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Abstract: Heterogeneous systems of limited capacity have general applications in manufacturing,
but also in logistic or service systems due to the differences in server or workstation performance or
work assignment; this is in close relationship with system flexibility, where saturation and blocking
are ordinary situations of systems with high demand and limited capacity, and thus, accurate loss
quantification is essential for performance evaluation. Multi-class systems of limited capacity have
been studied much less than parallel homogeneous systems (Erlang models). In this context, accurate
models for parallel heterogeneous ordered-entry systems were developed: without any prior queue,
i.e., M/Mi/c/c, and with a k-capacity queue, i.e., M/Mi/c/c + k. These new matrix models gave
an exact state formulation, and their accuracy was verified using discrete event simulation and
comparison with literature results. Also, the effect of the queue capacity was studied in relationship
to the pattern of service rates. Next, the heterogeneous recirculating system model was also developed
with good approximation results. Finally, the proposed models were applied to evaluate systems with
non-exponential service times using a new hybrid methodology by combining the Markovian model
and the Monte Carlo method (MCM) for normal or lognormal service times, which also yielded
useful good approximations to the simulated system.

Keywords: manufacturing systems; Markovian systems; blocking systems; multichannel systems;
recirculating systems; conveyor; non-homogeneous systems; Monte Carlo method

1. Introduction

Parallel server systems with limited capacity are present in many operational situations
of interest in manufacturing [1], but also in transportation or traffic [2], service [3], or
computer systems [4]. Their study using Markovian network models requires accurate
loss quantification to properly evaluate their performance, and the ordinary model of these
systems consists of enumerating all the states for the size of the system in order to calculate
the state probabilities that sum to 1. Among them, there is interest in the probabilities
of the full and empty states that allow for estimating the maximum expected capacity or
idleness. In particular, the analysis of the parallel systems with homogeneous or identical
servers facilitates analytical explicit expressions of the state probabilities. Therefore, based
on the PASTA property [5], the probability of the full-size system is established in manuals
as the estimation of the arrival rate percentage that becomes lost due to blocking when
the system is busy, and thus, the effective throughput is the difference from the offered
load rate. For parallel systems with identical servers, the Erlang systems of Poisson
arrivals and service rates are well known and of great interest for service systems, like call
centers [6]. In addition, the important property of performance equivalence of M/G/c/c
and M/M/c/c [3] gives extra opportunities for analysis and decision making with service
time distributions other than the exponential one.

Even though parallel homogeneous systems have been studied in depth (Erlang
models), many real systems have heterogeneous servers, where non-uniform human
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behavior [7] or task variety is present. The practice of ordered entry involves assigning
work upon arrival to the first idle server in the order of arrangement. This is a frequent
natural assignation, for instance, in conveyor systems or call centers. In this context, some
former studies are in more direct connection with the present work. Initial research of
parallel heterogeneous systems can be found in [8], who analyzed ordered entry with
the heterogeneous systems with the random allocation of service. His work assumed no
queue in front of the servers, i.e., M/Mi/n. His error analysis of the heterogeneous vs.
homogeneous system concluded that a heterogeneous system cannot be replaced by one
of the equal servers, whose mean service rate is the average of the mean service rate of
each server. The authors of [9,10] studied a parallel system with homogeneous servers and
ordered entry with application to conveyor systems. Singh (1970, 1971) [11,12] compared
homogeneous and heterogeneous Markovian queuing systems and obtained the steady-
state probabilities of a heterogeneous three-server system, i.e., M/Mi/3. Later, some other
researchers dealt with the analysis of the server arrangement for performance optimization.
Elsayed (1983) [13] and Yao (1987) [14] studied the optimal allocation of buffers in front
of the servers but without the quantification of blocking. Yao (1986) [15] and Saglam and
Shahbazov (2007) [16] paid attention to minimizing the overflow of the system. Further
extensions in parallel heterogeneous system studies can be found in Boxma et al. (1994) [17],
who gave a comprehensive view of solution methods for the epoch. Isguder and Uzunoglu
(2014) [18] dealt with the semi-Markov process of GI/M/n/0 and loss quantification;
more recently, Melikov et al. (2020) [19] presented an exact formulation but with an
approximate resolution for ordered entry. Specifically, for systems using the ordered entry
process, one can also refer to the work of Cooper (1976) [20], who concluded the need for a
multi-dimensional birth-and-death process to represent the system. Matsuy and Fukuta
(1977) [21] studied the state probabilities of a parallel system of heterogeneous multiservers
(multichannel) with ordered entry discipline and no waiting line, i.e., M/Mi/n. With
direct application to conveyor systems, they found that the optimal order for maximum
throughput while minimizing the overflow is the faster-to-slower server arrangement. Nath
and Enns (1981) [22] showed that the overflow (loss) is minimal for M/Mi/c under the
faster service rule. Pourbabai and Sonderman (1986) [23] studied approximate expressions
of the heterogeneous server G/G/n.

With a focus on heterogeneous systems with retrial, surveys by Muth and White
(1979) [24] and Nazzal and El-Nashar (2007) [25] are noted for simulation works. Naw-
ijn (1983, 1984) [26,27] studied the analytical model of two heterogeneous servers with
recirculation, while Pourbabai (1987) [28] studied the asymptotic performances of random
access and an ordered entry G/M/K/O with approximate expressions. Recently, Boysen
et al. (2019) [29] presented a revision focused on the operation and not on modeling. Even
though closed-loop or recirculating systems have been studied much less than ordinary
loss systems, the recirculating flow represents additional difficulties in system modeling.
Using stochastic models, Muth and White (1979) [24] analyzed a conveyor with one loading
station. Soderman (1982) [30] modeled the recirculating conveyor systems with a single
loading station and a single unloading station as GI/M/1/1 using the superposition of the
recirculating rate with the new arrivals. He approximated the joint interarrival distribution
as a hyperexponential with an iterative method. Schmidt and Jackman (2000) [31] modeled
a recirculating system as a queue network based on an approximate method of solving
tandem finite queues with blocking by Brandwajan and Jow (1988) [32]. Hsieh and Bozer
(2005) [33] used conditional probabilities to approach the recirculating overflow and consid-
ered multiple unloading stations. Haghighi and Mishev (2006) [34] revised the formulation
of Disney’s model in a two-station multiserver model with balking and reneging. Retrial
queues or recirculating systems are also of particular interest in modeling service systems,
like call centers (Gans et al. (2003) [6]) or in merging systems with recirculation (Van der
Gaast et al. (2018) [35]).



Appl. Sci. 2024, 14, 424 3 of 20

Together with the analytical models, time-consuming simulation allows for the evalu-
ation of the system performance of complex systems, alleviating the difficulties of heteroge-
neous systems. Proper simulation can also provide experimental verification of analytical
models. Today’s growing computing capabilities are paving the way for the increasing
use of simulation. Nevertheless, the possibilities of analytical models can be better valued
in optimization analysis, transient behavior, or system control, in particular when quick
solutions are better than long simulation runs, with a particular interest in the decision
making of evolving flexible systems.

Heterogeneous systems have no accurate analytical models available, like homogenous
ones. We contributed to reducing this gap in this study with a set of new scalable models
that gives accurate quantification of the loss of the parallel system with heterogeneous
servers of limited capacity, and even including recirculation. It allows for the calculation of
performance metrics based on the state probabilities solved from the transition matrix. We
developed a detailed justification with a novel approach to evaluate the loss of the system
applied to parallel heterogeneous servers and we also verified its agreement with simulation
results with differences under 0.5%, followed by the analysis of system performance. The
model contributes to overcoming the low accuracy of other loss estimations that are only
based on the probability of a busy system from conventional transition state diagrams,
whose states only enumerate the size of the system. Its application to recirculating systems
also gives a good approximation, within 1% across most of the arrival rate range. Finally,
these good results suggest approaching some more general heterogeneous systems with
service rate distributions other than Poisson. This work contributes to stochastic system
modeling through a new approach to the state transition diagram with the incorporation
of a blocking state that is different from the full state (maximum size), allowing for an
accurate evaluation of heterogeneous systems loss. A novelty of this method is that it
facilitates the proper application of the PASTA (Poisson arrivals see time averages) property
with outstanding accurate results, as verified with exponential rates, but also allows for
the extension of the models with good approximation to recirculating systems and non-
exponential service time systems using a hybrid methodology of the model together with
the Monte Carlo method.

This paper is organized as follows: In Section 2, we present parallel systems of identical
servers without a waiting line and the classical transition diagram of a loss system, namely,
model A, where the PASTA property was applied for heterogeneous servers and only gives
a rough approximation to the simulated system. Next, a new approach to evaluate loss
was introduced in model B. It was verified against former analytical calculations from
the literature and through experimental simulation, with very accurate results in both
cases. It follows the detailed analysis of the loss and full-size probabilities of the system
across the arrival rate range. Then, Section 3 introduces model E, which includes a waiting
queue of limited capacity in front of the servers, and the influence of the maximum queue
size was analyzed for optimal configuration. In Section 4, the recirculating system was
modeled by adapting model E, and its performance was checked against simulation results.
Next, in Section 5, the combined application of model B with the Monte Carlo method
evaluated the use of the transition states matrix of Markovian chains to evaluate systems
with non-exponential service time distributions. In the Conclusions section, a synthesis of
contributions, results, and potential future works is outlined.

2. Methodology of Parallel System Modeling
2.1. Loss in Parallel Systems without Queue

We considered a workstation with a mean service rate µ with a Poisson distribution
(service interdeparture time of exponential distribution), with a total capacity of k units,
in a queue of finite capacity k − 1, and with an arrival flow rate λ. It was represented by
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the distribution of state probabilities M/M/1/K shown in (1), with ρ = λ/µ and inventory
L [1]:

i = 0, . . . k; pi =

{
ρi (1−ρ)

1−ρk+1 i f ρ ̸= 1
1

k+1 i f ρ = 1

}
L =

k

∑
i=0

i·pi (1)

If the server has infinite capacity, the departure rate will be equal to the arrival rate
with the same distribution (Burke, 1956) [36]. Because of the finite capacity of the buffer
queue, the effective input rate will be lower than λ; therefore, when the system is full with k
units, a new incoming unit cannot enter the system and is lost or discarded from the arrival
flow. Due to the memoryless property of the arrival rate of exponential time distribution,
the loss does not modify the exponential interarrival time distribution, though it has an
effective rate λeff lower than λ due to loss. The effective rate is λeff = λ(1 − pk) based on the
PASTA property ([2] p. 128; [1] p. 14 and 102; [3] p. 73).

Next, we considered the model of homogeneous servers M/M/m/m, with the rate
of arrivals λ and k identical parallel servers with the service rate µ, which all had Poisson
distributions (exponential interarrival time) with a k maximum size or capacity of the
system. This is frequently named the Erlang first model and the probability of the full
system is given by the well-known Erlang-B formula B(m,r) (2), where the traffic flow
ratio is r = λ/µ and the utilization ρ = λ/(mµ). We ran the experimental simulation of the
M/M/1/m and the Erlang systems through the discrete event simulation software Arena
by Rockwell, with 30 regenerative replications of 1000 h and a previous 1000 h warm-up
period. This confirmed the full agreement of the mean results from the simulation and
the analytical model, which were always within 1% difference and inside the half-width
interval of simulation variability that included the 95% simulation shots in all the regime
ranges. The use of Little’s law based on this effective input rate allowed for the calculation
of the waiting times or cycle time inside the system CT (queue and server) from L = λeff · CT.

pi =
(λ/µ)n

n!

∑m
i=0

(λ/µ)i

i!

; i = 0, . . . m; and B(m, r) ≡ pm =
rm

m!

∑m
i=0

ri

i!

; r = λ/µ (2)

2.2. System of Heterogeneous Parallel Servers

Next, we considered a multiclass or heterogeneous server system with an arrival rate
λ with a Poisson distribution. We considered a three-parallel-server system with service
rates µ1, µ2, and µ3, also with Poisson distributions. Parts or customers were serviced
in entry-ordered discipline. The state diagram of the system, namely, model A, is given
in Figure 1.
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Figure 1. Model A transition rate diagram of 3 parallel heterogeneous entry-ordered servers.

Each server can only allocate one unit and the three-tuple indicates which server is in
service (1) or empty (0), read from right to left, like a binary number. Thus, (110) denotes



Appl. Sci. 2024, 14, 424 5 of 20

server 1 is empty (0) and servers 2 and 3 are in service. The state (1, 1, 1) is the state of a
full system.

A · p = c

−λ µ1 µ2 0 µ3 0 0 0
λ −(λ + µ1) 0 µ2 0 µ3 0 0
0 0 −(λ + µ2) µ1 0 0 µ3 0
0 λ λ −(λ + µ1 + µ2) 0 0 0 0
0 0 0 0 −(λ + µ3) µ1 0 0
0 0 0 0 λ −(λ + µ1 + µ3) 0 µ2
0 0 0 0 0 0 −(λ + µ2 + µ3) µ1
1 1 1 1 1 1 1 1


·



p000
p001
p010
p011
p100
p101
p110
p111


=



0
0
0
0
0
0
0
1


(3)

The resolution in the stationary regime of the Markovian chains system can be ex-
pressed by their state equations in the form of the transition matrix (3) and by solving a
homogeneous linear system of equations. An ordinary alternative involves replacing the
last equation with the product form condition of probabilities that sum to 1 (3).

The model results and system simulations are included in Table 1, where R* = R/Σµ.

Table 1. Dimensionless throughput R* = R/Σµ of three servers from simulation, M/M/3/3 (Erlang-B),
model A, and model B.

Arrival
Rate Service Rates Simul Erlang-B Model A Model B

Simul
vs.

Model A

Simul
vs.

Model B

λ (µ1, µ2, µ3) Mean Half
Width (%) (%)

0.1 (1, 1, 1) 0.0332 0.0002 0.0333 0.0333 0.0333 −0.40 −0.39
0.5 0.1644 0.0003 0.1646 0.1665 0.1646 −1.25 −0.08
1 0.3125 0.0004 0.3125 0.3254 0.3125 −4.14 −0.01
3 0.6540 0.0009 0.6538 0.6838 0.6538 −4.55 0.03
5 0.7838 0.0014 0.7839 0.8035 0.7839 −2.51 −0.01

10 0.8936 0.0014 0.8931 0.9004 0.8931 −0.76 0.05
30 0.9656 0.0032 0.9657 0.9567 0.9657 0.93 0.00

0.1 (0.25, 0.75, 2) 0.0332 0.0002 0.0333 0.0333 −0.40 −0.35
0.5 0.1606 0.0002 0.1621 0.1607 −0.91 −0.04
1 0.2944 0.0005 0.2973 0.2944 −0.99 0.00
3 0.5966 0.0008 0.5757 0.5964 3.50 0.03
5 0.7263 0.0013 0.6789 0.7261 6.52 0.02

10 0.8518 0.0016 0.7711 0.8518 9.47 −0.01
30 0.9487 0.0031 0.8392 0.9489 11.55 −0.02

0.1 (2, 0.75, 0.25) 0.0332 0.0333 0.0333 −0.50 −0.50
0.5 0.1652 0.1638 0.1652 0.84 −0.03
1 0.3138 0.2970 0.3138 5.34 −0.02
3 0.6319 0.5396 0.6318 −0.57 0.02
5 0.7508 0.6356 0.7513 2.12 −0.07

10 0.8630 0.7349 0.8626 14.84 0.05
30 0.9507 0.8223 0.9507 13.51 0.00

0.1 (1.3, 0.4, 1.3) 0.0332 0.0333 0.0333 −0.30 −0.30
0.5 0.1642 0.1637 0.1642 0.31 0.01
1 0.3090 0.3028 0.3090 1.99 −0.01
3 0.6367 0.5845 0.6368 8.20 −0.01
5 0.7655 0.6922 0.7658 9.58 −0.03

10 0.8803 0.7965 0.8798 9.52 0.05
30 0.9604 0.8830 0.9602 8.06 0.03

0.1 (0.5, 2, 0.5) 0.0332 0.0333 0.0333 −0.30 −0.30
0.5 0.1638 0.1636 0.1639 0.10 −0.04
1 0.3070 0.3000 0.3071 2.28 −0.03
3 0.6212 0.5279 0.6212 15.02 0.00
5 0.7449 0.5862 0.7451 21.31 −0.02

10 0.8614 0.6279 0.8611 27.10 0.04
30 0.9506 0.6541 0.9512 31.20 −0.06
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In the case where µ1 = µ2 = µ3, it can be directly compared with the Erlang first model
for k = 3 using (2). The throughput was calculated for model A by applying the PASTA
property, and thus, λeff = λ(1 − p111) = λ(1 − pf), where pf is the probability of the maximum
size or full system.

There were significant differences between the experimentally simulated throughput
and that calculated by model A, which mostly overestimated the throughput when the
arrival rates were high (saturation). Note that in this conventional transition diagram that
enumerates the states of the servers, the probability of the full system with all busy servers
estimated the probability of loss. The transition to the full system (111) happened at the
rate λ (birth) from the system of size 2—with states (110), (011), or (101)—and the system
leaves (death) the full state from size 3 to 2 at a rate Σµ.

We also considered the homogeneous system M/M/m/m with m = 3, and thus,
we could apply the Erlang-B Formula (2) for the calculation of the effective throughput
λeff = λ(1 − p111) = λ(1 − B(3,r)); see Table 1. For the Erlang model, the results were
completely in agreement with those from the simulation, and thus, the identical set of
servers of M/M/m/m behaved with no difference from an ordered entry system, but since
the servers were indistinguishable, the order became irrelevant and there would not be
any difference when serving according to ordered entry, random entry, or another service
discipline [31].

Next, we considered a new formulation of the transition diagram, namely, model B.
Different from model A, when the system is full, the lost load is redirected to a virtual
server with a queue of infinite capacity, herein called the loss server, where arrivals enter
when the real servers of the system are occupied (Figure 2). When arrivals are lost, the busy
system enters the state >111 = b.
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The transition matrix is given by (4), and the mean number of customers L in the
system or the utilization U was calculated using (5). Note that when the system falls into
the loss server, state >(111) = b, the three-server subsystem is occupied and the calculation
of L in the servers by (5) is taken into account. In the transition diagram, the transition
(birth) from the busy system (111) into the loss state happened at the rate λ; therefore, the
arrival goes into the loss server when servers are busy and the system leaves this loss state
from size 3 to 2 at the rate Σµ as soon any server is available to serve, as represented.

The results of the simulation, as shown in Table 1, were obtained with Arena soft-
ware by Rockwell Inc. using λ = µi = 1, a simulation run of 30 replications of 1000 h,
1000 h of warm-up for the stationary regime, and where the throughput is expressed as
dimensionless by dividing by Σµi. The effective throughput rate was calculated using
λeff = λ(1 − pbusy), where pbusy is the percentage of time the three-server system is busy.
In the Erlang model of identical servers, pbusy = B(3,r) using (2); for model A with three
servers, pbusy = p111 = pf from (3); and in the case of model B, with three servers and the
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loss server, pbusy = p111 + p>111 = pf + pb using (4). Model A is a representation of a loss
system that evaluates the throughput from the offered load λ. The direct calculation based
on the PASTA property with the effective offered load λeff = λ(1 − pf) was only a rough
approximation for heterogeneous parallel servers, as the experimental results in Table 1
show for model A.

A · p = c



−λ µ1 µ2 0 µ3 0 0 0 0
λ −(λ + µ1) 0 µ2 0 µ3 0 0 0
0 0 −(λ + µ2) µ1 0 0 µ3 0 0
0 λ λ −(λ + µ1 + µ2) 0 0 0 0 µ3
0 0 0 0 −(λ + µ3) µ1 0 0 0
0 0 0 0 λ −(λ + µ1 + µ3) 0 µ2 µ2
0 0 0 0 0 0 −(λ + µ2 + µ3) µ1 µ1
0 0 0 λ 0 λ λ −(λ + µ1 + µ2 + µ3) 0
1 1 1 1 1 1 1 1 1


·



p000
p001
p010
p011
p100
p101
p110
p111
p111b


=



0
0
0
0
0
0
0
0
1


(4)

L =
k+1
∑

i=0
i·pi = 0 · p000 + 1 · (p001 + p010 + p100) + 2 · (p110 + p101 + p011) + 3 · p f + 3 · pb

U = L/3
(5)

The results indicate that the description of the system states and their probabilities
should take into account not only the states of the servers but also the associated allocation
of all the arrivals and the different independent states in order to be considered a product
form the set of state probabilities that sum to 1. In addition to the server’s busy state (111),
the lost customers enter the loss server. In the transitions diagram of model B, >(111) = b
is a state of full size for the servers. The system transits into the state >(111) with the rate
λ when the arrivals overflow the servers, and the net input into the servers is λeff, while
the rate through the loss server is λ − λeff. Based on the PASTA property, the split of the
Poisson rate for all the servers, including the loss server, remains a Poisson distribution [1].
Based on [36], the net output rate through the loss server, which includes a queue of infinite
capacity, is also λ − λeff, providing that the service rate of the loss server is greater than
λ − λeff. This loss server has infinite capacity and we associates an arbitrarily sufficient
high service rate >(λ − λeff) to comply with it. Finally, the total output of the whole system
is λ, with the sum of the servers and loss server together.

The system transitions into the loss server with probability pb and rate λ after the
system is full (111), and the system leaves the state at the rate of the sum of the service
rates of the three servers; therefore, as soon any server releases a customer after a service,
the number of customers in the servers becomes m-1, as represented in the transition
states diagram. Note that by including the loss server in model B, the system is not a loss
system anymore, and thus, the calculation of the states associated with the offered rate is
accurate. The probability of state >(111) = b is the percentage of time that the arrivals fall
into the loss server, but this always happens after the servers are occupied. In model B, the
PASTA property was applied to the three real servers defined in the transition diagram: the
offered rate to the servers is λ(1 − p>111) = λ(1 − pb) before the application of the PASTA
property. After applying the PASTA property to the three-server input, the effective rate
through the servers becomes λeff = λ(1 − p>111 − p111) = λ(1 − pb − pf) by discounting the
percentage of time the servers occupy p111. The arrival net rate into the loss server is finally
λ(pb + pf), which is an accurate account of the time percentage that the total arrival rate λ

(offered load) does not enter the servers, which was verified in the experiment through the
accurate results of Table 1. There is a need to consider every single arrival in terms of the
probabilities that arise from the multi-dimensional queue nature of the ordered entry for
heterogeneous systems. Meanwhile, Erlang systems of indistinguishable homogeneous
servers do not require it.

In the timeline of the arrival rates, there are intervals of time when the servers are
occupied and no arrivals are trying to enter the system with probability pf, and others
where the arrivals try to enter and are rejected to the loss server with probability pb. In
both intervals, no entrance of customers into the server system is possible, and thus, they
are discounted to get the effective arrival rate into the servers. In model B, every arrival is
included in the set of states for accurate accounting, and thus, the system evaluates every
customer destination. In general, an ordinary transition matrix that only enumerates the
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states of the servers, namely, model A, overestimates the throughput (underestimates the
probability of occupied servers) for a high offered load by applying the PASTA property
(see Table 1). In summary, including the time percentage of the loss state (loss server)
provides an accurate throughput calculation of systems of finite capacity, such as model B.

The evolution of the probabilities or percentage of time for model B of full servers pf,
loss from blocking when servers are busy (blocking) pb, and the system being occupied
p_occ = pb + pf are represented in Figure 3. In addition, the probability of an empty system
p0 is represented in the results. While λ/Σµ < 1, the probability of the system being busy pb
was lower than the probability of having full servers pf. When λ/Σµ ≈ 1, both were equally
probable. It is remarkable that the probability of full servers pf continued to grow with
increasing levels of arrival rate up to the point it reached a maximum at about λ/Σµ ≈ 1.75.
After that maximum, when some extra load was offered, it went directly to the loss server,
and pf decreased while pb continuously grew. The percentage of time the servers were
occupied with no customers trying to enter the servers, i.e., pf, decreased monotonically
after that maximum; therefore, for an infinite arrival rate, it was inferred that there was no
chance of a full system without loss, and thus, pf → 0, while the probability of loss from
blocking, i.e., pb, continued to grow. Thus, when an extremely high load was offered, i.e.,
λ → ∞, the loss from the blocking probability pb became the only probable situation.
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Figure 3. Model B (c = 3, µ = µ1 = µ2 = µ3 = 1): evolution of occupied system p_occ, loss from blocking
p_b, full system pf, and empty system p_0 probabilities.

Also, from the results in Figure 3, at low λ, the probability of an empty system p0 was
higher than the probability of an occupied system pocc. At about λ/Σµ ≈ 0.6, both were
equally probable, and when λ/Σµ > 0.7 (approx.), the probability of an empty system p0
became lower than the probability of occupied servers pf. In an attempt to maximize the
utilization of servers, increasing the arrival rate λ over that point increased the utilization.
Nevertheless, if the increase in cost from losing a customer is higher than the reduction
in cost by increasing the utilization, operating the system over that point might not be
convenient. Increasing the installed capacity to avoid customer loss instead of increasing
server utilization might be a better option. Note that at λ/Σµ ≈ 0.6, the perceived saturation
of servers was low, i.e., only about 18% of the time the servers were observed to be full (pf)
or empty (p0). Nevertheless, judging the service performance of a loss system based on the
observed utilization of the servers seemed to be clearly misleading: for instance, at a high
offered load of λ/Σµ = 4, less than 20% of the time, the servers were fully occupied (pf),
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with the appearance of extra idle capacity, while, in fact, the system was saturated and the
offered load loss pb was more than 60%.

Model B considers heterogeneous servers, whereas the Erlang model M/M/k/k just
with k identical servers is a particular case. In this case, the full system state can be described
properly by λeff = λ(1 − pbusy) using (1) and (2); the results are included in Table 1. The
results of model B for (k = 3, µ1 = µ2 = µ3 = µ = 1) of identical servers were also those of the
Erlang-B formula. It resulted in pbusy = B(3,λ/µ) in Figure 3, but it was also verified using
the numerical values, which were identical to 15 decimal places.

The calculations based on the simulation confirmed the accuracy of model B, i.e.,
M/Mi/k/k, to describe the heterogeneous parallel server systems. From the former results,
it is valuable to compare the overflow results of M/Mi/k calculated from the analytical
results by Matsui and Fukuta (1977) [21] and those obtained for the full system pbusy = pb + pf
from model B (Table 2). The probabilities were identical. Based on the independence of
events of the exponential interarrival times, the results from the arrangement of arrivals in
an infinite waiting queue or providing new arrivals after the loss were equivalent in terms
of the overflow or loss. It is noteworthy that the M/Mi/k system has an infinite capacity
queue in front of the servers. It is known that this system model is unstable when λ ≥ Σµ,
as the waiting line grows indefinitely. Meanwhile, the M/Mi/k/k in model B redirects the
overflow to the loss server without this limitation

Table 2. Loss probability comparison of analytical literature models with model B.

Dataset
Source λ (µ1, µ2, µ3) Loss from

Simulation
poverflow

M/Mi/k (k = 3)

pocc = pf + pb
M/Mi/k/k

Model B (k = 3)

[21]

(1.2, 1, 0.8) 0.0109 0.01086
(1, 1.2, 0.8) 0.0118 0.01179

0.5 (1.2, 0.8, 1) 0.0119 0.01189
(0.8, 1.2, 1) 0.0140 0.01402
(1, 0.8, 1.2) 0.0140 0.01397
(0.8, 1, 1.2) 0.0152 0.01520

(1.2, 1, 0.8) 0.0575 0.05749
(1, 1.2, 0.8) 0.0600 0.06005

1.0 (1.2, 0.8, 1) 0.0609 0.06092
(0.8, 1.2, 1) 0.0661 0.06611
(1, 0.8, 1.2) 0.0669 0.06688
(0.8, 1, 1.2) 0.0696 0.06956

(1.2, 1, 0.8) 0.2049 0.20490
(1, 1.2, 0.8) 0.2082 0.20816

2.0 (1.2, 0.8, 1) 0.2094 0.20940
(0.8, 1.2, 1) 0.2153 0.21533
(1, 0.8, 1.2) 0.2170 0.21700
(0.8, 1, 1.2) 0.2198 0.21978

[18]
90 (60, 45, 10) 0.27166 0.2999 0.27189

(60, 10, 45) 0.28577 0.1986 0.28593

3. Parallel Heterogeneous Servers with a Common Waiting Queue

Model B includes servers without any prior queue. Next, we considered model E,
Figure 4, where the servers have a common queue of limited capacity in front of them, and
thus, the incoming arrivals are lost only when the queue is full. The method of assignation
is ordered entry. The whole system has a total capacity of m + k, where k is the capacity of
the queue and m is the number of servers. For the case of m = 3, the transition rate diagram
of Figure 4 represents the states of the system, where the state >(3) + k is the state where
the loss probability is accounted for (pb). In the birth and death transitions, the death of
state b falls into the (3) + k − 1 state because as soon as any customer is serviced in any
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server, a customer enters the server and a new allocation in the queue of capacity k becomes
available. Its transition rate matrix k = 3 is A in (6).

A · p = c



−λ µ1 µ2 0 µ3 0 0 0 0 0 0 0
λ −(λ + µ1) 0 µ2 0 µ3 0 0 0 0 0 0
0 0 −(λ + µ2) µ1 0 0 µ3 0 0 0 0 0
0 λ λ −(λ + µ1 + µ2) 0 0 0 0 0 0 0 0
0 0 0 λ −(λ + µ3) µ1 0 0 0 0 0 0
0 0 0 0 λ −(λ + µ1 + µ3) 0 µ2 0 0 0 0
0 0 0 0 0 0 −(λ + µ2 + µ3) µ1 µ1 0 0 0
0 0 0 0 0 λ λ −(λ + ∑ µ) ∑ µ 0 0 0
0 0 0 0 0 0 0 λ −(λ + ∑ µ) ∑ µ 0 0
0 0 0 0 0 0 0 0 λ −(λ + ∑ µ) ∑ µ ∑ µ
0 0 0 0 0 0 0 0 0 λ −(λ + ∑ µ) 0
1 1 1 1 1 1 1 1 1 1 1 1



·



p000
p100
p110
p010
p011
p001
p101
p111
p111+1
p111+2
p f
pb



=



0
0
0
0
0
0
0
0
0
0
0
1



(6)
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Figure 4. Model E transition rate diagram of 3 parallel heterogeneous entry-ordered servers with a
waiting queue.

In order to evaluate the performance of the model, Table 3 shows the comparison of the
throughput of model E vs. the simulation results, where the dimensionless throughput is
R* = R/Σµ = λ(1 − pf − pb)/Σµ. There was complete agreement in the results and the proper
representation of the parallel loss system with a buffer using model E. Model B and model
E of multiclass or heterogeneous servers are presented for m = 3 and they were accurate.

The accuracy of this methodology can be used for large systems, such as M/Mi/m/m + k,
at the cost of the description of intermediate states in the state transition matrix and com-
putational effort because the size of the transition matrix is of the order 2m. Nevertheless,
the construction for a higher queue capacity k is a much simpler birth and death sequence
of extra states in the queue. We developed the algorithm to automate the generation of
elements of the transition matrix for an arbitrary number of servers m. Even though the
coding of the algorithm was out of the scope of this study, it is worth mentioning some
basic insights. The matrix is sparse and can be formulated as the sum of three rate matrices:
rates out (negative) from the state (allocated in the diagonal of the matrix), rate into the
state (positive) from the death of other states, and rate to the state (positive) from other
state births. The states are also automatically enumerated from the binary number repre-
sentation (m digits) of every server state (0–1, idle or busy). Even when programmed in
a matrix-efficient code, like Matlab, this exact transition matrix construction of size order
2m is heavy for a moderate system size m. Therefore, these transition matrix models are of
particular interest for systems with a moderate number of heterogeneous servers, where
the accurate assessment of individual servers’ performance differences is an objective.
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Table 3. Dimensionless throughput R*= R/Σµ of model E (m = 3, k = 3) vs. simulation.

Arrival Rate Service Rates Simul Mod E Model E vs. Simul

λ (µ1, µ2, µ3) Mean Half
Width R* [%]

1
(1, 1, 1)

0.3323 0.0005 0.3326 −0.09
3 0.8304 0.0009 0.8302 0.03
5 0.9629 0.0014 0.9628 0.01

1
(0.25, 0.75, 2)

0.3320 0.0005 0.3320 0.00
3 0.8174 0.0009 0.8174 0.00
5 0.9557 0.0010 0.9553 0.05

1
(2, 0.75, 0.25)

0.3331 0.0005 0.3326 0.13
3 0.8251 0.0009 0.8250 0.00
5 0.9580 0.0013 0.9584 −0.05

1
(1.3, 0.4, 1.3)

0.3322 0.0005 0.3325 −0.09
3 0.8261 0.0007 0.8262 −0.01
5 0.9601 0.0011 0.9603 −0.02

1
(0.5, 2, 0.5)

0.3324 0.0005 0.3324 0.01
3 0.8227 0.0009 0.8227 0.00
5 0.9576 0.0012 0.9576 0.00

For the sake of presenting the model generalization for any size of the system, Figure 5
includes the operating curves R* = R/Σµ vs. offered arrival rate λ, as calculated for parallel
systems of m = 6, 8, and 10 servers, in each case with queue capacity k = m/2 and Σµ = 8. The
service rates are in descending arithmetic progression from the first server µ1 = 1.5(Σµ/m)
for faster to slower (f-t-s) and ascending to the last server with µm = 1.5(Σµ/m) in the
slower-to-faster (s-t-f) arrangement.
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Figure 5. Model E (k = m/2, Σµ = 8) vs. throughput R* = R/Σµ; for different service rate patterns,
faster to slower (f-t-s) and slower to faster (s-t-f).

Then, we examined how the pattern of the servers influenced the performance of the
system (Figure 6).
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Figure 6. Model B (m = 3) utilization vs. throughput for different service rate patterns (µ1, µ2, µ3).

With a slight imbalance, some extra throughput was obtained when the order from
faster to slower was applied, but when the imbalance was high—see, for instance, (2, 0.75,
0.5)—the benefit could only be obtained under medium to low utilization (low arrival
rate). The system underperformed for the balanced service rates (1, 1, 1) with the same
average for high utilization. When the utilization tended to saturation (see Figure 6 over
90% utilization), the throughput was quite similar, attenuating the effect of the server’s
arrangement. However, for a given average arrival rate of the mean service time, the
maximum throughput was reached by homogenous (1, 1, 1) or slightly heterogeneous
servers. A high imbalance in service rates reduced the throughput. As a rough estimation,
reductions up to the order of 5% in R* = R/Σµ can be observed in Figure 6, depending on
the pattern of multiclass servers that caused significant heterogeneity for the performance
and not only the average of service rates.

Next, the performance improvement by adding a queue was evaluated using model
E for different values of the maximum queue capacity (Figure 7). For k = 0, model E
was equivalent to model B. The operative curves of Figure 7 show that the size of the
buffer increased the throughput, but more relevant, for heterogeneous service rates, the
performance could reach higher results with imbalanced service rates arranged from slower
to faster, i.e., (0.25, 0.75, 2), than the balanced distribution (1, 1, 1) since this provided a
buffer of enough capacity. In the case of heterogeneous servers without any queue, ordering
the servers from faster to slower gave the best results for the throughput.

When heterogeneous servers were combined with a prior queue, the performance
was slightly better with assignation from slower to faster service rates when there was
no queue (k = 0), but in combination with a minimum queue, the results became similar,
and with sufficient capacity (k = 4), the performances of heterogeneous and homogeneous
systems were indistinguishable (see Figure 8). A properly dimensioned queue before the
multiclass parallel servers can provide improvements in performance, overwhelming the
heterogeneity of service times. This applies to traffic problems, like call centers, where the
use of an interactive voice response to the arriving customers can handle a waiting queue
to be serviced. Former research established priority for the faster agents in [37], as was also
mentioned in [14,16], or in the problem of fair agents [7]. Our results show that a proper
queue or buffer can compensate for heterogeneity.
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Figure 7. Model E (m = 3) arrival rate λ vs. throughput R/Σµ for different service rate patterns (µ1,
µ2, µ3) and buffer size k.

Conversely to manufacturing systems of tangible products, where the cycle time of
customers in the system can be secondary after throughput, in service manufacturing or
pure service systems, the sojourn time in the system can be a priority and fundamental
metric. For the system under study with m = 3, multiclass servers with a buffer of maximum
size k before them, the time in the system, also called the sojourn time or cycle time CT, is
calculated using Little’s law (7) and is represented in Figure 8. At low λ, the better results
(minimum CT) were obtained with faster-to-slower server priority, while in the rest of the
range, the better configuration was the homogeneous arrangement of servers. While the
queue capacity improved throughput by mitigating loss with a high offered load, it also
increased CT.
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Figure 8. Model E (m = 3) arrival rate λ vs. sojourn time CT for different service rate patterns (µ1, µ2,
µ3) with average service rate 1 and buffer size k.

L(m = 3, k) =
m+k+1

∑
i=0

i·pi = 0 · p000 + 1 · (p100 + p010 + p010) + 2 · (p110 + p101 + p011) + 3 · p111 + 4 · p111+1 + . . . (3 + k) · p f + (3 + k)p f

CT = λe f /L = λ(1 − p111+k − p>111+k)/L = λ(1 − p f − p f )/L
(7)

4. Systems of Parallel Heterogeneous Servers with Recirculation

Next, we considered the case when the rejected arrival rate recirculated and merged
with the offered input flow into the system instead of blocking and direct loss. The system
can represent a conveyor with recirculation or another system with retrial. The recirculating
rate had priority over the external input and the system remained a loss system. In general,
it is known that the merging input rate will not have a Poisson distribution [36]. Models B
and E demonstrated their accuracy when evaluating the overflow of a parallel system of
limited capacity.

We modified model E to include a recirculation flow, as represented in Figure 9. When
the conveyor recirculates the non-served arrivals, the offered load increases to include
the flow recirculated in the time percentage the system is full (pf), and thus, the expected
recirculated rate is λpf, and the net offered load to the system becomes λr = λ(1 + pf) instead
of λ. Thus, considering the findings from model B, the loss of this net offered load will be
λr (pf + pb) = λ(1 + pf) (pf + pb), but in fact, the loss of the recirculating fraction λ pf (pf + pb)
does not exit the system, but it remains in recirculation; therefore, the net loss out of the
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system will be λ(1 + pf)(pf + pb) − λ pf (pf + pb) = λ (pf + pb), which is consistent with
the net balance with the external offered load λ, which was already verified in models
B and E. In consequence, the output rate is expected to be λr(1 − pf − pb) = λ(1 + pf)
(1 − pf − pb). The recirculation does not generate any extra state in the transition state
diagram of servers in model E (see Figure 4), but increases the offered load to the servers.
In general, the probabilities pf and pb with recirculation will reach different values than
those without recirculation.
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Figure 9. Flow rates for model E (m = 3) with recirculation.

We formulated the recirculation model through the transition state matrix as a product
form problem with the same states as model E; therefore, the size of the system provided a
complete description of states with the probability summing to 1, but with the correction of
the offered load at the entrance of the conveyor. Thus, the resulting matrix for the conveyor
of maximum capacity 3, with three servers and ordered entry service was also (6), but the
offered load was λr = λ(1 + pf) instead of λ. The state probability was the solution of A·p = c,
where A = A(λ, µi, pf). The solution was obtained from the iteration on pf as a fixed-point
problem that converged very quickly. In general, the expression of the effective rate offered
and the recirculating rate through the conveyor involved conditional probabilities, but the
proposed transition state diagram was completed by incorporating the loss server state,
and the iteration as a fixed-point problem provided the state probabilities solution.

In Table 4, the results for the system of three servers with a queue (conveyor) of
maximum capacity 3 are included, with and without recirculation. The output rate was
evaluated using the average result of simulation over 600,000 recirculating cycles with a
warm-up of 60,000 cycles, with 10 independent replications. Model E with recirculation
produced simulation results within 1% in most of the ranges of operation, with a maximum
below 1.4%.

Table 4. Throughput R* = R/Σµ model E (m = 3, k = 3) vs. simulation, with and without recirculation.

µ
R*

Simul
w/o Recirc.

R*
Model E

Simul w/o
vs.

Model E%

R*
Simul w/Recirc. R*

Model E Recirc.

Simul w/recirc.
vs.

Model E Recirc.
%Mean Half Width

(1, 1, 1) 0.3325 0.3326 −0.03 0.3342 0.0092 0.3331 0.32
(1, 1, 1) 0.6349 0.6346 0.06 0.6531 0.0018 0.6508 0.34
(1, 1, 1) 0.8302 0.8302 0.01 0.8592 0.0245 0.8668 −0.89
(1, 1, 1) 0.9221 0.9229 −0.08 0.9478 0.0319 0.9507 −0.31
(1, 1, 1) 0.9634 0.9628 0.06 0.9869 0.0283 0.9786 0.84
(1, 1, 1) 0.9895 0.9890 0.05 0.9900 0.0425 0.9940 −0.40

(1.2, 1, 0.8) 0.3328 0.3326 0.05 0.3378 0.0089 0.3332 1.37
(1, 1.2, 0.8) 0.6357 0.6349 0.13 0.6522 0.0146 0.6510 0.19
(1.2, 0.8, 1) 0.8303 0.8303 0.00 0.8636 0.0198 0.8669 −0.38
(0.8, 1.2, 1) 0.9214 0.9221 −0.07 0.9419 0.0400 0.9501 −0.86
(1, 0.8, 1.2) 0.9621 0.9623 −0.02 0.9867 0.0150 0.9781 0.86
(0.8, 1, 1.2) 0.9886 0.9888 −0.02 0.9989 0.0400 0.9938 0.51
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5. Hybrid Modeling of Heterogeneous Servers with General Service Time Distributions
5.1. Uncertainty of the Offered Load

The stationary solution of the M/M/c/c + k system of identical servers has been
studied analytically and is included in manuals of Markovian queues. The analytical
multiclass, multichannel, or heterogeneous servers in model E can be used to study the
performance of M/Mi/3/3 + k, but when using the Monte Carlo method (MCM), it can
approach M/Gi/3/3 + k. The combination of MCM and model E can offer the resulting
distribution of the stationary solution for each system setup of mean arrival rate and service
rates Gi coming from general (non-exponential) distributions. Regardless of the distribution
from which the service rates come, model E offers one solution (stationary), and thus, the
variability effect of service rates under general distribution on performance can be assessed
by generating the resulting distribution of performance results.

We proposed the use of the precise stationary solution from the transition matrix in
combination with MCM to evaluate the effect of the uncertainty in the offered load or the
service rates, which approached the solution of the system for other service distributions.
The transition matrix was developed with the strong assumption of events being inde-
pendent or memoryless, and thus, the independent state probabilities were evaluated in a
Markovian process. The MCM offers the distribution of solutions from independent trials
of shots to the non-exponential distributions of arrival and/or service rates. The MCM is
a standard method for uncertainty evaluation in other fields, like metrology, and its use
together with the analytical Markovian model can allow for evaluating the effect of service
time variability or arrival rate uncertainty without the time-consuming discrete-event
simulation to obtain the stationary solution under general distributions. For instance, it
might be of interest in facilitating system control or decision making in logistic or manufac-
turing activities in cyberphysical systems. While the transition matrix gives the stationary
solution of the temporal series, the output of the MCM is a distribution around the av-
erage stationary solutions that show the expected spread around the mean value under
the ergodic assumption, which is due to the variation in the service times under different
distributions. The hybrid method is considered very appropriate because the variability
effect in the response to the uncertainty of the variables is also based on its variance, like
the arrival or service rates variability. In addition, it is easy to implement for the proposed
analytical model to produce a quick resolution, with no need for solution initialization or
other previous algorithm adjustments, and thus, the method directly propagates the spread
of stochastic variables through the analytical model into the solution.

Hybrid modeling of accurate Markovian chain models in combination with the MCM
can facilitate approximate studies by alleviating the limitation of the distribution with mem-
ory that non-exponential distributions impose because each shot in the MCM simulation
will be calculated independently with the accurate stationary result (expected asymptotic
mean in time of an ergodic process), and the resulting distribution from the MCM will
be the convolution of stationary results generated from shots to the distribution of the
arrival rate or the service rate. The alternative of direct discrete-event simulation will
require looking for the average solution when a simultaneous change occurs in the mean
values and their variance; therefore, the effect of the mean and variance are combined in
every solution of the simulation run. In addition, real systems are better represented for
decision making by the mean value of service time or demand in short-term periods with
some uncertainty, but with a drift in longer temporal periods. The accurate transition rate
matrix of Markovian chains combined with MCM simulation represents a convenient and
controlled way of separating the variability in different time scales to deal with the offered
load uncertainty or analyze the mean effects on system performance for non-exponential
service time distributions.

Figure 10 presents the results for model B with a standard deviation of 10% of the
offered load and mean service rate configurations (1, 1, 1) and (2, 0.75, 0.25) of the same
average service rate 1. Each point in Figure 10 is the result of 10,000 shots using the MCM
simulation. While the overall mean performance seemed to be slightly higher for (1, 1, 1)
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across the range, depending on the particular level of offered load, it could be reversed or
simply indistinguishable due to the uncertainty of the arrival rate.
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5.2. Application to Non-Exponential Service Time Distributions

In Table 5, the results of the simulation and model B are compared for exponential
service time and also normal or lognormal distributions. The normal distribution can be
appropriated for logistic or manufacturing systems, where the coefficient of variation (CV)
in the range from 0.2 to 0.5 is realistic [38]. A 0.3 value was set for this study. The lognormal
distribution was found to properly fit some service times, like call centers. Again, CV = 0.3
was used, based on [39]. For the application of the MCM, each point was obtained from
10,000 shots to the distribution.

We note that sampling the service times from a normal distribution of a given mean
provides a normal distribution of service times with the same mean. In the case of the
lognormal distribution, in order to provide a mean service time m and coefficient of varia-
tion CV, the sampling distribution must sample from the mean µ and standard deviation σ
given by (8).

µ = ln
[

m√
CV2 + 1

]
; σ =

√
ln(CV2 + 1) (8)

As a consequence of non-exponential service times, the throughput did not vary in a
significant way with respect to the exponential times of the same average; therefore, the
independence of exponential arrivals seemed to dominate over the non-exponential service
times. The average difference between the discrete events simulation of the system and
model B with MCM was 0.8% (ranging from −0.4% to 2.4%) for the normal distribution
and 0.7% (ranging from −0.5% to 2.2%) for the lognormal distribution. The pattern
of homogeneous server rates (1, 1, 1) offered better throughput in all the cases under
analysis. The difference with the solution of exponential service times for every server’s
arrangement was very low; therefore, these results initially support the use of the transition
matrix as a first approach to study non-homogeneous server systems M/Gi/k/k. Further
testing would consolidate this possibility. While the equivalence of homogenous systems
M/M/k/k and M/G/k/k is well established, the performance of heterogeneous systems
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seems to also be mainly influenced by the average values and with little dependence on the
service time distribution.

Table 5. Simulation and model B throughputs for 3 parallel servers with exponential arrival rate and
service rate distributions: exponential, normal N(·), and lognormal LogN(·).

Exp (µ) N (µ, 0.3µ) LogN (µ, 0.3µ)

Arrival
Rate

Service
Rates

Simul
Exp (µ)

Simul
N (µ, 0.3µ) Mod B

Simul N(·)
vs.

Mod B

Simul
LogN (µ, 0.3µ) Mod B

Simul LogN(·)
vs.

Mod B
λ (µ1, µ2, µ3) (%) (%)

0.1 (1, 1, 1) 0.0996 0.0997 0.1000 −0.33 0.0996 0.1000 −0.42
0.5 0.4933 0.4930 0.4921 0.17 0.4932 0.4925 0.14
1 0.9374 0.9376 0.9289 0.93 0.9375 0.9304 0.76
3 1.9621 1.9619 1.9298 1.63 1.9615 1.9333 1.44
5 2.3515 2.3518 2.3157 1.53 2.3522 2.3184 1.44

10 2.6807 2.6793 2.6601 0.72 2.6796 2.6604 0.72
30 2.8969 2.8972 2.8851 0.42 2.8964 2.8856 0.37

0.1 (0.25, 0.75, 2) 0.0996 0.0995 0.0999 −0.38 0.0995 0.0999 −0.40
0.5 0.4819 0.4803 0.4799 0.08 0.4806 0.4802 0.09
1 0.8833 0.8761 0.8753 0.08 0.8758 0.8758 −0.01
3 1.7897 1.7740 1.7590 0.85 1.7737 1.7632 0.59
5 2.1788 2.1678 2.1448 1.06 2.1677 2.1488 0.87

10 2.5553 2.5526 2.5300 0.88 2.5524 2.5316 0.81
30 2.8461 2.8467 2.8341 0.44 2.8470 2.8296 0.61

0.1 (2, 0.75, 0.25) 0.0995 0.0997 0.1000 −0.34 0.0995 0.1000 −0.46
0.5 0.4955 0.4972 0.4937 0.71 0.4973 0.4943 0.60
1 0.9413 0.9486 0.9288 2.09 0.9493 0.9313 1.89
3 1.8958 1.90585 1.8605 2.38 1.9059 1.8643 2.18
5 2.2524 2.2588 2.2120 2.07 2.2586 2.2151 1.92

10 2.5890 2.5894 2.5653 0.93 2.5894 2.5662 0.89
30 2.8521 2.8519 2.8381 0.48 2.8520 2.8390 0.45

0.1 (1.3, 0.4, 1.3) 0.0997 0.0998 0.1000 −0.23 0.0998 0.1000 −0.15
0.5 0.4925 0.4933 0.4904 0.58 0.4931 0.4910 0.43
1 0.9269 0.9277 0.9172 1.13 0.9278 0.9189 0.96
3 1.9101 1.9092 1.8781 1.63 1.9096 1.8819 1.45
5 2.2966 2.2960 2.2607 1.53 2.2961 2.2638 1.41

10 2.6408 2.6393 2.6197 0.74 2.6395 2.6198 0.75
30 2.8812 2.8804 2.8655 0.52 2.8806 2.8667 0.48

0.1 (0.5, 2, 0.5) 0.0997 0.0999 0.1000 −0.09 0.0998 0.1000 −0.19
0.5 0.4913 0.4928 0.4895 0.67 0.4927 0.4901 0.53
1 0.9211 0.9234 0.9111 1.34 0.9236 0.9130 1.15
3 1.8635 1.8626 1.8325 1.61 1.8625 1.8361 1.42
5 2.2348 2.2327 2.1983 1.54 2.2327 2.2013 1.40

10 2.5843 2.5827 2.5583 0.94 2.5829 2.5595 0.91
30 2.8519 2.8532 2.8418 0.40 2.8531 2.8413 0.42

6. Conclusions

We present the accurate analytical modeling of heterogeneous or multi-class parallel
server systems of limited capacity through their transition rate matrix. The loss mechanisms
were modeled inside the system, and thus, the transition rate matrix precisely captured
the loss percentage, with accurate results checked with former analytical results and
experimentally through simulation. Model B revises the usual application of the PASTA
property to the offered load by including the loss evaluation as a state in the transition state
diagram. This state diagram construction demonstrated its accuracy for heterogeneous
server parallel systems, where the Erlang system is a particular case with homogeneous
servers (B-Erlang formula). The addition of a queue of finite capacity in front of the
servers can also be accurately modeled with the same methodology, i.e., model E. The
precise evaluation using this model was outstanding in all regimes, from low demand to
leveled load/capacity or system oversaturation, which allowed for qualifying it as an exact
model for the state probabilities, in agreement with the simulation also undertaken inside
the intervals of confidence. It was verified that a small queue very quickly approached
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the heterogeneous to homogenous performances of the same average service rate, with
practical significance in logistic, manufacturing, or service operations. The assessment of
recirculating systems presented higher difficulty, even though the model was developed
successfully through the transition matrix as an open system with a modified offered load
that included recirculation. Even when the flow was strictly non-exponential, the iterative
process of resolution as a product form problem included all the state probabilities of every
offered arrival, even the loss state that established continuity, as it provided a fair good
approximation of the output rate from a simple and scalable model.

These models allowed for the easy analysis of performance in a full range of arrival
rates, with insights into system behavior for ordered entry assignments. In real systems,
the homogeneity of servers can be a rough assumption. Many problems of interest in
logistics, manufacturing systems, call centers, or computer servers, among others, include
heterogeneous service times across servers, and thus, this analytical model of heterogeneous
servers can evaluate their behavior better.

Based on this methodology, the hybrid modeling of the transition matrix along the
application of the Monte Carlo method (MCM) can be an intermediate practical technique
between analytical models and pure discrete-event simulation. The transition matrix gives
a basic behavior structure under the assumptions of events independence in a Markovian
chain, and the MCM allows for the introduction of the variability around the stationary
solution for uncertainty estimation or for non-exponential service times. The initial test
of normal and lognormal distributions showed useful approximations. Future works
of hybrid modeling that combine the transition matrix of limited complexity with the
MCM can be a useful starting point for further research, integrating available growing
computation capabilities with simple structured models for the study of complex systems.
In particular, in the dynamic situation of short-term changes in a manufacturing system,
where the stationary regime is less representative and the opportunities for system control
in the transient regime can be better facilitated by the state transition matrix instead of the
stationary long-term solution of simulation. This is foreseen to be of particular interest for
cyberphysical systems or digital twins of growing importance, where not only the massive
amounts of data but appropriate structured models can provide analysis opportunities and
benefits for decision making.
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