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Abstract: Conducting computational stress-strain analysis using finite element methods (FEM) is a
common approach when dealing with the complex geometries of atherosclerosis, which is a leading
cause of global mortality and complex cardiovascular disease. The considerable expense linked to
FEM analysis encourages the substitution of FEM with a considerably faster data-driven machine
learning (ML) approach. This study investigated the potential of end-to-end deep learning tools
as a more effective substitute for FEM in predicting stress-strain fields within 2D cross sections of
arterial walls. We first proposed a U-Net-based fully convolutional neural network (CNN) to predict
the von Mises stress and strain distribution based on the spatial arrangement of calcification within
arterial wall cross-sections. Further, we developed a conditional generative adversarial network
(cGAN) to enhance, particularly from the perceptual perspective, the prediction accuracy of stress
and strain field maps for arterial walls with various calcification quantities and spatial configurations.
On top of U-Net and cGAN, we also proposed their ensemble approaches to improve the prediction
accuracy of field maps further. Our dataset, consisting of input and output images, was generated by
implementing boundary conditions and extracting stress-strain field maps. The trained U-Net models
can accurately predict von Mises stress and strain fields, with structural similarity index scores (SSIM)
of 0.854 and 0.830 and mean squared errors of 0.017 and 0.018 for stress and strain, respectively,
on a reserved test set. Meanwhile, the cGAN models in a combination of ensemble and transfer
learning techniques demonstrate high accuracy in predicting von Mises stress and strain fields, as
evidenced by SSIM scores of 0.890 for stress and 0.803 for strain. Additionally, mean squared errors
of 0.008 for stress and 0.017 for strain further support the model’s performance on a designated test
set. Overall, this study developed a surrogate model for finite element analysis, which can accurately
and efficiently predict stress-strain fields of arterial walls regardless of complex geometries and
boundary conditions.

Keywords: finite element methods (FEM); cardiovascular disease; convolutional neural network
(CNN); U-Net; conditional generative adversarial neural network (cGAN); stress-strain field maps

1. Introduction

Atherosclerosis is a complex cardiovascular disease characterized by plaque accumu-
lation in the arterial walls, leading to the narrowing and hardening of the arteries. It is a
major cause of heart disease, stroke, and other cardiovascular diseases, making it one of the
leading causes of death worldwide. The disease is caused by genetic, environmental, and
lifestyle factors, including high cholesterol, high blood pressure, smoking, obesity, and dia-
betes [1–3]. To effectively combat this prevalent disease, it is imperative to develop a deep
understanding of its underlying mechanics, particularly in plaque development and rup-
ture. This study centers on unveiling the intricacies of stress and strain distribution within
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arterial walls, a crucial aspect in predicting and preventing plaque rupture. The mechanical
properties of the plaque, such as its stiffness and strength, are important determinants of
its stability and the risk of rupture. Therefore, predicting the stress-strain field maps of
the plaque can provide valuable insights into its mechanical behavior and help identify
regions that may be prone to rupture. Several studies have demonstrated the potential of
computational models and imaging techniques for predicting the stress-strain field maps of
atherosclerotic plaques and assessing their risk of rupture [4,5]. Cheng et al. [6] found that
maximum von Mises stress was significantly higher in ruptured plaques compared to stable
plaques. Therefore, predicting the von Mises stress could be an essential tool for preventing
plaque rupture and reducing the incidence of cardiovascular events. However, there exists
limited consideration of variability in arterial wall geometries and plaque characteristics.
It is essential to characterize how spatial variations in calcification affect stress and strain
distribution and present a novel angle in the biomechanical analysis of atherosclerosis.

The FEM, known as the finite element method, is the conventional numerical tech-
nique employed for stress-strain analysis of structures. It revolves around solving partial
differential equations to evaluate the system’s behavior [7–9]. Despite the widespread
use of FEM in simulating complex biomechanical phenomena, these simulations can be-
come computationally expensive and time-consuming, particularly when dealing with
highly nonlinear analyses or intricate geometries common in the study of atherosclerosis.
There has been a significant shift towards employing ML techniques to mitigate these
challenges, renowned for their computational speed efficiency and adeptness at navigating
complex spatial arrangements. These ML techniques serve as potent surrogate models,
aptly demonstrated in existing literature [10–19], providing a promising alternative to FEM
for predicting relevant quantities of interest in biomechanical studies. The integration of
ML in biomechanical research on atherosclerosis signifies a transformative step towards
more rapid and efficient analyses, fostering a quicker translation of research findings to
clinical applications. The transition ensures the maintenance of computational accuracy
and significantly reduces the computational resources and time required, presenting a more
streamlined and efficient approach to biomechanical analysis.

Madani et al. [20] presented a method for bridging FEM and ML for predicting the
von Mises stress distribution in arterial walls affected by atherosclerosis. The authors
utilized a FEM to simulate the mechanical behavior of arterial walls and generated a large
dataset of stress values for varying degrees of plaque build-up. The dataset was then
used to train an ML model that could predict stress values based on input parameters
such as plaque thickness and the diameter of the arterial lumen. Liu et al. [21] used a
CNN model to automatically segment atherosclerotic plaques in intravascular ultrasound
(IVUS) images. The authors used a dataset of IVUS images and achieved an accuracy of
90% in plaque segmentation. The segmentation results were then used to simulate the
mechanical properties of the plaque using FEM. The study showed that the mechanical
properties of the plaque were highly dependent on its morphology and composition.
Chau et al. [22] performed Optical Coherence Tomography (OCT) imaging of atherosclerotic
plaques in human cadaveric coronary arteries and used finite element analysis to assess
the mechanical properties of the plaques. They found that the fibrous cap’s thickness and
the lipid core’s size were important factors in determining the mechanical stability of the
plaque. Plaques with thinner fibrous caps and larger lipid cores were found to have higher
stress concentrations, which may contribute to plaque rupture. Cilla et al. [23] presented a
study on applying ML techniques to determine plaque vulnerability, an important factor
in predicting the risk of heart attack and stroke. The authors discuss the limitations of
traditional methods for assessing plaque vulnerability and the potential benefits of using
ML techniques to analyze patient imaging data. The study involved analyzing patients with
carotid artery disease, and the results show that ML techniques can effectively determine
plaque vulnerability. The authors used conventional ML algorithms, such as support vector
machines (SVM) and random forests (RF), to analyze imaging data and extract relevant
features. They also developed a new “plaque volume score” method combining different
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features to predict plaque vulnerability better. The results show that ML algorithms can
accurately predict plaque vulnerability, with an accuracy of up to 90%. The authors suggest
that these techniques can be used in clinical practice to improve risk assessment and
treatment planning for patients with carotid artery disease. While all these papers discuss
predicting stress distribution, none of them address the issue of how well their predictions
would hold up in the face of variability in arterial wall geometries, such as changes in
calcification angle, thickness, and number, or shifts in lumen location and fibrous thickness.
Our innovative approach considers the variability in calcification numbers while predicting
stress and strain in arterial walls.

This study aims to employ deep learning models for predicting stress and strain
distribution in arterial walls under blood pressure loading, specifically considering var-
ious spatial calcification distributions. Encoder-decoder networks, particularly U-Net
networks [24], have demonstrated effective image mapping due to their ability to capture
high-resolution details and low-level features by propagating context information from
lower to higher layers. Moreover, skip connections help prevent the vanishing gradient
problem during model training. Conversely, cGAN, which learns a mapping from an
observed image and random noise vector to an output image, is utilized for predicting
stress-strain maps using a U-Net generator architecture and a PatchGAN discriminator,
highlighting the superiority of cGAN in predicting strain maps of arterial walls com-
pared to the U-Net model, particularly from the perceptual perspective [25]. This research
implements deep learning models incorporating U-Net and cGAN, showcasing their gen-
eralization ability in predicting stress and strain maps of arterial walls. Moreover, we
demonstrate the benefits of using ensemble and transfer learning strategies for improved
accuracy. Impressively, our results display high accuracy even when trained on a mere
4000 images, which we achieve through data augmentation grounded in the underlying
physics of the issue. The structure of the manuscript is as follows: In Section 2, the proposed
methodology is discussed. Section 3 showcases the prediction results and analysis, while
Section 4 offers discussions and conclusions.

2. Materials and Methods
2.1. Generating Arterial Walls Model

Our training database comprises finite element simulations of different arterial geome-
tries and boundary conditions. Our collaborators provided clinical data obtained through
a two-step deep learning process for segmenting calcified coronary plaque in intravascular
OCT images. This method involved combining a U-Net-based model with a GAN to
effectively identify calcified plaques in OCT images. We utilized this segmentation data
to construct a 3D model of a calcified artery based on OCT data [26,27]. To streamline the
process and generate various artery geometries rapidly, we first developed a 2D parametric
model using Python scripting in Abaqus/Explicit software version 2019, drawing from the
simplified clinical data and our observations. Python scripts in Abaqus can automate repet-
itive tasks, customize the software’s behavior, and integrate it with other tools in a software
pipeline. For example, a script could generate a series of similar simulations with varying
parameters or post-process simulation results and generate customized visualizations. As
shown in Figure 1, we simplified the assumption that the cross-section consists of a series
of circles and splines. The specifications of the circles, including a lumen, fibrous, artery,
calcium deposits, and the amount of calcium, were randomly varied according to Table 1.
To produce calcification in a free-form shape, we began by selecting two circles as the inner
and outer boundaries of the calcification, each with a random radius. We then randomly
chose a calcification angle between 0 and 180 degrees. Next, we generated 10 points with
equal intervals within this angle on the calcification’s inner and outer boundaries. Finally,
we utilized spline tools in Python to connect all these points and form a closed surface as
the calcification. The number of calcifications may also be either one or two.
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Figure 1. Using segmentation data, a 3D model of a calcified artery was constructed based on OCT
data. A 2D parametric model was developed using Python scripting in Abaqus/Explicit software
to generate various artery geometries quickly. A simplified assumption of cross-sections consisting
of circles and splines was made. Circle specifications, such as lumen, fibrous, artery, and calcium
deposits, were randomly varied. Calcification was created by selecting two random circles as inner
and outer boundaries, with a random angle between 0 and 180 degrees. Ten points were generated
on inner and outer boundaries, and spline tools in Python were used to form a closed surface
for calcification.

Table 1. Features for random generation of idealized 2D artery geometry.

Features Symbol Range

Artery Outer Radius R 2 mm
Artery Inner Radius r 1.75 mm
Lumen Radius Lr 0.75 mm
Lumen Dislocation X Lx −0.25–0.25 mm
Lumen Dislocation Y Ly −0.25–0.25 mm
Number of Calcification Cn 1–2
Calcification Inner radius Cr 1–1.25 mm
Calcification Outer radius CR 1.3–1.5 mm
Calcification Angle Ca 0–180◦

2.2. Finite Element Method Simulation Database

This study considers a two-dimensional plane strain cross-section of an arterial wall,
depicted in Figure 2, where the material is assumed to be hyperelastic (Table 2). The FE
mesh used in the simulation is shown in Figure 2, and a four-node constant strain element
is discretized. To simulate the effect of blood pressure, a static pressure load of 140 mmHg
(18.7 kPa) [23] is applied to the boundary elements in the lumen, while nodes on the
outside boundaries are restrained from displacement. The problem is solved using Abaqus
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software version 2019 (Dassault Systems Simulia Corporation, Providence, RI, USA) [28],
and a typical converged stress and strain distribution is shown in Figure 2.
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Figure 2. 2D arterial wall cross-section geometry meshed with four-node constant strain element
and corresponding von Mises stress and strain distribution. The maximum stress and strain are
considered 300 kPa and 0.45, respectively.

Table 2. Material properties of arterial wall features [27].

C10 (MPa) C01 (MPa) C11 (MPa) C20 (MPa) C02 (MPa) C30 (MPa) C03 (MPa)

Artery 0.108 −0.101 −0.179 0.088 0.062
Fibrous 0.040 0.003 0.0297
Calcium −0.495 0.506 1.193 3.637 4.737

2.3. Models and Methods
2.3.1. U-Net Architecture

By executing the FEM model on a range of arterial wall geometries, one can acquire a
collection of input and output image data. This data can then be utilized to train a deep
learning model in a supervised learning manner. An encoder-decoder network maps the
input image to the output stress and strain map [29], depicted in Figure 3a. The binary maps
provided as input depict the positions of calcium, lumen, and fibrous tissue. The encoder-
decoder network converts these input images into a latent space with lower dimensions,
subsequently mapped back to the stress and strain field. This approach assumes that the
input and target spaces share a common latent space. The U-Net architecture [24], based on
the FEM mapping data of images to stress and strain field, has been utilized for this purpose.
The weights of architecture are trained through learning. Initially introduced in 2015 for
medical image segmentation, the U-Net architecture is named after its U-shape, consisting
of an encoder and a decoder. It has proven effective in capturing latent representations
for various types of images. The encoder extracts feature from the input image using
convolutional and max pooling layers.

In contrast, the decoder generates the output segmentation map using up-convolutional
and concatenation layers. One of the significant advantages of the U-Net architecture is
its ability to produce high-quality segmentation results even when trained on a limited
amount of data. U-Net has been widely used in various medical image segmentation
tasks, such as segmenting brain tumors, retinal blood vessels, and cell membranes. The
architecture has also been extended and modified for other applications, such as semantic
segmentation, instance segmentation, and object detection. The standard architecture in
this study incorporates contracting and expanding layers along with skip connections to
propagate context information and improve output resolution. The U-Net architecture uti-
lized here is a slightly modified version of the original design. The encoder section consists
of six repeating blocks, each containing a 2 × 2 max pooling operation, two consecutive
3 × 3 2D convolutions (except for the first and last blocks), batch normalization, and ReLU
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activation. The first decoder block employs a transpose convolution layer, while the last
block consists of two consecutive convolution-batch norm-ReLU layers without a transpose
convolution. The encoder and decoder blocks are followed by a final 1 × 1 convolutional
layer, which reduces the 64-channel decoder output to a single channel. During weight
training, the loss function is the weighted mean squared error (MSE) between the predicted
and true von Mises stress and strain maps derived from the training data. The U-Net
architecture was implemented using the TensorFlow and Keras libraries [30]. Figure 3b
illustrates a diagram of the modified U-Net architecture.
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The training loss function is defined using the MSE, which is denoted as:

MSE = L[Y, f (X)] =
1
n

n

∑
i=1

[Y − f (X)]2 (1)
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where X denotes the input image describing the 2D arterial wall images, n denotes the
batch size, f (X) indicates the prediction of the U-Net model, and Y denotes the output
images. Verification was performed to prevent overfitting during every training epoch and
was also conducted in our network to select the best model without overfitting.

2.3.2. cGAN Architecture

The Generative Adversarial Network (GAN) is a deep neural network type that gener-
ates new data based on the data statistics of the training set [31]. GANs have two essential
components, the generator and the discriminator, which are trained against each other
using game theory. The generator produces candidates that the discriminator evaluates.
Though GANs were originally developed for unsupervised learning, incorporating labels
as constraints can result in a subcategory known as conditional GANs (cGANs), as depicted
in Figure 4. Our research focuses on developing a deep learning model that utilizes a
conditional generative adversarial network (cGAN) and paired image data [32,33]. The
cGAN model comprises two crucial components: the generator, known as U-Net, and the
discriminator, referred to as PatchGAN [32]. The role of the generator is to take geometric
images (labels or constraints) as input and produce field images of interest by incorporating
random noise. Subsequently, the discriminator compares these generated field images to
authentic images obtained from finite element modeling (FEM). The generator’s objective
is to increase the error rate of the discriminator.
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Figure 4. Workflow for the proposed method begins with a random generator using Python scripting
to produce 2D arterial wall geometry images (256 × 256). Next, a FEM analysis is conducted to
obtain arterial walls’ true strain field information under blood pressure. ML model called Conditional
Generative Adversarial Network (cGAN), which includes a generator U-Net and a discriminator
PatchGAN, is trained to predict strain fields from geometry images. The generator generates strain
field maps using the geometry images as input. The discriminator then compares these generated
images with real FEM-derived images. A well-trained model can accurately predict strain field maps,
validated against high-fidelity FEM models and arterial walls with new geometries.

In contrast, the discriminator aims to optimize its ability to distinguish between
fake images generated by the generator and real ones. To accomplish this, we utilize
TensorFlow [30], a versatile machine learning framework, to perform calculations and
implement the generative adversarial network (GAN) architecture for translating arterial
wall geometries into strain fields [32]. Our specific model employs U-Net as the generator
and PatchGAN as the discriminator. U-Net generates synthetic strain field images based
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on arterial wall geometries, and PatchGAN evaluates the authenticity of these generated
field images by comparing them to real strain field images. Our generator U-Net shares
similarities with the CNN models discussed earlier, and the generator loss function is
defined as:

Genloss = λ × ganloss + L1_loss (2)

The variable gan_loss represents the sigmoid cross-entropy loss between the generated
images and an array of ones. At the same time, L1_loss calculates the mean absolute error
between the generated and target images. It should be noted that (2) is equivalent to (1)
when λ is set to 0 and L1_loss is replaced by L2_loss, which calculates the mean squared
error. We tried several hyperparameters, such as λ, with values ranging from 0.005 to
0.05. We saved the best models’ weights to be imported to the new training model. We
experimented with different architectures and numbers of layers with different filter sizes
for the discriminator architecture and presented our final architecture. The discriminator
PatchGAN comprises five layers, which have around 11,000,000 trainable weights. The
model receives two inputs and concatenates them using the concatenate layer. Afterward,
the concatenated input is processed through five Conv2D layers with different filter sizes
(64, 128, 256, 512, and 1024), a stride value of 2, and the same padding scheme. An activation
function called LeakyReLU [34] is applied to the output tensors with an alpha value of 0.25.
Finally, the last convolutional layer’s output is sent to another Conv2D layer with a filter
size of 1, a stride value of 1, and the same padding scheme, which generates a single output
value. The l1_regularizer is utilized as a kernel regularizer for each Conv2D layer, with a
value of 10−4. PatchGAN examines the generated field images by categorizing individual
patches in the image as either real or fake. The Discriminator loss function is defined as:

Dis_loss = real_loss + generated_loss (3)

The variable real_loss represents the loss calculated using the sigmoid cross-entropy
function [35] between real images and an array of ones. On the other hand, generated_loss
represents the loss calculated using the sigmoid cross-entropy function between the gener-
ated images and an array of zeros. Our model is trained for 500 epochs, using a batch size
of 4, to achieve convergence despite the common training instability observed in GANs.
However, conditional GANs (cGANs) are more stable when the input labels are properly
constrained. We carefully selected the number of training epochs to ensure that the gen-
erator learns sufficient information without the discriminator consistently classifying the
generated images as fake [36]. To determine the appropriate number of training epochs,
we assessed the predictions of our ML model on the test set.

2.3.3. Ensemble Learning

Combining multiple models in machine learning, known as ensemble learning [37],
can significantly enhance predictive accuracy and robustness. This technique is especially
effective when applied to U-Net and cGAN architectures. One method for implementing
ensemble learning with U-Net/cGAN involves training various instances of the same
architecture using different hyperparameters or random seeds. By averaging the predictions
of these models, errors from any individual model can be minimized, leading to improved
overall accuracy. Another approach explored in this paper involves combining different
U-Net and cGAN generator architectures in an ensemble. An instance of an ensemble could
comprise a conventional U-Net paired with a customized variation featuring supplementary
skip connections. Alternatively, another ensemble may increase the number of filters
in the convolutional layers of a standard U-Net and cGAN generator architectures by
32 channels. While this approach may improve feature extraction and result in more
resilient predictions, it would also augment the model’s parameter count and necessitate
additional computational resources during training and inference. By capitalizing on the
unique strengths of diverse U-Net and cGAN architectures through ensemble learning, it is
frequently feasible to attain superior outcomes compared to solitary architecture.
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This study employed two ensemble strategies for both U-Net and cGAN. The first
strategy involved using the same U-Net architecture but with two different dropout rates
in the layers 0.2 and 0.35. After training the models with these rates, we averaged their
results. This method was similarly applied to the cGAN generator architecture. The second
strategy involved utilizing two different U-Net architectures, one with 10 layers and the
other with 12 layers, as previously mentioned. We added a 32-channel layer at both the
beginning and end of the network. Each model was trained with three dropout rates: −0.2,
0.3, and 0.35. In total, we trained 6 models using this approach. This same methodology
was also applied to the cGAN architecture.

2.3.4. Deep Transfer Learning

Using transfer learning [38], the previously learned weights of a deep learning model
can be used as a starting point to retrain the same model on a new dataset, leading to
faster convergence. To address the arterial walls problem, a combination of U-Net and
cGAN architectures was utilized. The training process involved using 2D cross-section
images along with their corresponding von Mises stress maps. This approach aimed
to minimize the training requirements for a separate network that predicts strain maps.
Because generating different output maps is costly, transfer learning was employed as
a more efficient approach to predict strain maps. The von Mises stress-trained model is
utilized to predict the strain map.

2.4. Image Quality Metrics and Statistical Analysis

We used SSIM [39] to measure the accuracy of our deep-learning models. In computer
vision tasks, like image classification or object detection, the model’s accuracy is often
evaluated using metrics like precision, recall, and F1 score. However, these metrics do not
provide information about the visual quality of the output images or the degree to which
the model’s predictions match the ground truth. SSIM can help fill this gap by measuring
the structural similarity between the output and ground truth images. The output images
from CNN can be compared to the ground truth images using SSIM, and the resulting
value can be used to evaluate the model’s accuracy. The range of SSIM is between 0 and
1, where a value of 1 indicates perfect similarity between two images, while a value of 0
indicates no similarity. The measure between two images x and y of common size N × N is:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (4)

where x and y are the two images being compared; µx and µy are the mean pixel intensities
of images x and y; σ2

x and σ2
y are the variances of pixel intensities in images x and y; σxy

is the covariance of pixel intensities between x and y; and c1 and c2 are constants used
to stabilize the division, typically c1 = (k1L)2 and c1 = (k2L)2, where L is the dynamic
range of the pixel values (for example, 255 for 8-bit grayscale images) and k1 and k2 are
constants that control the relative contribution of the luminance and contrast terms to the
final SSIM score. The SSIM formula considers the compared images’ luminance, contrast,
and structure, producing a value between 0 and 1.

3. Results
3.1. Stress Map Prediction Accuracy

This section assesses the precision of matching 2D cross-section images of arterial
walls with their corresponding von Mises stress map. To enhance the dataset, we leverage
the physics of the problem by applying horizontal and/or vertical flipping to both the
input images and output maps. This four-fold data augmentation is accomplished through
three flipping operations: horizontal flip, vertical flip, and a combination of horizontal and
vertical flip, as demonstrated in Figure 5.
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After data augmentation, the training data consists of 4000 images of various spatial
arrangements of calcium in the arterial wall and their corresponding von Mises stress maps
for each model case (train: test 85–15%). Figure 6a,b displayed the actual (simulated via
FEM) and predicted von Mises stress maps using U-Net and cGAN. In Figure 6a, a test data
image is presented, followed by a comparison between the real stress map, calculated using
FEM, and those generated by U-Net and cGAN. CGAN provides a superior prediction
of von Mises stress compared to U-Net, achieving an SSIM of 0.837 and a mean error
percentage of 6.80, whereas U-Net attains an SSIM of 0.831 and a mean error percentage of
8.3. Figure 6b compares the stress map predictions made by the basic U-Net model and
cGAN and the best U-Net and cGAN models obtained through ensemble techniques. The
results for all models, including those using ensemble methods, are presented in Table 3.
According to the table, the best ensemble model for U-Net was achieved by combining
different U-Net architectures, as previously described. In this study, we utilized one U-Net
model with 8 layers and another with 10 layers (by adding a layer with 32 channels at
the beginning and end of the networks). The ensemble of these networks yielded the best
results for U-Net, with a mean SSIM of 0.854. For cGAN, we applied the same technique
to the generator layers and then combined it with a basic cGAN. The ensemble of two
architectures also resulted in the best performance for cGAN (mean SSIM of 0.890). We then
selected the best models and compared their predictions to those of the basic U-Net model
and cGAN in Figure 6b. The ensemble technique for cGAN yielded superior predictions
compared to the other models in this specific case, with an SSIM of 0.888.

Notably, the deep learning approach significantly reduces computational effort com-
pared to FE results. While Abaqus requires approximately 2 min for a single analysis,
our trained U-Net model predicts stress on a laptop CPU in less than a second. Our deep
learning model has been trained on a GPU, specifically the NVIDIA GEFORCE RTX3090,
within a Jupyter notebook environment. The utilization of this GPU significantly enhances
computational speed compared to relying solely on a CPU. When running on GPU, each
analysis takes approximately 0.06 s to complete.
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Figure 6. Von Mises stress map predicted from U-Net and cGAN architecture is based on 1000 FEM
analyses of 2D arterial wall images, augmented to 4000 training images, (a) Test data image with
true stress map (FEM) compared to U-Net and cGAN-generated maps. cGAN outperforms U-Net
with SSIM 0.837 and 6.80% mean error. In comparison, U-Net has SSIM 0.831 and 8.3% mean error,
(b) Comparison of stress map predictions between the best ensemble models and the basic U-Net
and cGAN models, highlighting the superior performance of the ensemble cGAN (SSIM = 0.888).
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Table 3. Different approaches for predicting von Mises stress maps on the testing data.

#of Models Metrics Min Max Mean

U-Net 1
MSE 0.008 0.039 0.019
SSIM 0.773 0.902 0.842

cGAN 1
MSE 0.008 0.036 0.017
SSIM 0.787 0.895 0.850

Ensembling (U-Net)
2

MSE 0.008 0.038 0.018
SSIM 0.771 0.903 0.845

2 × 3
MSE 0.007 0.038 0.017
SSIM 0.778 0.906 0.854

Ensembling (cGAN)
2

MSE 0.005 0.023 0.010
SSIM 0.821 0.909 0.884

2 × 3
MSE 0.003 0.024 0.008
SSIM 0.823 0.924 0.890

3.2. Strain Map Prediction Accuracy

This section evaluates the accuracy of mapping 2D cross-sectional images of arterial
walls to their corresponding strain maps. Figure 7a,b showcased the actual (simulated via
FEM) and predicted strain maps using U-Net and cGAN. Figure 7a displays a test data
image, then compares the actual strain map (calculated using FEM) and the ones generated
by U-Net and cGAN. U-Net outperforms cGAN in strain prediction, achieving an SSIM of
0.822 and a mean error percentage of 6.35, while cGAN achieves an SSIM of 0.803 and a
mean error percentage of 5.34. Figure 7b compares strain map predictions made by the basic
U-Net model and cGAN and the best U-Net and cGAN models obtained through ensemble
techniques. The results for all models, including those utilizing ensemble methods, are
presented in Table 4. The best ensemble model for U-Net is achieved by combining different
U-Net architectures, as previously described. We employed one U-Net model with 8 layers
and another with 10 layers (adding a layer with 32 channels at the beginning and end of the
networks). This ensemble yields the best results for U-Net, with a mean SSIM of 0.830. For
cGAN, we applied the same technique to the generator layers and then combined it with a
basic cGAN. This ensemble of two architectures also results in the best cGAN performance
(mean SSIM of 0.803). We then chose the best models and compared their predictions to
those of the basic U-Net model and cGAN in Figure 7b. The ensemble technique for U-Net
produces superior predictions in this case, with an SSIM of 0.833. Based on the numerical
results we observed here and more, though cGAN and its ensemble version did not deliver
the best numbers in terms of SSIM, they do have the best performance visually.

In Table 4, we display the SSIM and MSE values for the U-Net and cGAN models,
which were trained using pre-trained weights from U-Net and cGAN models based on von
Mises stress data. It was observed that both models led to an increase in SSIM and a decrease
in MSE. Additionally, Figure 8 compares the average SSIM and MSE values for stress and
strain between the actual and predicted stress-strain maps across all 600 validation images,
substantiating the high precision of our model’s predictive capabilities. In Figure 8a, we
compared the MSE of predicted von Mises stress maps among six networks: a simple
U-Net, an ensemble method with various hyperparameters, an ensemble using two distinct
U-Net architectures, a simple cGAN, an ensemble method with various hyperparameters in
the cGAN generator model, an ensemble using two distinct cGAN generator architectures.
The box plots reveal that employing an ensemble with two cGAN architectures results in a
lower MSE than other models. Moreover, Figure 8b indicates that the SSIM of an ensemble
cGAN with two generator architectures is superior. Figure 8c examines the MSE of eight
strategies for predicting strain maps. A comparison of the U-Net and cGAN with a basic
network, ensembles, and transfer learning reveals that an ensemble method with various
hyperparameters in the cGAN generator model exhibits a narrower MSE range than other
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approaches. Concerning the SSIM of predicted strain maps, Figure 8d illustrates that an
ensemble using two distinct U-Net architectures outperforms other methods.
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Figure 7. Strain map predicted from U-Net and cGAN architecture is based on 1000 FEM analy-
ses of 2D arterial wall images, augmented to 4000 training images, (a) Test data image with true
strain map (FEM) compared to U-Net and cGAN-generated maps. cGAN outperforms U-Net with
SSIM 0.803 and 5.34% mean error. In comparison, U-Net has SSIM 0.822 and 6.35% mean error,
(b) Comparison of strain map predictions between the best ensemble models and the basic U-Net and
cGAN models, highlighting the superior performance of the ensemble U-Net (SSIM = 0.833), also,
cGAN demonstrated superior performance in detecting higher strain values compared to U-Net, as
highlighted by the black dashed box.
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Table 4. Different approaches for predicting strain maps on the testing data.

#of Models Metrics Min Max Mean

U-Net 1
MSE 0.0120 0.037 0.022
SSIM 0.750 0.866 0.814

cGAN 1
MSE 0.010 0.029 0.019
SSIM 0.751 0.842 0.793

Ensembling (U-Net)
2

MSE 0.009 0.034 0.019
SSIM 0.800 0.877 0.825

2 × 3
MSE 0.009 0.025 0.018
SSIM 0.8153 0.877 0.830

Ensembling (cGAN)
2

MSE 0.011 0.026 0.017
SSIM 0.785 0.839 0.800

2 × 3
MSE 0.011 0.021 0.017
SSIM 0.790 0.839 0.803

Transfer Learning
(U-Net)

MSE 0.012 0.029 0.020
SSIM 0.790 0.868 0.820

Transfer Learning
(cGAN)

MSE 0.010 0.029 0.019
SSIM 0.760 0.842 0.794
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of all test data for prediction Stress maps using U-Net, Ensembling with same U-Net and different
hyper parameters, and Ensembling with two U-Net architectures, cGAN, Ensembling with same
cGAN generator model and different hyper parameters, and Ensembling with two cGAN generator
architectures, (c) MSE of all test data for prediction Strain maps using U-Net, Ensembling with
same U-Net and different hyper parameters, ensembling with two U-Net architectures, U-Net using
transfer learning, cGAN, ensembling with same cGAN generator and different hyper parameters,
ensembling with two cGAN generator architectures, and cGAN using transfer learning (d) SSIM
of all test data for prediction Strain maps using U-Net, Ensembling with same U-Net and different
hyper parameters, Ensembling with two U-Net architectures, U-Net using transfer learning, cGAN,
ensembling with same cGAN generator and different hyper parameters, ensembling with two cGAN
generator architectures, and cGAN using transfer learning.

4. Discussion

In summary, this research aims to explore the potential of deep learning tools in
predicting stress-strain fields within 2D cross sections of arterial wall geometries, which
can replace the traditional FEM method. To establish a relationship between the spatial
distribution of calcification in arterial wall cross-sections and the von Mises stress and
strain fields, two ML networks were investigated. The first network utilized a U-Net
architecture within a CNN model, while the second employed a cGAN. The trained models
can accurately predict stress-strain field maps for arterial walls with varying quantities and
spatial configurations of calcification, which is a significant achievement. To generate the
training dataset, a Python code was utilized to create various shapes of arterial walls with
randomized features such as location, angle, thickness, number of calcifications, lumen area
location, and diameters, drawing from the simplified clinical data and our observations. The
dataset consists of input and output images obtained by applying boundary conditions and
extracting stress-strain field maps. The trained U-Net models produce precise predictions
of the von Mises stress and strain fields, with SSIM of 0.854 and 0.830 and MSE of 0.017
and 0.018 for stress and strain, respectively, on a held-out test set.

Additionally, the stress and strain data-trained cGAN model outperforms the CNN
model in prediction accuracy, demonstrating SSIM of 0.890 and 0.803 and MSE of 0.008 and
0.017 for stress and strain, respectively. However, the utilized image quality metrics have
limitations. They cannot encompass all the image perception details significant for human
visual systems. We expect the performance of cGAN to be evaluated more accurately and
fairly if a comprehensive metric could be designed in the future.

This research demonstrates the ability of a surrogate model for finite element analysis
to accurately predict stress-strain fields of arterial walls, utilizing 2D cross-sectional images.
Furthermore, we showcased the numerous benefits of utilizing ensemble and transfer
learning methodologies to achieve superior levels of precision. By combining multiple
models, an ensemble approach can significantly enhance predictive performance, as the
diverse models can compensate for each other’s weaknesses and amplify their strengths.
On the other hand, transfer learning can leverage the knowledge gained from a pre-
trained model and apply it to a new task with a limited amount of data. This approach
can drastically reduce the required training and improve the model’s performance on
the new task. Our findings indicate that by ensembling the same U-Net with various
hyperparameters, the mean SSIM across all testing data can be boosted from 0.814 to 0.825.

Moreover, by incorporating an additional layer into the standard U-Net and training
two models thrice, we achieved the highest SSIM of 0.830 for predicting the strain map.
Transfer learning was utilized in addition to the von Mises stress-trained model to forecast
strain maps. By comparing the loss of a U-Net model trained from scratch to that of a
pretrained U-Net model trained with von Mises stress data over 100 epochs, it was noted
that both models displayed convergence and exhibited similar behavior during training.
Despite this, the transfer learning model demonstrated quicker convergence and produced
an average SSIM of 0.820 for all test data, outperforming a U-Net trained from scratch.
We employed a cGAN for stress and strain map predictions and compared the outcomes
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with those derived from a U-Net. The optimal stress map predictions were attained by
assembling two generator architectures in the cGAN, achieving an SSIM of 0.890 (Table 3).
Despite this, U-Net demonstrated superior performance in strain prediction, obtaining the
highest SSIM of 0.830 when combined with two U-Net architectures. A comparison of the
SSIM and MSE for cGANs trained with transfer learning and those trained from scratch
revealed that transfer learning could marginally enhance SSIM from 0.793 to 0.794 while
maintaining the same MSE. By incorporating ensemble and transfer learning techniques,
our experiments demonstrated that we could achieve exceptional results even in scenarios
with limited data and challenging problems.

In upcoming studies, transfer learning could predict additional properties, such as dis-
placement or distribution maps of arterial walls, since they share comparable distribution
color patterns with stress and strain maps. Although this study focused on two-dimensional
situations, the methodology presented can be extended to predict stress and strain dis-
tribution in arterial walls by utilizing a three-dimensional variant for CNN training and
testing. Additionally, the proposed approach can estimate other arterial wall properties.
It is worth noting that this work did not incorporate lipids or other tissues in the arterial
wall geometry. However, these can be easily included using Python scripting in Abaqus.
Expanding the model to include multiple tissues and exploring additional properties, such
as arterial wall displacement and deformation, would be valuable for future work. Another
potential area of investigation could be incorporating stenting in the simulation to predict
arterial wall deformation.

5. Conclusions

In conclusion, this research has demonstrated the framework and accuracy of deep
learning tools in predicting stress-strain fields within 2D cross sections of arterial wall,
which has the potential to replace the traditional finite element method. The proposed
U-Net-based fully convolutional neural network and conditional generative adversarial
network have shown high accuracy in predicting stress and strain maps of arterial walls,
particularly from the perceptual perspective. The ensemble and transfer learning strategies
have further improved the prediction accuracy of field maps. The generated training
dataset, which utilized a Python code to create various shapes of arterial walls with
randomized features, has enabled the models to accurately predict stress-strain field maps
for arterial walls with varying quantities and spatial configurations of calcification. Overall,
this research has significant implications for improved cardiovascular risk assessment and
highlights the potential of deep learning tools in medical image analysis.
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