is the FEM calculated value of the SDCF, p = 1, 2, . . ., 1200, and σ is their aver-
age value.

The error of the surrogate model obtained at a low-pass filtering frequency of 20 Hz
or 40 Hz on the test set follows a normal distribution approximately (Figure 3). The error
distribution intervals of 0.95 probability were about [−6.06, 5.11] N and [−5.67, 6.12] N, the
mean squared errors were about 7.93 N2 and 7.66 N2, and the determination coefficients
were about 0.971 and 0.982, respectively (Table 3). Obviously, the surrogate models obtained
by the feedforward neural network have strong generalization ability, and the error between
the predicted results and the FEM values is small.
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Table 3. Prediction errors of surrogate models on test set.

Cut-Off Frequency
(Hz)

Error Interval within
the Probability of

0.95 (N)

Mean Squared Error
(N2)

Coefficient of
Determination

20 [−6.06, 5.11] 7.93 0.971
40 [−5.67, 6.12] 7.66 0.982

3. Sensitivity Analysis of Pantograph–Catenary Parameters
3.1. Definition of Sensitivity

Sensitivity analysis is used to study the contribution of input parameter uncertainty
to the uncertainty in the outputs of a model [24]. Sensitivity analysis can be divided
into local sensitivity analysis and global sensitivity analysis, which focus on how input
parameters affect output results both near their baseline values and within their entire range
of values, respectively [25]. In this section, a variance-based method [26,27] is employed
for sensitivity analysis of the SDCF with respect to pantograph–catenary parameters, and
sensitivity indices are calculated. The higher the sensitivity indices of the input parameter,
the greater the influence of the parameter on the SDCF.

At a specific operating speed, the input parameter xr (r = 1, 2, . . ., 14) represents the
aforementioned 14 pantograph–catenary parameters, and the output is the SDCF σ. The
first-order, second-order, and total sensitivities of xr are defined as follows:

Sr = Vxr (E(σ|xr ))/V(σ), (2)

Srt = [Vxr xt(E(σ|xr, xt ))− Vxr (E(σ|xr ))− Vxt(E(σ|xt ))]/V(σ), (3)

ST
r = [V(Y)− Vx∼r (E(σ|x∼r ))]/V(σ) = Ex∼r (V(σ|x∼r ))/V(σ), (4)

where Sr represents the impact of xr on σ, Srt represents the impact of the interaction effects
between xr and other input parameter xt on σ, and Sr

T is the sum of the first-order sensitivity
of xr and all higher-order sensitivities. This is used to comprehensively measure the impact
of the parameter itself and its interaction effects with other parameters on the model output.
In the equation, r, t = 1, 2, . . ., 14, and t > r; x~r denotes all input parameters except xr; V(σ)
is the total variance of σ when all input parameters vary arbitrarily within their ranges;
Vxr (E(σ|xr )) is the average decrease in variance of σ, i.e., V(σ)− Exr (V(σ|xr )), when xr is
fixed at all possible values within its range, while x~r varies arbitrarily; and Ex∼r (V(σ|x∼r ))
is the average variance of σ when x~r is fixed at all possible values within their ranges,
while xr varies arbitrarily.

3.2. Sensitivity and Its Rating of Pantograph–Catenary Parameters

Due to the strong non-linearity of the surrogate model of the SDCF, it is difficult to
calculate the variance terms in Equations (2)–(4) through integration. Therefore, with the
Monte Carlo method, two independent sample matrices with the same sample size were
used for estimation. For two low-pass filtering frequencies of 20 Hz and 40 Hz and five
speeds, including 250, 300, 350, 400, and 450 km/h, sample sizes and input parameter
values are predefined (Table 1). Based on the two previously designed sample matrices,
each column is replaced one by one with the corresponding column from the other matrix,
resulting in an increase of 29 times in the sample size [28]. Using bootstrapping with 10,000
times resampling to calculate the sensitivities of pantograph–catenary parameters and their
95% confidence intervals [29,30].

Statistical analysis of the first-order and total sensitivities of 14 pantograph–catenary
parameters under five operating speeds and two low-pass filtering frequencies indicated
that as the sample size increases, the sensitivities converge to specific values, and the
95% confidence intervals shrink, thus improving the accuracy and stability of sensitivities
calculations (Figure 4). Considering the results for all operating conditions, a sample size
of 214 was chosen when the values of sensitivities reached a stable convergence.
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Figure 5 illustrates the first-order and total sensitivities of 14 pantograph–catenary
parameters. The average sensitivity to each pantograph–catenary parameter under all
operating conditions (Column 2 of Table 4) represents the level of the parameter’s im-
pact on the SDCF. Using the k-means clustering algorithm from prototype clustering, the
14 average sensitivities are divided into five categories, thus providing a sensitivity rating
for the pantograph–catenary parameters (Column 3 of Table 4). Among these, Tc and Ac
are rated as Class I, as their impact on the SDCF is significantly higher than that of the
other parameters. Am and m3 are rated as Class II; c1, L, and Tm are rated as Class III; m1,
m2, k3, and k2 are rated as Class IV; c3, c2, and k1 are rated as Class V, and their impact on
the SDCF can be ignored.

Table 4. Sensitivity rating of pantograph–catenary parameters.

Input Parameters Average Value of
Sensitivities Rating

Tc 0.713
I

Ac 0.526

Am 0.254
II

m3 0.230

c1 0.091

IIIL 0.069

Tm 0.067

m1 0.028

IV
m2 0.026

k3 0.017

k2 0.015

c3 0.003

Vc2 0.002

k1 0.001
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Changes in the low-pass filtering frequency of the contact force time-domain signal
will only affect the sensitivities to certain pantograph–catenary parameters under specific
operating conditions, which include Tc at all speeds, Ac and m1 at 250 km/h, five catenary
parameters, m3 and c1 at 450 km/h (Figure 6a). In other words, when the operating speed
falls within the abovementioned speed ranges, altering the relevant pantograph–catenary
parameters will result in a significant increase in the SDCF in the frequency range of
20–40 Hz. In all other cases, the impact of changing pantograph–catenary parameters on
the SDCF in the frequency range of 20–40 Hz can be ignored.
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At speeds of 400 km/h and above, there is a significant difference between the first-
order and total sensitivities of the catenary parameters, indicating that at higher speeds,
there is an additional increase in the coupling effects between the catenary parameters,
which affects the SDCF (Figure 6b). In addition, for catenary parameters at 350 km/h
and below, as well as for pantograph parameters at all speeds, sensitivity definitions have
very little impact on sensitivities. In other words, the impact of coupling effects between
parameters on the SDCF can be ignored.

Figure 7 presents the second-order sensitivities of the catenary parameters. At
350 km/h and below, the second-order sensitivities to all catenary parameters are ap-
proximately zero. As the speed increases, the second-order sensitivities of (Tc, Ac) at
400 and 450 km/h and the second-order sensitivities of (Tc, Am), (Ac, Am) and (Am, L)
at 400 km/h are relatively high, while the second-order sensitivities in other scenarios
are close to zero. This indicates that at medium and high speeds, the interaction effects
between any two catenary parameters on the SDCF can be ignored, but at higher speeds, it
is necessary to consider the interaction effects between Tc and Ac or Am, Am, and Ac or L
on the SDCF.
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4. Multi-Parameter Joint Optimization of Pantograph–Catenary

Using the Selective Crow Search Algorithm (SCSA) [19] with the optimization objec-
tive of minimizing the SDCF, the optimal solutions for 10 sets of decision vectors (Table 5)
and their corresponding SDCFs were iteratively searched (Figure 1c). These iterations were
conducted under two low-pass filtering frequencies and five operating speeds. Specifically,
Case 1 includes all pantograph–catenary parameters, while Case 2 to Case 5 successively
reduce the number of pantograph–catenary parameters. Case 6 encompasses all catenary
parameters, with Case 7 and Case 5 progressively reducing the number of catenary param-
eters. Case 8 represents all pantograph parameters, with Case 9 and Case 10 gradually
reducing the number of pantograph parameters. To ensure the generalization ability of
the optimization scheme, 100 random values were sampled for the other pantograph–
catenary parameters outside the decision variables within their respective ranges using
Latin Hypercube Sampling. Firstly, the relevant parameters of SCSA are set as follows:
the maximum number of iterations is 500, the population size is 50, the flight length is 2,
and the awareness probability is 0.1. The values of decision variables are shown in Table 1.
Next, initialize the decision vector of all populations in the first generation and calculate the
SDCF of all populations. Then, update the decision vector by the regulation of SCSA and
calculate the corresponding SDCF repetitively until the number of iterations reaches the
maximum value. Finally, the optimal solution is the decision vector with the smallest SDCF.
The SDCF of the samples during the iteration process was computed using the surrogate
model from Section 2. Figure 8 provides the mean and standard deviation of SDCF at the
optimal solutions for 100 samples in each operating condition.

Table 5. Decision vectors composed of pantograph–catenary parameters.

Case Pantograph Parameters Catenary Parameters Rating

1 m3, c1, m1, m2, k3, k2, c3, c2, k1 Tc, Ac, Am, L, Tm I, II, III, IV, V

2 m3, c1, m1, m2, k3, k2 Tc, Ac, Am, L, Tm I, II, III, IV

3 m3, c1 Tc, Ac, Am, L, Tm I, II, III

4 m3 Tc, Ac, Am I, II

5 / Tc, Ac I

6 / Tc, Ac, Am, L, Tm I, II, III

7 / Tc, Ac, Am I, II

8 m3, c1, m1, m2, k3, k2, c3, c2, k1 / II, III, IV, V

9 m3, c1, m1, m2, k3, k2 / II, III, IV

10 m3, c1 / II, III

Compared to the optimization effects of jointly optimizing all 14 pantograph–catenary
parameters at 250 km/h, the optimization results for 5 catenary parameters, or 6 pantograph
parameters at Classes II-IV, or 4 pantograph–catenary parameters at Classes I-II, as well
as combinations of these parameters, show similar performance. At 300 km/h and above,
the optimization effects for 11 pantograph–catenary parameters, excluding (c3, c2, k1), are
comparable. However, the optimization performance of other parameter combinations is
notably inadequate, and the performance gap widens as the operating speed increases or
the number of decision variables decreases.

To further elaborate, in comparison to optimizing the five catenary parameters at
speeds of 300 km/h and below, optimizing the two Class I catenary parameters (Tc, Ac)
yields similar effects. As the speed increases, it becomes necessary to consider simul-
taneously optimizing the three catenary parameters for Classes II-III. In comparison to
optimizing the nine pantograph parameters across all speed ranges, optimizing the six
pantograph parameters (m3, c1, m1, m2, k3, k2) at Classes II-IV produces similar results, and
the Class V parameters (c3, c2, k1) can be ignored.
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In summary, at medium speeds, it is sufficient to conduct optimization designs with a
smaller number of pantograph–catenary parameters, such as individually optimizing the
five catenary parameters (Tc, Ac, Am, L, Tm), individually optimizing the six pantograph
parameters (m3, c1, m1, m2, k3, k2), or jointly optimizing the four pantograph–catenary
parameters (m3, Tc, Ac, Am). However, at high and superhigh speeds, it is advisable to
choose the optimization scheme with the highest cost-effectiveness based on the feasibility
of the engineering project, as indicated in Figure 8.

5. Conclusions and Future Work

Based on Latin Hypercube Sampling and a validated finite element model of the
pantograph–catenary, a database for the pantograph–catenary interaction examples was
established. Using a feedforward neural network, a surrogate model for the SDCF with
respect to operating speed and 14 pantograph–catenary parameters was constructed. This
surrogate model exhibits strong generalization ability and can accurately predict the SDCF
for unknown samples.

With the surrogate model and the variance-based method, the first-order and total
sensitivities of the SDCF to the pantograph–catenary parameters were calculated across the
entire speed range and different frequency bands. Utilizing the k-means clustering algo-
rithm, the pantograph–catenary parameters were categorized into Classes I to V. Among
the pantograph–catenary parameters, Tc and Ac fall into Class I, as their impact on the
SDCF is significantly higher than that of the other pantograph–catenary parameters, while
k1, c3, and c2 fall into Class V, the influence of which can be neglected. Additionally, at
speeds of 400 km/h and above, the coupling effects between catenary parameters need to
be considered, and at speeds of 450 km/h, the influence of low-pass filtering frequency on
the sensitivity of pantograph–catenary parameters also needs to be considered.

Following a stepwise reduction in sensitivity class, 10 sets of decision vectors consisting
of pantograph–catenary parameters, catenary parameters, and pantograph parameters
were obtained. Using the surrogate model and the SCSA, optimization was performed
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across the entire speed range with the objective of minimizing the SDCF. At a medium
speed of 250 km/h, it is sufficient to optimize the pantograph–catenary, catenary, or
pantograph parameters at higher sensitivity classes to achieve the desired optimization
results. However, at higher speeds and above, the number of optimized parameters needs
to be increased. Furthermore, k1, c3, and c2 can be neglected under all operating conditions.

In the future, a pantograph–catenary model that can more accurately predict its real
dynamic performance is required to be obtained, such as a pantograph model that considers
more degrees of freedom, medium–high frequency, and other low-frequency vibrations,
and a three-dimensional catenary model that considers stagger.
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