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Abstract: The escalating use of security cameras has resulted in a surge in images requiring analysis,
a task hindered by the inefficiency and error-prone nature of manual monitoring. In response, this
study delves into the domain of anomaly detection in CCTV security footage, addressing challenges
previously encountered in analyzing videos with complex or dynamic backgrounds and long se-
quences. We introduce a three-stage deep learning architecture designed to detect abnormalities
in security camera videos. The first stage employs a pre-trained convolutional neural network to
extract features from individual video frames. Subsequently, these features are transformed into
time series data in the second stage, utilizing a blend of bidirectional long short-term memory and
multi-head attention to analyze short-term frame relationships. The final stage leverages relative
positional embeddings and a custom Transformer encoder to interpret long-range frame relation-
ships and identify anomalies. Tested on various open datasets, particularly those with complex
backgrounds and extended sequences, our method demonstrates enhanced accuracy and efficiency
in video analysis. This approach not only improves current security camera analysis but also shows
potential for diverse application settings, signifying a significant advancement in the evolution of
security camera monitoring and analysis technologies.
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1. Introduction

The increasing prevalence of crime, ranging from minor offenses to violent acts, as
highlighted in the “2022 Crime Analysis” report by the Supreme Prosecutors’ Office of
Korea, and shown in Figure 1, underscores the necessity of enhanced security measures. In
this regard, the field of the video-based detection of abnormal situations, as referenced in
numerous studies ([1–8]), is experiencing a surge in interest. Research in this area, especially
studies investigating surveillance video anomaly detection (SVAD) using deep learning [9],
is progressing rapidly. This research domain has evolved to encompass a broader scope,
extending beyond behavior-based detection to include advanced areas like human facial
emotion recognition for anomaly detection [10], illustrating the expanding reach and depth
of investigations in this field. These systems function by capturing real-time images across
various indoor and outdoor settings, both public and private. However, the proliferation
of security cameras leads to the generation of an immense volume of images, making
manual monitoring susceptible to human error, as well as being labor-intensive and costly.
Therefore, the automation of anomaly recognition in video footage is imperative.

Video-based anomaly detection, in essence, aims to identify any unusual or non-
standard activities and situations captured in video data, including incidents like violence,
fires, health emergencies, unauthorized entry, and abduction. Unlike still images, which
contain only spatial information, video data encompass temporal elements as well, necessi-
tating the fusion of spatial and temporal data for accurate analysis due to the correlation
between neighboring frames.

Approaches to video-based anomaly detection, integrating both spatial and temporal
aspects, encompass various learning paradigms: supervised, unsupervised, and semi-
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supervised (one-class) learning. Supervised learning, which utilizes labeled data for both
normal and abnormal instances, generally achieves higher accuracy. Nonetheless, it is
limited by the need for diverse atypical samples. To overcome these challenges, our
approach focuses on semi-supervised learning (or one-class learning), which primarily uses
normal sample data for training. Within this domain, the one-class support vector machine
(OCSVM) is widely used, and recent advancements in deep support vector data description
(Deep SVDD) [11] have further extended this concept into the realm of deep learning.

Figure 1. Trends in accrual costs by major criminal crimes of prosecution in 2012–2021. (Source: “2022
Crime Analysis” by the Supreme Prosecutors’ Office of Korea).

To address the limitations of semi-supervised learning methods, which require la-
beled normal samples, unsupervised learning techniques are being investigated. These
techniques operate under the assumption that the majority of the data consist of normal
samples and can be learned without labels. A prime example of this approach is the au-
toencoder [12,13], featuring an encoder that compresses the input into a feature vector and
a decoder that reconstructs the original input from this feature vector.

While previous studies have primarily concentrated on harnessing three-dimensional
information for learning, they have struggled with reliability in analyzing complex or
dynamic video backgrounds and long video sequences. To overcome these issues, our
research introduces a new three-tiered network model for video anomaly detection, adept
at handling both the temporal and spatial aspects of video data. The key contributions of
this study are outlined as follows.

1. Introduction of a Three-Stage Network: This paper introduces a groundbreaking
three-stage deep learning architecture for anomaly detection in video streams, notably
in CCTV systems. This approach effectively addresses both the spatial and temporal
dimensions of video data, advancing beyond the capabilities of existing methods.

2. Utilization of Pre-Trained Networks for Feature Extraction: The first phase of our
approach leverages pre-trained networks, such as Vision Transformers (ViT), to ex-
tract feature vectors from video frames. This process enables an in-depth analysis of
the spatial attributes of the footage, laying the groundwork for subsequent sophisti-
cated analysis.

3. Integration of BiLSTM with Multi-Head Attention for Temporal Dynamics: The
second phase combines BiLSTM with multi-head attention, focusing on the temporal
relationships between frame feature vectors. This synergy enhances the model’s
ability to identify anomalies, leading to a marked improvement in detection accuracy.

4. Customized Transformer Module for Enhanced Pattern Recognition: In the final phase,
a specially adapted Transformer module is employed. This module is proficient in
handling relative positional embeddings and recognizing long-range dependencies,
thereby boosting the processing efficiency. It is specifically tailored to anomaly detec-
tion in video data.
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5. Superior Detection Capabilities: Through comprehensive testing and evaluation, our
model demonstrates superior performance over existing leading-edge techniques,
particularly in handling the complexities and variances found in CCTV footage.

6. Practical Real-World Application Potential: The proposed model exhibits significant
potential for real-world applications, such as in security monitoring and automated
surveillance systems. This represents a significant leap forward in the realms of video
anomaly detection and deep learning technology.

The rest of the paper is organized as follows. Section 2 provides the contextual
background for this research while exploring the existing literature and prior studies.
Section 3 begins with an explanation of the general Transformer mechanism in Section 3.1;
subsequently, Section 3.2, a comprehensive explanation of the proposed overall architecture,
is presented, starting with an in-depth overview. Following this, Sections 3.2.1–3.2.3
sequentially delve into each stage, providing detailed descriptions. Section 3.2.4 then offers
a detailed exposition of the distinctions from the general Transformer mechanism outlined
in Section 3.1. Finally, Section 3.3 concludes with an explanation of the loss function used.

Section 4 begins with an explanation of the dataset used in the research and the
preprocessing stages. It continues through the final result analysis. In Section 4.1, the
introduction of the dataset is provided, followed by the presentation of the experimental
environment in Sections 4.2 and 4.3. Subsequently, Sections 4.4 and 4.5 conduct a detailed
analysis of the performance comparison of the proposed model. Lastly, Section 4.6 conducts
an ablation study for additional validation. Finally, in Section 5, we summarize the key
aspects of the study, outline our contributions to the field, and suggest directions for
future research.

2. Related Works

Currently, research on anomaly detection in CCTV videos is being actively conducted
using various techniques. In order to compare and analyze the proposed architecture,
we investigated various methodologies and confirmed their performance. In this section,
we introduce diverse methodologies. First, Bilinski, P. [14] proposed an extension of
Improved Fisher Vectors (IFV) for videos, which enables the spatiotemporal localization
of features to increase accuracy. Additionally, they re-formalized IFV and proposed a
sliding window approach that utilizes aggregated region table data structures for violence
detection. Subsequent advancements in technology have enabled more sophisticated
analysis. Some techniques utilize optical flow [15–18] before training the network. Optical
flow refers to the visible motion pattern of an object captured in consecutive video frames.
When the movement of an object occurs in an image, it is projected onto a 2D image space,
where a myriad of vectors from the 3D space can be projected as vectors in the 2D image
space because the dimensions are reduced. Examples of these advanced techniques include
the following.

Skeleton-based anomaly detection utilizes graph convolutional networks (GCNs). A
GCN predicts the label of each node in a given input graph and updates its hidden state
using Equation (1), where H represents the hidden state matrix of the lth hidden layer,
A represents the adjacency matrix with self-connections and an identity matrix, and W
represents the weight matrix.

H(l+1) = σ(AHlW l + bl), (1)

Skeleton-based anomaly detection [19] converts human images into graphs and ana-
lyzes the interactions within these graphs to detect anomalies. For example, Garcia-Cobo,
G. [20] proposed an architecture using human pose extractors and ConvLSTM. The author
relied on what they considered to be the most essential information to detect human bodies
and their interactions, using human pose extractors and optical flow for this purpose. The
architecture consists of RGB and motion detection pipelines, each of which analyzes image
distributions and skeletal movements. Su, Y. [21] proposed an architecture that learns inter-
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actions between skeletal points using 3D skeleton point clouds. They aimed to represent
videos as human skeleton point clouds using the multi-head Skeleton Points Interaction
Learning (SPIL) module and perform inference for violence recognition in videos.

There are also studies on anomaly detection techniques using Conv3D. Typically,
CNNs apply operations to images using two-dimensional (2D) kernels. However, this
method can only be applied to static images. Meanwhile, CCTV image analysis includes
both still images and the analysis of temporal data, making it impossible to perform analysis
using a generic CNN. Therefore, the passage of time should be incorporated into the 2D
CNN, and a Conv3D network has been developed for this purpose. Conv3D takes inputs in
three dimensions, and its kernel is also three-dimensional (3D). The rest of the computation
is the same as that of a conventional 2D CNN; however, the direction of movement of
the kernel occurs along the x-, y-, and z-axes, and the convolution operation is applied to
convert the n × n × n 3D inputs into a single output.

In previous studies, several techniques have incorporated optical flow or attention
modules [22]. For instance, Cheng, M. [23] proposed a flow-gated network that leveraged
both 3D-CNN and optical flow. Video frames were divided into RGB and optical flow
channels, each processed through Conv3D networks. The outputs from the last layers
of the RGB and optical flow channels underwent ReLU and sigmoid operations before
concatenation. The resulting output was used for anomaly detection. Sultani, W. [4] used
multiple instance learning (MIL) and 3D convolution to differentiate between normal and
abnormal scenarios. The author separated normal and abnormal video clips into positive
and negative bags, respectively. Features were extracted using 3D convolution, and a
multiple instance ranking objective function was proposed to rank the two instances with
the highest anomaly scores within each bag. Degardin, B. [24] introduced an approach
to detect abnormal events in surveillance videos using a recurrent learning framework,
a random forest ensemble, and novel terms for score propagation. The author used a
weakly supervised network model to classify videos into bags with positive and negative
instances and detected abnormal situations in unlabeled data using 3D convolution and a
Bayesian classifier. Degardin, B.M. [2] utilized a Gaussian Mixture Model (GMM) composed
of a soft clustering technique to connect data points to clusters. The author introduced a
new MIL solution with a loss function that incorporated both a two-kernel GMM and the
estimated parameters of normal distributions. Features were extracted using 3D convolution.
Mohammadi, H. [25] improved the model accuracy by adding hard attention to semi-
supervised learning, utilizing the optical flow extracted from input data, and applying
3D convolution.

There are also studies on anomaly detection techniques using ConvLSTM. To un-
derstand ConvLSTM [26], we must first examine long short-term memory (LSTM) [27].
In conventional RNNs, when long intervals of data are input, backpropagation requires a
long time, and slope loss occurs. To prevent this, an LSTM with a state store, an input gate,
and an output gate was developed. LSTM is faster than conventional methods because
each gate unit is trained to appropriately open and close the flow, which solves the slope
loss problem.

ConvLSTM introduces convolutional recurrent cells into the basic LSTM structure and
applies convolutional operations to the images as inputs. Consequently, it can effectively
learn the spatial characteristics of the image. Moreover, because it has the characteristics of
LSTM, it can also learn the temporal continuity among image frames.

Utilizing these characteristics, research has been conducted on anomaly detection
techniques using ConvLSTM [28]. For example, Islam, Z. [29] proposes an efficient two-
stream deep learning architecture. The architecture leverages separable convolution LSTM
(sepconvlstm) and a pre-trained MobileNet. One stream takes suppressed frames as input
to model the background, while the other stream processes the differences between adjacent
frames. Additionally, the author presents three fusion methods to combine the output
feature maps of the two streams. Sudhakaran, S. [30] introduces a combined architecture
of 2D convolution and ConvLSTM. Features are extracted frame-wise using a pre-trained
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AlexNet, followed by convlstm layers with 256 filters, batch normalization, and ReLU
activation functions to detect anomalies.

Additionally, there are anomaly detection techniques based on Transformers, which
serve as the foundation for the present study. Deshpande, K. [31] conducted anomaly
detection using Videoswin Transformer feature extraction, attention layers, and the Robust
Temporal Feature Magnitude (RTFM). Furthermore, Jin, P. [32] proposed a new model called
ANomaly Detection with Transformers (ANDT) to detect abnormal events in aerial videos.
In this approach, videos are processed into a sequence of tubes, and a Transformer encoder
is employed to learn spatiotemporal features. Subsequently, the decoder combines with the
encoder to predict the next frame based on the learned spatiotemporal representation.

Liu, Y. [33] provides a hierarchical GVAED taxonomy that systematically organizes
the existing literature by supervision, input data, and network structure, focusing on the
recent advances, such as weakly supervised, fully unsupervised, and multimodal methods.
Furthermore, focal loss [34] is employed as part of the network architecture.

3. Proposed Method

The network proposed in this paper is based on Transformers [35] and has been
restructured to improve the detection accuracy according to the objectives. This section
begins by elucidating the architectural frameworks of the Transformer and ViT, which
serves as the primary feature extractor. Subsequently, we delve into a comparative anal-
ysis, highlighting the distinctions between the conventional Transformers and the novel
Transformer proposed in this research. Finally, we provide a comprehensive overview of
the entire architectural framework.

3.1. Transformer Mechanism

Before the advent of Transformers, the “Seq2Seq model” [36–39] based on RNNs was
recognized as the dominant methodology for the processing of sequence data.

However, these RNN models, like the Seq2Seq model, have several limitations. First,
the model must process the inputs sequentially, which limits computation parallelization.
Second, the window size of the model is fixed, which renders it difficult to learn the
relationships between items that are far apart in a sequence, particularly because of the
problem of gradient decay or explosion.

A proposed solution to this problem is an attention mechanism. Recently, improved
RNNs, such as LSTM and GRU, have improved the window size to increase the relation-
ships between distant items to a certain extent; however, the window size of these models is
still limited. In contrast, the attention mechanism can theoretically have an infinite window
size under the premise that computing resources are available, it can be parallelized for
fast learning speeds, and it can be effectively applied to very large datasets.

In this attention mechanism, self-attention plays a crucial role in considering the
relationships between words in the input sequence. Self-attention introduces the concepts
of positional encoding: the query, key, and value. Since self-attention does not explicitly
consider sequential order information, it adds vectors containing positional information of
the same dimension as the input used in the model. This is known as positional encoding.

Once positional encoding is completed, self-attention utilizes three elements: the query,
key, and value. The query extracts information about the given input and is used to evaluate
the relationships with other input elements. The key determines how much attention
each element of the input sequence should receive, and it combines the query and key to
calculate attention scores, which represent how much attention each element should receive.
These scores contain the actual information and, by weighting according to attention scores,
form the final output. The value of each element is weighted based on its importance and
attention, and these values are combined to generate the final output of attention.

The self-attention mechanism is particularly well suited for dealing with sequential
data where information changes over time or where correlations are important, such as
videos, which are the type of data used in this study.
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However, in practice, the data that we deal with have complex structures with many
different attributes and perspectives. This diversity cannot be fully captured by a single
attentional mechanism because it operates on a limited set of information and is unlikely to
reflect the interactions between the various attributes of complex data. To address these
issues, the multi-head attention technique is used, which employs multiple attention heads
in parallel. The advantage of this structure is that each attention head captures information
from an independent perspective, and these diverse perspectives are integrated to form a
richer representation.

Transformers are architectures that are not based on an RNN structure but introduce
self-attention and multi-head attention to the encoder and decoder parts. This integrates
the advantages of self-attention and multi-head attention and has exhibited excellent
performance in various natural language processing tasks, such as translation, document
summarization, question and answer, and time series data processing. The basic structure
of the Transformer is illustrated in Figure 2.

Figure 2. Architecture of Transformer.

3.2. Proposed Overall Architecture

Anomaly detection using the networks described in Section 2 has generally been
performed by incorporating temporal features into the input data using optical flow or
by configuring the network itself to learn both spatial and temporal features. However,
the network introduced in this study first obtained the spatial characteristics and then
used them to learn and compute the temporal characteristics, based on which the three-
stage framework is proposed. The proposed three-stage framework structure is depicted
in Figure 3.
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Figure 3. Proposed overall framework architecture.

3.2.1. First Stage

The first stage involves extracting features from individual still-frame images. In this
study, learning was not conducted separately to obtain spatial characteristics. Using
networks that learned well with large amounts of data, features were quickly extracted for
each frame image, and various pretrained networks were used with ViT [40] as the main
focus in this study.

ViT was developed to apply the Transformer architecture, as explained in Section 3.1,
to image data analysis. The core concept of ViT, as depicted in Figure 4, involves dividing
the input image into a series of fixed-size patches. Before being used as input to the
Transformer, each patch is flattened into a single dimension. Subsequently, the flattened
patches have a ‘class token’ added, similar to the ‘CLS token’ that is added to sentences
in Transformers. Additionally, position embeddings are added to each patch image to
recognize the relative positions of the patches. These preprocessed patches are then fed
into the Transformer encoder, which learns the relationships between the image features
and the patches.

Figure 4. Architecture of Vision Transformer.
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Thus, ViT applies the characteristics of Transformers to image data, shows excellent
performance when used with large datasets, and is used in various vision tasks.

When the image feature extraction was completed, 768 features were outputted for
each frame image, and when applied to each video, the final output was in the form of
(number of videos, frame length, 768). The output data from the first stage are further
processed through the combination layer of BiLSTM and multi-head attention in the
second stage.

3.2.2. Second Stage

The bidirectional LSTM (BiLSTM) emerges as a significant improvement in the devel-
opment of the long short-term memory (LSTM) networks mentioned in Section 2. BiLSTM
augments the fundamental LSTM architecture by incorporating bidirectional processing
capabilities. This modification allows for the simultaneous analysis of sequence data in
both the forward and backward directions, enabling the consideration of past and future
information at each time step. Consequently, BiLSTM surpasses unidirectional LSTM in cap-
turing sequence-dependent characteristics, particularly excelling in extracting more accurate
insights from temporally correlated data by considering both past and future contexts.

In the second stage, the BiLSTM and multi-head attention techniques are integrated
to effectively model the temporal characteristics of sequential data. BiLSTM integrates
a bidirectional processing capability into LSTM, allowing it to simultaneously analyze
sequence data in both the forward and backward directions, thus understanding the
overall temporal flow of the sequence. On the other hand, multi-head attention processes
and integrates information from various points within the sequence in parallel. This
combination proves particularly beneficial in handling complex, temporally evolving
information, such as video data.

The integration of bidirectional LSTM (BiLSTM) with multi-head attention layers is
known for its enhanced capability in handling long-term dependencies in sequence data.
However, it still encounters limitations in maintaining and transmitting information from
the distant past when dealing with exceedingly long sequences, as the length of the se-
quence increases. To overcome these limitations, a third stage is introduced, where the data
processed through the second stage are further processed by Transformer encoder layers.
This additional step aids in addressing the difficulties associated with lengthy sequence
data, enhancing the model’s ability to effectively retain and utilize historical information.

3.2.3. Third Stage

For the utilization of data processed through the BiLSTM and multi-head attention
layers as input for the Transformer encoder layer, it is essential to perform a position em-
bedding operation on the data. Typically, data with a temporal dimension, such as videos,
are subjected to absolute position embeddings to encode unique positional information.
However, in this study, relative position embeddings are employed. Relative position
embeddings are particularly beneficial for video data processing, as they better grasp the
dynamic context by considering the relative temporal distances between frames. This
approach is suitable for videos of varying lengths, given its basis in relative relationships.
Additionally, it has the advantage of effectively capturing the interactions between adjacent
and distant frames, enhancing the understanding of the inter-frame dynamics.

The data passed through the relative position embedding layer were used as input
to the Transformer encoder architecture, specifically tailored to anomaly detection, as
proposed in this paper, and the Transformer encoder architecture is shown in Figure 5.

The output from the Transformer encoder layer structure undergoes further refined
processing. The global maxpooling layer plays a crucial role in reducing the complexity
of the data by extracting the most significant information from each feature map while
preserving key features. This is followed by a dropout layer to prevent overfitting and
enhance the model’s generalization ability. Finally, a sigmoid operation is employed to
determine whether the input video data are normal or exhibit an anomaly.
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Figure 5. Architecture of proposed Transformer block.

The introduction of a fully connected layer is pivotal in effectively classifying any
anomalies within the input video data based on the output of the proposed architecture.
This layer simplifies complex features and focuses on critical information for classification
tasks, achieving high accuracy and efficiency. This structural approach is key to the precise
analysis of video data and the reliable detection of anomalous states.

This framework was trained independently for each video, taking into account the
correlations between the features of frames within each video. Such an approach enables
the more precise and effective analysis of complex and diverse video data, offering potential
applications in various real-world scenarios.

3.2.4. Proposed Transformer Architecture

The modified Transformer encoder block introduces a novel approach optimized for
the processing of video data. Compared to the conventional Transformer architecture,
this new design focuses more deeply on analyzing the intricate relationships between
video frames. Key improvements include the application of layer normalization and multi-
head attention in the initial stages, along with a more complex, dense projection layer
configuration. These modifications enable the model to process and integrate the features
of each frame more efficiently.

The first dense projection layer consists of four dense layers and three dropout layers,
which help to prevent overfitting and enhance the model’s generalization capabilities while
also extracting more complex features. The process of combining the input and output of
this layer, followed by additional layer normalization, smooths the information flow and
increases the network stability, contributing to the model’s ability to learn and integrate
finer details from the input data.
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Subsequently, the second dense projection layer, comprising two dense layers and one
dropout layer, further refines and compresses the features extracted by the first layer. This
layer plays a crucial role in effectively condensing and extracting essential information from
the final output, thereby optimizing the network’s predictive performance. The use of these
two stages of dense projection layers allows for the efficient handling of the complex nature
of video data, enabling more precise analysis and learning, and is expected to yield superior
performance in areas such as video analysis, object tracking, and action recognition.

Overall, the innovative structure of this Transformer encoder block focuses on deeply
analyzing and processing the complex characteristics of video data, offering superior
performance compared to traditional methods.

3.3. Loss Function

To train the Transformer-based framework proposed in this study, binary focal loss [34]
was adopted and used as the loss function. Focal loss was first developed for object
detection. Object detection is mainly divided into two types: two-stage and one-stage
detectors. The difference is that a two-stage detector performs localization and classification,
whereas a one-stage detector processes localization and classification simultaneously. Two-
stage detectors have better accuracy performance, but they have the disadvantage of a
lower speed. However, one-stage detectors have the opposite disadvantage of being faster
but less accurate, and focal loss is designed to improve the accuracy. The main problem
with one-stage detectors is class imbalance during training. For example, the difference
between the proportions of real objects and background in an image is very large, with
real objects accounting for a very small percentage of the background. Because of this
imbalance, the training process frequently incorrectly predicts the presence of an object
against a background. Outputting an object box in the background is learned as an error,
but its frequency is so high that it interferes with learning and reduces the efficiency.

Traditionally, cross-entropy, which focuses on penalizing incorrect predictions, has
been adopted and used. However, focal loss reduces the weight of the loss by multi-
plying the basic cross-entropy loss by a specific weighting term. This specific weighting
term is based on the model-generated prediction probabilities and dynamically adjusts
the weight of the prediction errors in each class. This dynamically adjusted weighting
term allows the model to focus on a smaller number of real-world entities, thus mitigating
the class imbalance. The mathematical expression for this focal loss is given by Equation (2).

FL(pt) = −(1 − pt)
γ log(pt), (2)

where pt is the probability that the model makes a correct prediction. Further, the (1 − pt)γ

term is a specific weighting term that dynamically adjusts the weights for prediction errors
in each class based on the prediction probabilities generated by the model. In this term,
the hyperparameter γ controls the model’s focus on difficult examples. As the value
of γ increases, the model penalizes challenging examples more, being more focused on
learning these challenging examples. In Equation (2), a γ value of 0 implies a standard
cross-entropy loss.

In this study, we utilized the characteristics of focal loss to overcome the class imbal-
ance problem that occurs in anomaly detection problems, where there are significantly
fewer anomalies than in normal situations, and we obtained a high-performance anomaly
detection model.

4. Experiment and Results
4.1. Dataset Introduction

Real-world video data from CCTV and other security cameras are required for the
performance verification and learning of the architecture proposed in this study. However,
there are limitations to collecting and organizing large amounts of video data manually, and
video data from security cameras, such as roads, individuals, institutions, and companies,
are limited owing to various legal and ethical issues related to privacy and security. There-
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fore, we use the UBI-Fights [24], Hockey Fights [41], Movie Fights [42], and Crowd [43]
datasets, which are widely used in anomaly detection research for training and verifica-
tion purposes. UBI-Fights is a large dataset consisting of 80 h of videos, which includes
216 anomaly videos and 784 everyday scenes, totaling 1000 30 fps videos. The videos were
stripped of unnecessary video segments (video introductions, news, etc.) that interfered
with the learning process. The UBI-Fights dataset encompasses videos from diverse loca-
tions and includes various situations, captured across different times of the day and night.
An example video is shown in Figure 6.

Figure 6. Gallery of the UBI-Fights dataset.

In addition to the UBI-Fights dataset, the other three major datasets—Hockey Fights,
Movie Fights, and Crowd—each offer unique and varied environments. Hockey Fights
includes various conflicts and anomalous situations in hockey games, while Movie Fights
features scenes from actual movies. Crowd includes both normal and abnormal situations
in crowd settings.

All three datasets consist of video data with a frame rate of 25 fps, as listed in Table 1.
The Crowd dataset includes videos ranging from 3 to 5 s in length, while the others are
all 1 s long. This format is conducive to accurately analyzing rapidly evolving anomalous
situations, and the structure of these datasets is deemed crucial in assessing the applicability
and efficiency of the proposed framework in a variety of contexts.

Table 1. Dataset information.

Dataset Video Length (s) Fps Number of
Anomalies

Number of Normal
Instances

UBI-Fights 16–6416 30 216 784
Hockey Fights 1 25 500 500
Movie Fights 1 25 100 100

Crowd 3–5 25 123 123

All datasets were divided into training and validation datasets to validate the perfor-
mance of the network. For the UBI-Fights dataset, 40 abnormal and 27 normal situations
were used for validation, totaling 67 data points, referring to the list of validation files
provided. For all other datasets, 30% of the total dataset was used as validation data.

For the training process, each frame image was resized to a resolution of 800× 800 pixels.
Due to the sufficient length of videos in the UBI-Fights dataset, 150 frames per video were
utilized. However, for the remaining datasets, each consisting of approximately one second
of footage, nearly all frames within a video, 30 frames, were used. A challenge arose in
certain instances, including specific videos from the UBI-Fights dataset, where the total
number of frames was less than the required frame count. To resolve this, when the total
number of frames in a video was fewer than the set number, the last saved frame was
duplicated in reverse order up to the designated frame count, effectively reconstructing the
video to simulate a reverse playback effect.
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4.2. Optimizer

Various optimization algorithms have been developed, and, in this study, we con-
ducted a comprehensive evaluation of different optimization techniques to measure the
peak performance of the proposed model. The results indicated that, among these tech-
niques, AdamW demonstrated the highest performance in terms of generalization capa-
bilities and was also effective in preventing overfitting. AdamW, an enhancement of the
Adam optimization method, separates weight decay from the optimization process, thereby
creating a more stable learning environment. This separation has been proven to provide
better generalization performance and is particularly effective in preventing overfitting.
The experimental results of this study highlight the significant role of AdamW in enhancing
the model’s generalization ability and learning stability.

4.3. Experimental Environment

For the training purposes of this study, a high-performance graphics processing unit
(GPU), the RTX 4090, along with a 13th generation Intel i7 CPU, was utilized to ensure rapid
computation speeds and efficient data processing capabilities. This setup was designed to
provide ample memory capacity to smoothly handle large datasets.

Regarding the software environment, the study operated under the Windows 11 oper-
ating system(version: 22H2, OS build: 22621.2861 from Microsoft Corporation, Executed in
Cheong-Ju Si, Republic of Korea), with Python (version 3.10.12 from python.org, Executed
in Cheong-Ju Si, Republic of Korea)as the primary programming language. The processes of
data preprocessing, model building, training, and testing were conducted using functions
provided by TensorFlow Keras.

4.4. Results

We named our proposed baseline framework “BiLT”, which indicates the combination
of BiLSTM, multi-head attention, and the Transformer Encoder. We proposed five different
network architectures based on BiLT and compared their performance to existing method-
ologies. Each network was designed considering specific objectives and environments, and
their characteristics are as follows.

1. VBiLT (Vision Transformer-based BiLT): This architecture uses Vision Transformer as
the feature extractor. It effectively captures the global context and can learn features
by emphasizing important parts through the attention mechanism.

2. MobileBiLT (MobileNet-based BiLT): In this architecture, MobileNet [44] is used as
the feature extractor. It inherits MobileNet’s characteristics to provide reasonable
accuracy with reduced computational complexity.

3. DenseBiLT (DenseNet-based BiLT): This architecture utilizes DenseNet [45] as the
feature extractor. It takes advantage of DenseNet’s feature reuse mechanism, allowing
it to preserve the initial features by utilizing information from previous layers.

4. CvtBiLT (ConvNeXt Tiny-based BiLT): ConvNeXt Tiny is used as the feature extractor
in this architecture. ConvNeXt [46] is inspired by Transformer models and enhances
the performance of traditional convolutional networks. This architecture provides
high performance at a reasonable computational cost.

5. CvlBiLT (ConvNeXt Large-based BiLT): In this architecture, ConvNeXt Large is em-
ployed as the feature extractor. ConvNeXt Large has more parameters and deeper
layers compared to ConvNeXt Tiny, making it suitable for handling complex and
diverse data.

The performance evaluation in this study was conducted through a comparison with
existing networks. To facilitate this comparison, we adopted the same performance metrics
as those used in the previous networks investigated in this work, ensuring consistency in
the evaluation criteria. In all studies utilizing the UBI-Fights dataset, due to its imbalanced
nature, model performance comparisons were made using the Area Under the Curve (AUC)
metric, which better reflects this imbalance, instead of accuracy. For studies employing
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the Hockey Fights, Movie Fights, and Crowd datasets, model performance comparisons
were conducted using accuracy, as it effectively measures the classification precision. As
mentioned in Section 4.1, the proposed model underwent training and validation using the
divided training and validation datasets.

The results of validating the proposed architecture using the UBI-Fights dataset,
followed by a comparison of the AUC performance with existing networks, are presented
in Table 2.

Table 2. Comparison of result on UBI-Fights dataset.

Method
UBI-Fights

AUC

Sultani et al. [4] 89.2
SS-Model [24] 81.9

SS-Model + WS-Model + Sultani et al. [24] 84.6
GMM [2] 90.6

VBiLT (Ours) 96.33
MobileBiLT (Ours) 97.96
DenseBiLT (Ours) 96.16

CvtBiLT (Ours) 97.87
CvlBiLT (Ours) 98.56

Additionally, the outcomes of training and validating the proposed architecture with
the Hockey Fights, Movie Fights, and Crowd datasets, followed by a comparison of the
accuracy (ACC) performance with existing networks, are shown in Table 3.

Table 3. Comparison of result on each dataset.

Method
Hockey Fights Movie Fights Crowd

ACC ACC ACC

Semi-Supervised
Hard Attention

(SSHA (RGB
only)) [25]

98.7 100 -

SepConvLSTM-A [29] 99.0 100 -
SepConvLSTM-C [29] 99.5 100 -

SepConvLSTM-
M [29] 99.0 100 -

STIFV [14] 93.4 99.0 -
ConvLSTM [30] 97.1 100 -

Human Skeletons +
Change Detection [20] 94.5 98.5 94.3

SPIL Convolution [21] 96.8 98.5 94.5
Flow Gated

Network [23] 98.0 100 88.87

VBiLT (Ours) 97.67 100 94.0
MobileBiLT (Ours) 96.33 100 93.24
DenseBiLT (Ours) 97.67 100 93.24

CvtBiLT (Ours) 97.0 100 95.95
CvlBiLT (Ours) 98.0 100 95.95

According to the performance evaluation results, all five proposed frameworks demon-
strated superior performance on the UBI-Fights dataset compared to existing networks.
Additionally, in alignment with the main objective of this study—detecting anomalies in
CCTV footage—it was confirmed that CvlBiLT exhibited the most impressive classification
performance on the Movie Fights and Crowd datasets. This underscores the capability
of the proposed frameworks to accurately distinguish between normal and abnormal
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situations in both class-balanced and class-imbalanced datasets, thereby proving their effec-
tiveness across various environments and conditions. This emphasizes the effectiveness of
the proposed modified Transformer for anomaly detection and the flexibility and accuracy
of the proposed three-stage framework for anomaly detection.

In a more detailed examination of the results on the Movie Fights dataset, all the
proposed frameworks achieved detection accuracy of 100%. On the Crowd dataset, CvtBiLT
and CvlBiLT, which use ConvNeXt as the backbone with high model complexity, performed
the best. For the Hockey Fights dataset, CvlBiLT achieved commendable performance of
98%. On the UBI-Fights dataset, which was measured using AUC as the primary metric,
MobileBiLT, with the lightest model complexity, outperformed all other networks, followed
by CvlBiLT, with the highest model complexity. In summary, CvlBiLT achieved the most
superior performance on the three datasets closely related to CCTV footage, UBI-Fights,
Movie Fights, and Crowd, demonstrating its effectiveness in environments most relevant
to the intended application. Furthermore, it also exhibited the best performance among the
proposed architectures in the additional validation dataset, Hockey Fights.

When examining the average anomaly detection accuracy (AUC for UBI-Fight and
ACC for the others) across the four datasets for the five proposed frameworks, the results
were as follows: VBiLT achieved 97%, MobileBiLT achieved 96.88%, DenseBiLT achieved
96.77%, CvtBiLT achieved 97.71%, and CvlBiLT achieved 98.13%. This shows that CvlBiLT
and CvtBiLT, which have high model complexity, perform the best. However, from a model
complexity perspective, the VBiLT and MobileBiLT frameworks, which use lightweight
models like ViT or MobileNet as backbones, are more effective choices. This indicates that
these models can achieve high accuracy with low computational complexity.

These results demonstrate that the proposed three-stage framework is highly useful
for image analysis in various conditions and environments. The performance evaluation in
this study provides an important benchmark for future research and development.

4.5. Exploring Limitations

Our approach demonstrates excellent performance in anomaly detection in everyday
CCTV footage. However, it is important to understand that it faces challenges in videos
with rapid motion (significant frame-to-frame differences). The primary objective of our
proposed network is anomaly detection in everyday CCTV footage. To validate this
objective, we utilized three datasets: UBI-Fights, Movie Fights, and Crowd. Additionally,
we included one dataset, Hockey Fights, with a different nature to examine the additional
detection accuracy. As evident from Tables 2 and 3, our proposed model outperforms
existing networks in three datasets (UBI-Fights, Movie Fights, and Crowd). However, for
the supplementary dataset, Hockey Fights, our model did not achieve better performance
compared to existing networks. This result arises from the rapid pace inherent in the hockey
games captured in the Hockey Fights dataset, where significant inter-frame disparities
facilitate effective detection, even in the absence of intricate models. These limitations
provide valuable insights for future research and improvements.

4.6. Ablation Study

The key strength of this architecture lies in the potent combination of the BiLSTM,
multi-head attention layer, and Transformer encoder. The BiLSTM and multi-head attention
layer excels in effectively handling short-term dependencies and intricately capturing the
local features of sequences. This enables a deeper understanding of each part of the
sequence, which is particularly useful in capturing dynamic elements, such as changes
over time.

On the other hand, the Transformer encoder is adept in processing long-term depen-
dencies in sequence data and is exceptional at capturing global patterns across the entire
sequence. This is beneficial in understanding the relationships between distant elements in
a sequence and analyzing data in a broader context.
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When these two layers are used in conjunction, the model can effectively capture
both short-term and long-term dependencies within sequence data, effectively integrating
them. This approach allows for a more accurate understanding of complex patterns and
relationships within the input sequence and prevents an over-reliance on specific patterns,
thus avoiding overfitting and enabling the model to make decisions based on finer details.
Additionally, this architecture enhances the model’s generalization capability, allowing
for more accurate predictions across various types of data and scenarios, especially in
processing time series data like videos.

To validate our approach, we separately configured and trained the BiLSTM and
multi-head attention layer (the second stage) and the modified Transformer encoder
layer (the third stage). The results of these ablation training sessions are presented in
Tables 4 and 5. Table 4 demonstrates the measurement of the AUC using the UBI-Fights
dataset, where we first evaluated all three stages together, followed by configurations of
only stages 1 and 3, and then stages 1 and 2. Table 5 assesses the accuracy using the Crowd
dataset in a similar manner.

As evidenced in Tables 4 and 5, the performance was most superior when all stages
were integrated, with the combination of stages 1 and 2 following closely. This indicates that
the temporal insight and multi-dimensional feature capture capabilities of the BiLSTM and
multi-head attention, when combined with the pattern analysis prowess of the modified
Transformer encoder, enabled a deeper understanding of the sequence data and more
accurate predictions. The results of these ablation experiments underscore the exceptional
performance of the combined layers, suggesting their utility in various sequence data
processing tasks, including video analysis and time series data handling.

Table 4. Comparative analysis of training results for networks configured with different stages using
the UBI-Fights dataset.

Network Whole Architecture Without Second Stage Without Third Stage

VBiLT 96.33 95.97 96.06
MobileBiLT 97.96 96.76 97.18

Table 5. Comparative analysis of training results for networks configured with different stages using
the Crowd dataset.

Network Whole Architecture Without Second Stage Without Third Stage

VBiLT 94.0 91.89 93.24
MobileBiLT 93.24 89.19 91.89

Additionally, to validate the effectiveness of the proposed Transformer encoder block,
we conducted further ablation studies. Experiments were performed on the UBI-Fights
dataset by varying the number of heads in the CvlBiLT architecture’s Transformer block.
The results are presented in Table 6. The best performance was observed with eight
heads, and a trend of diminishing performance was noted when the number of heads was
either too low or too high. Furthermore, to demonstrate the efficacy of relative position
embeddings, we conducted comparative experiments using the best-performing CvlBiLT
architecture, applying absolute position embeddings for comparison. The outcomes of
these experiments are detailed in Table 7. The results indicated that the application of
relative position embeddings outperformed the use of absolute position embeddings.
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Table 6. Results of performance measurement according to the variation in the number of heads.

Number of Heads AUC of CvlBiLT

2 96.76
4 98.24
8 98.56
12 97.78
16 97.73

Table 7. Performance comparison of absolute and relative position embeddings in the CvlBiLT
architecture.

Position Embedding UBI-Fights (AUC) Crowd (ACC)

Absolute 97.36 94.59
Relative 98.56 95.95

5. Conclusions

In conclusion, this paper presents a three-stage deep learning architecture for anomaly
detection in video surveillance, particularly focusing on CCTV footage. The architecture
begins with the extraction of features from video frames, utilizing a range of pre-trained
networks including Vision Transformer (ViT) and MobileNet. This approach allows for a
comprehensive and effective analysis of the video data, leveraging the strengths of these
varied networks.

The second stage integrates BiLSTM with multi-head attention, blending the benefits
of both techniques for effective temporal analysis. BiLSTM enhances the model’s ability to
understand temporal sequences by processing data in both the forward and backward di-
rections, while multi-head attention allows the model to concurrently process and integrate
multiple facets of the input sequence. This combination is particularly adept at handling
complex, time-evolving data in video sequences.

To address the challenges posed by long sequences, the third stage introduces a
modified Transformer encoder layer. This layer, utilizing relative position embeddings, is
adept at handling the dynamic nature of video data, capturing interactions across frames,
and enhancing the understanding of inter-frame dynamics. The Transformer encoder,
tailored to anomaly detection, further processes the output from the BiLSTM and multi-
head attention layers, refining it for the final classification.

The architecture concludes with a global maxpooling layer to distill key features, a
dropout layer to prevent overfitting, and a sigmoid operation for final anomaly classifica-
tion. The introduction of a fully connected layer further ensures precise classification based
on the architecture’s output.

In this research, the proposed framework was validated using multiple open datasets
containing various anomalous situations. The results demonstrate that it overcomes the
limitations of existing video anomaly detection networks, achieving high detection accuracy
and showing potential for application in real-time monitoring environments. This system
enhances the monitoring accuracy and efficiency of security camera systems like CCTV and
is applicable in diverse environments and situations, including scenarios without human
presence in the footage. This versatility stems from the framework’s ability to interpret
features across the entire video and the relationships between frames, making it suitable
for various scenarios and conditions.

Recognizing the need for further research in detecting different types of anomalies, fu-
ture studies will focus on enhancing the scalability of the proposed framework for broader
applications in various settings. This research is expected to significantly improve the
accuracy and scalability of video analysis in security camera systems like CCTV.
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