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Abstract: Sound speed reconstruction has been investigated for quantitative evaluation of tissue
properties in breast examination. Full waveform inversion (FWI), a mainstream method for con-
ventional sound speed reconstruction, is an iterative method that includes numerical simulation
of wave propagation, resulting in high computational cost. In contrast, high-speed reconstruction
of sound speed using a deep neural network (DNN) has been proposed in recent years. Although
the generalization performance is highly dependent on the training data, how to generate data for
sufficient generalization performance is still unclear. In this study, the quality and generalization
performance of DNN-based sound speed reconstruction with a ring array transducer were evaluated
on a natural image-derived dataset and a breast phantom dataset. The DNN trained on breast
phantom data (BP-DNN) could not reconstruct the structures on natural image data with diverse
structures. On the other hand, the DNN trained on natural image data (NI-DNN) successfully
reconstructed the structures on both natural image and breast phantom test data. Furthermore, the
NI-DNN successfully reconstructed tumour structures in the breast, while the BP-DNN overlooked
them. From these results, it was demonstrated that natural image data enables DNNs to learn sound
speed reconstruction with high generalization performance and high resolution.

Keywords: breast cancer; deep learning; natural image; numerical simulation; ultrasound com-
puted tomography

1. Introduction

Ultrasound imaging systems transmit ultrasound into the body and reconstruct cross-
sectional images based on the information received from the scattering wave. They are
commonly used in clinical situations because they are applicable in real-time, are cost-
effective compared to X-ray CT and MRI, and do not require a dedicated room. B-mode
imaging is the most popular and widely used ultrasound-based imaging technique. This
method uses the nature of wave interference to reconstruct a map of scattering intensity.
The intensity values of B-mode images are relative values based on a spatial gradient of
the acoustic impedance of the tissue. Therefore, B-mode is a qualitative imaging method,
limiting its diagnostic potential [1–4]. If implemented, quantitative imaging will help assess
the efficacy of anticancer drugs on tumours over time and reduce operator-dependent
inaccuracy in area and volume measurements [5–7].

In quantitative ultrasound imaging for the examination of breast cancer, sound speed
imaging techniques using a ring array transducer have been investigated [8–20]. Greenleaf
et al. [8] demonstrated the potential for detecting tumours in the breast by sound speed re-
construction based on transmitted waves, taking advantage of the fact that the tumour site
is stiffer and has higher sound speed than other soft tissues. Subsequently, methods using
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ray approximation [9,10], diffraction tomography that considers refraction and diffrac-
tion [11–13], and full waveform inversion (FWI) that directly considers the wave equation
have been proposed for higher-quality (high-resolution and low-artifact) images [14–20].
Currently, methods based on FWI are mainstream as high-quality reconstruction methods
based on physics.

On the other hand, FWI faces several challenges in its clinical application. One is the
issue of computational cost: FWI is a method that optimises the sound speed distribution
to create an observed signal in numerical simulations close to the real signal [14]. This
optimisation process includes iterative calculations of the gradient method. To compute
a gradient once, it is necessary to solve the forward problem of sound wave scattering
twice. Therefore, the computational cost for convergence is significant and reconstruction
cannot be carried out in real-time [16]. In addition, the problem is an inverse problem for a
non-linear operator and has many local solutions [21]. Therefore, careful tuning is required
in the design of the initial solution and regularisation parameters for implementation.
These problems limit the clinical application of FWI.

Meanwhile, deep neural networks (DNNs) have been investigated for medical imaging
application in recent years [22,23]. DNNs operate at high speed after training. Thus, the
high-speed reconstruction of sound speed distribution using DNNs has been investigated.
Several applications of DNNs in sound speed reconstruction have also been studied and
it has been reported that sound speed distributions can be reconstructed from observed
signals [24–26]. Fan et al. [24] and Prasad et al. [25] reported that reconstruction with DNNs
trained on datasets generated by numerical simulation can be of higher quality than those
with FWI, and that the DNNs are robust against noise. In addition, Feigin et al. [26] showed
that reconstruction is possible even by signals obtained from single linear array transducer.
These studies have shown promise for practical applications of sound speed reconstruction
using DNNs.

The apparent performance of DNNs can vary significantly depending on how the
training data and test data are chosen [27]. Therefore, DNNs require additional consid-
erations compared to model-driven methods such as FWI. It can be expected that DNNs
will show high performance when the training data contain the patterns of the test data.
Conversely, there is a concern that performance may be significantly degraded when the
training data do not contain the patterns of test data [28]. In previous studies, Prasad
et al. [25] used numerical mediums composed of discs for training and test data. Feigin
et al. [26] used numerical mediums composed of ellipses as training data and tested them on
both numerical and physical phantoms of the same geometry. Fan et al. [24] used numerical
breast phantoms for training data and tested on similar phantoms. Such evaluation systems
may not accurately evaluate the generalization performance to out-of-distribution data.

From this viewpoint, Jush et al. [28] have examined how the performance of sound
speed reconstruction by DNNs depends on the data domain. They showed that a DNN
trained on breast phantom data performed poorly on elliptical data; similarly, a DNN
trained on elliptical data performed poorly on breast phantom data. This result suggests
that when DNNs are trained on datasets with limited patterns, such as breast phantom
data and elliptical data, they do not perform well on data outside their domain. As
a countermeasure to this low generalization performance, the mixing several types of
datasets is proposed. However, this approach requires individual consideration for each
application to determine the type and number of datasets to be prepared.

Typical breast datasets are produced by artificially assigning sound speeds to image
data such as MRI images [20,24,28,29]. However, they do not necessarily correspond to the
true sound speed of the tissue. In addition, since DNNs are trained to fit the domain of
the training data, there is a risk wherein the output is predicted to have similar features to
the artificial training data. Therefore, if estimation results are subjectively valid, there is
a risk that they may not have physically meaningful sound speed. Another issue is data
imbalance [30]. The main purpose of breast examination is to detect abnormal structures
such as tumours, rather than normal tissue structures. However, data on such abnormal
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structures are rare compared to normal structures, and it is difficult to collect enough data.
Abnormal structures that appear less frequently are less important in training and are
therefore expected to be inferior to the imaging ability of normal structures that appear
more frequently [31].

For these reasons, there is a need to develop a single training dataset that contains
sufficiently diverse patterns and achieves high generalization performance for unknown
patterns, such as tumours. For this need, we propose a method to produce training data
based on natural images [32–35]. There are many publicly available datasets of natural
images, and their structures are far more diverse than the ones produced from breast
phantoms or ellipse combinations. By utilizing these diverse structures in the training
dataset’s sound speed distribution, it may be possible to produce a single training dataset
that leads to high generalization performance.

From the above, this study aims to develop a dataset based on natural images for a
DNN that solves an inverse problem of sound speed reconstruction from observed signals.
In addition, we aim to evaluate the generalization performance of the DNN trained on the
natural image dataset in comparison to the case of the breast phantom dataset.

2. Materials and Methods
2.1. Generation of Sound Speed Distribution Datasets from Breast Phantom Data

Lou et al. [29] developed an open dataset of three-dimensional breast phantoms that
can be used for optical and acoustic imaging. This dataset is based on MRI data and has
an anatomically realistic breast structure with segmentation for each tissue. The dataset
consists of data from three subjects with different breast densities. These data are three-
dimensional and many 2D cross-sections can be extracted to produce training data. Each
voxel is assigned an index indicating the tissue it belongs to. In this study, sound speed
distributions were produced from the breast phantom data by the following procedures.
First, sound speeds of 1515, 1478, 1615, and 1584 m/s were assigned for fibro-glandular
tissue, fat, skin layer, and blood vessel, respectively [29,36]. The 1332 data sliced in the
coronal plane were randomly split into training, validation, and test datasets in a ratio
of 8:1:1. During training, the number of training data was increased to 80,000 by data
augmentation through random horizontal flips and rotations at random angles. In addition,
the breast phantom data were rescaled by bilinear interpolation to make the long sides of
the breast data equal to the inner diameter of the ring array transducer.

2.2. Generation of Sound Speed Distribution Datasets from Natural Images

To produce training data in a medium rich in diverse patterns, sound velocity distri-
butions were produced from a Google Open Images Dataset, which is one of the natural
image datasets [32]. A total of 81,000 data pairs (training set: 80,000, validation set: 1000)
were generated. The images were randomly rotated, cropped so that only the inner regions
of the ring remained, and then divided into RGB channels. For each grid in the R channel,
the brightness value (0–255) was assigned to a sound speed according to the following
formula to generate a sound speed distribution.

c = cmin + s
(I − Imin)

(Imax − Imin)
(cmax − cmin), (1)

where cmin, cmax are the minimum and maximum values of the sound speed; I is the
brightness value; Imin, Imax are the minimum and maximum of the brightness value;
s ∈ (0, 1) is a parameter for scaling. The sound speed range [cmin, cmax] was set to
[1382, 1766] m/s, which is a doubling of the range of sound speed in biological soft tissues
from 1478 m/s in fat, which has low sound speed, to 1670 m/s in ligaments, which has high
sound speed [36]. s was sampled from a uniform distribution in the interval (0,1) for each
image individually and was introduced to make the generated sound speed distribution
more diverse.
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2.3. Computation of the Observed Signals

Estimation of the sound speed distribution from the observed signals is an inverse
problem. Hence, it is necessary to obtain observed signals corresponding to the sound
speed distribution produced in the previous section for the dataset. The observed signals
are obtained by solving the forward problem of scattering of sound waves. This section
describes how to discretise the Helmholtz equation and solve the forward problem. The
scattering of sound waves in a sound speed inhomogeneous medium is represented by the
Helmholtz equation as follows. (

∇2 +
ω2

c2

)
p = −s, (2)

where c is the sound speed, p is the pressure field, s is the wave source, and ω is the
angular frequency. Let Nx and Ny be the number of grids in the x and y directions in the
two-dimensional space, the discretized Helmholtz equation can then be expressed by the
following equation.

AP = −S, (3)

where A is the (NxNy × NxNy) matrix of discretized coefficients in parentheses on the left
side of Equation (3) that considers the absorbing boundary conditions, P is a discretized
pressure field vector with (NxNy × 1) components, and S is a (NxNy × 1) matrix representing
a wave source. An example row of A is shown in the following expressions: Formulas (4)
and (5). Note that in this example, for simplicity, the second-order difference in the spatial
direction is implemented with second-order precision.

Let
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= i + jNx and c(i, j) is the sound speed at the point (i, j). In this study, the
terms corresponding to the second-order partial derivatives in the spatial direction of A
were implemented using fourth-order central difference discretization, and the absorbing
boundary conditions were implemented using perfectly matched layers. The pressure field
P was obtained by LU-decomposition of A and inverting it for the system of equations.

2.4. Network Architecture and the Training

We implemented DNNs using TensorFlow 2.1. The DNNs had an encoder–decoder
type architecture based on a convolutional neural network (CNN), where the input was
the real and imaginary parts of the observed signal, and the output was the sound speed
distribution (Figure 1). The backbone of the architecture is based on ResNet [37] and
transfer learning was not conducted. The mean absolute error (MAE) of the sound speed
distribution was used as the loss function. For optimization, we employed the Adam
optimizer [38] with a batch size of 2 during training. The number of training epochs was
600, and the weights were chosen for minimum loss for the validation set.
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A ring array transducer, which is commonly used in sound speed reconstruction, was 

used. The advantage of a ring array transducer is that it can acquire transmission waves, 
whereas linear array transducers and other one-sided probes can only acquire tissue scat-
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tional cost is an issue as tens of thousands of data are required for the training of the 
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Figure 1. Architecture of the ResNet-based Network. Input: observed signal (real and imaginary
parts for all receiver/transmitter pairs). Output: sound speed distribution. The numbers in square
brackets denote the number of output filters in the convolution and the stride. Upper: overview of
the ResNet-based encoder–decoder architecture, which consists of a sequence of ResNet blocks and
decoder blocks. Kernel size of the first convolution layer of ResNet block with * is modified from
3 × 3 to 7 × 7. Lower left: ResNet block consists of two 3 × 3 2D convolutional layers, with ReLU
and batch normalization operations, and a residual connection with 1 × 1 convolutional layer. Lower
right: decoder block consists of a ResNet block and a 3 × 3 transpose convolutional layer.

2.5. Measurement Condition

A ring array transducer, which is commonly used in sound speed reconstruction,
was used. The advantage of a ring array transducer is that it can acquire transmission
waves, whereas linear array transducers and other one-sided probes can only acquire
tissue scattering waves. The conditions of the measurement system are shown in Table 1.
Computational cost is an issue as tens of thousands of data are required for the training of
the DNNs. Therefore, the physical size of the system was reduced in this study. Figure 2
shows the element arrangement.
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Table 1. Condition of the transducer.

Ring diameter 20 mm
Number of elements 64

Frequency 500 kHz
Grid size 187.5 µm

3. Results
3.1. Generated Datasets and the Properties

Figure 3 shows examples of the data generated. The data based on natural images show
spatially diverse structures in the sound speed distribution. On the other hand, the data
based on the breast phantom show sound speed distributions which have similar patterns
each other. Therefore, to compare the diversity of the structures, the datasets were evaluated
from a spatial frequency perspective. The Fast Fourier Transform (FFT) was applied to
the sound speed distributions of each dataset. A rotationally symmetric 2D Hanning
window with a window width equal to the ring inner diameter was used. Furthermore, a
one-dimensional frequency spectrum was obtained by averaging in frequency space in the
circumferential direction. The sum of the amplitudes of the spatial frequency components
at wavelengths where they are less than half of the ultrasound wavelength in this spectrum
and those above half of the ultrasound wavelength were plotted on a two-dimensional
plane (Figure 4). Here, constant components and spatial frequency components with
wavelengths larger than the ring diameter were excluded from the analysis. The figure
shows that the sound speed distribution based on natural images has a broad distribution
that includes that of the breast phantom. This result shows that the sound speed distribution
based on natural images has a diverse structure in terms of spatial frequencies.
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Figure 4. Comparison of spatial frequency distribution. Horizontal axis shows sum of spatial
frequency spectrum for spatial wavelength below ultrasound wavelength. Vertical axis shows sum of
spatial frequency spectrum for spatial wavelength over ultrasound wavelength. A total of 100 samples
were randomly extracted from each dataset.

3.2. Visual Comparison

Figure 5 shows images reconstructed by the DNNs. First, the reconstruction quality
of the breast phantom test data is described. The DNN trained on the breast phantom
data (BP-DNN) reconstructed fibroglandular tissue and skin structures in detail. Although
some structures much smaller than a wavelength are lacking, we still observe that the
structures around 1/10 wavelength, such as the skin, were reconstructed. On the other
hand, the DNN trained on natural image data (NI-DNN) seemed to reconstruct blurred
images compared to the images reconstructed by the BP-DNN. However, the NI-DNN has
sufficient resolution for practical use in the reconstruction of breast structures because the
NIDNN had a resolution of about half a wavelength.
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Figure 5. Examples of predicted sound speed distributions. Upper row: breast test data. Bottom
row: natural image test data. Left column: ground truth. Centre column: prediction of a DNN
trained on breast phantom dataset (BP-DNN). Right column: prediction of a DNN trained on natural
image dataset (NI-DNN). BP-DNN prediction for a natural image test data shows false structure
(Bottom middle).
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In addition, the reconstruction quality of the natural image test data is described. The
BP-DNN produced false structures that look like deformed breast structures resembling
the ground truth. This may be due to the low generalization performance to out-of-domain
structures, as the BP-DNN was trained only on the breast structure. On the other hand, the
NI-DNN reconstructed about a half-wavelength structure. The NI-DNN is considered to
have higher generalization performance than the BP-DNN, even for complex structures.

3.3. Quantitative Evaluation

For quantitative evaluation of the reconstruction performance, the mean absolute error
(MAE) was calculated for each training/test dataset pair by the following formula (Table 2).

MAE =
1
N ∑

xi , yi∈B

∣∣∣cpred(xi, yi)− ctrue(xi, yi)
∣∣∣, (6)

where N is the number of grids in the reconstructed region, B is the set of grids in the
reconstructed region, cpred is the predicted sound speed by a DNN, and ctrue is the true
sound speed. The mean absolute error (MAE) was calculated for each sample. Subsequently,
the mean and standard deviation of the MAE across the entire dataset were evaluated.
The BP-DNN was able to predict the sound speed distribution with a small MAE for the
breast phantom test data. However, the average MAE for the natural image data was about
50 times larger than that for the breast phantom test data. This suggests that the DNN,
when trained on breast phantom data, struggles to generalize to more diverse patterns,
such as those found in natural image data. On the other hand, the NI-DNN showed a
larger error in the breast test data than the BP-DNN did. However, the MAE for the breast
phantom data is 5.5 m/s, whereas typical tumours have a sound speed difference to the
surrounding tissue of around 30–50 m/s. Therefore, this DNN is considered to have the
required sound speed accuracy for tumour evaluation. Together with the subjective visual
evaluation, the NI-DNN is considered to have a high generalization performance that is
applicable to breast data as well.

Table 2. The mean absolute error comparison [m/s] (Mean ± SD).

Breast (Train) Natural Images (Train)

Breast (Test) 1.4 ± 3.8 5.5 ± 9.6
Natural images (Test) 72.5 ± 44.1 9.6 ± 15.3

3.4. Generalization Performance Evaluation for Tumour Structures outside the Training Data

DNNs are required to have the ability to image abnormal structures such as tumours
in the breast. To assess the generalization performance against abnormal structures, we
produced three different tumour models with different sizes (about 0.2, 0.8, 1.3 wavelength)
at a sound speed of 1548 m/s on a breast phantom. A comparison of the reconstructed
images is shown in Figure 6. The figure shows that the BP-DNN hardly reconstructs
tumours that are not in the training data. For the largest tumour, the BP-DNN seems to
attempt to mimic the tumour by concentrating the fibro-glandular tissue.

On the other hand, the NI-DNN accurately reconstructed tumours with sizes of 0.8
and 1.3 wavelengths, although reconstruction for the smallest tumours was blurred. Even
though there are no such data in the natural image dataset of tumours in the breast, the
NI-DNN successfully reconstructed the structures down to about half a wavelength. We
attribute its success to the fact that the natural image dataset offered a broad pattern of struc-
tures, which allowed for the NI-DNN to acquire more physically reasonable reconstructions
compared to the BP-DNN.
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Figure 6. Generalization performance against tumours in the breast. Each row shows a ground truth
and the DNNs predictions of the breast model, according to their tumour sizes. Left column: ground
truth. Centre column: prediction of the BP-DNN. Right column: prediction of the NI-DNN. The
NI-DNN could capture the tumours with a resolution of about half a wavelength, while the BP-DNN
overlooked the tumours.

4. Discussion
4.1. Impacts of Training Data on Reconstruction Quality and Generalization Performance

We discuss the performance difference between the BP-DNN and NI-DNN. First,
we discuss the performance of the BP-DNN. From the visual evaluation, the BP-DNN
was able to reconstruct structures down to 1/10 of a wavelength. This is finer than 1/2
wavelength, which is the minimum resolution (diffraction limit) for imaging using the
nature of wave interference. The reasons and limitations of this phenomenon are discussed
from the perspective of the constraints imposed on the task.

Model-driven methods, such as FWI, utilise physical models to perform sound speed
reconstruction. In this case, the constraints (prior information) of the problem are given in a
formulated form, such as total variation regularisation [39] and Tikhonov regularisation [40].
On the other hand, DNNs are data-driven methods and utilise the constraints estimated
from the training data to perform sound speed reconstruction. In this case, there is no need
to provide additional constraints by regularisation. The BP-DNN in this study is considered
to have estimated the constraints of the problem from the training data and restricted its
solution space to a smaller subspace. Therefore, it is assumed that the BP-DNN is able to
provide detailed texture from the measured signal even at a large wavelength relative to
the structure.
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This approach is effective when there is no domain shift, i.e., the training data and
the real-world data are sampled from the same distribution [41]. However, as discussed in
the introduction, the true sound speed distributions of breasts are unknown. Even if the
true sound speed distribution could be obtained by other methods, it would be difficult to
collect a large amount of data on abnormal structures such as tumours, which are important
in medical examinations. This means that it is difficult to avoid a domain shift. Therefore,
there is concern that the DNN may not work properly if there is a difference between
the artificially produced breast phantom and the actual breast in pattern of sound speed
distribution, or if there is a tumour that appears infrequently. Actually, our experimental
results showed the BP-DNN had poor generalization performance, as it was unable to
reconstruct structures and produced false structures for out-of-domain data (tumour models
and natural image data). This suggests that the training on the breast phantom data led to
an insufficient model in generalization performance.

On the other hand, the NI-DNN showed high generalization performance. The NI-
DNN was able to reconstruct structures not only on the test data of natural image data, but
also on the breast phantom and tumour models data which have patterns not included
in the training data. Although its resolution was inferior to the BP-DNN, it was able
to reconstruct structures down to half a wavelength, which is fine enough for practical
use. These results can be explained as follows. The BP-DNN has an excessively restricted
solution space, which means that more accurate solutions can be reached for the data
inside the training data domain, resulting in very fine resolution. Simultaneously, the
generalization performance is significantly degraded for out-of-domain data. On the other
hand, the NI-DNN with a wide variety of patterns is assumed to have a large solution space,
so the range of possible solutions is wide, resulting in a resolution that is not extremely
small. Simultaneously, the generalization performance is improved for data with patterns
not included in the training data.

Since it is important that abnormal out-of-domain structures can be reconstructed
without being overlooked in sound speed imaging in breast examination, training data that
can improve generalization performance are more suitable as the resolution of about half a
wavelength can be kept. From the above discussion, natural image data are more suitable
for training data for breast examination than artificial breast phantom data.

4.2. Towards Reliable Sound Speed Imaging

In FWI, a model-driven approach that has been studied in sound speed imaging, the
sound speed distribution is optimised so that the error between the real observed signal
and the numerically simulated one is minimised [14–20]. Thus, the reliability of the solution
can be assessed from the error. On the other hand, such evaluation is not available in sound
speed imaging with DNNs. In addition, as seen in the experimental results, DNNs can
produce false structures that look like the real thing. Therefore, sound speed imaging with
DNNs for the purpose of medical examination can be very risky. To reduce this risk, it is
necessary to develop methods to improve the reliability of examination, in addition to the
generalization performance considerations that have been discussed in this study. There
are two possible ways to do this.

The first method is to add an out-of-distribution detection system, which assesses
whether the input data to a DNN are outside the distribution of the training data [42,43]. For
example, by comparing the distribution of training data and input data in the feature space
of the middle layer of the DNN, the system can tell the operator whether the prediction is
reliable or not.

The second method is to add a step to solve the forward problem, such as FWI. After
prediction of the sound speed distribution with a DNN for solving the inverse problem,
we acquire the observed signal for the predicted sound speed distribution. By comparing
this observed signal with that of the original input, the validity of the predicted sound
speed distribution can be assessed. The forward problem can be computed by numerical
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simulation, but real-time performance will be an obstacle, so a new DNN for solving the
forward problem should be prepared.

False structures, such as those seen in Figure 5, can be detected by the methods
described above. Investigating these methods can improve the reliability of imaging.

4.3. Limitations

Limitations of this study are described. In the experiments, the array transducer had
a smaller ring diameter than that of clinical use. Our previous study [44] has explained
that the adoption of small ring diameters in DNNs has greater advantages in significantly
reducing computational cost and enabling the generation of large amounts of training data,
because DNNs do not suffer from cycle-skipping as seen in FWI. In addition, as wavelength
mainly determines image quality, a small ring diameter does not have a significant impact
on image quality. From the above, we consider that the use of the small ring diameter is
reasonable in this study.

Second, we discuss the limitations regarding the consideration of training data and
generalization performance. In Section 4.1, we noted that one of the reasons the BP-DNN
failed to adapt to out-of-domain data was the limited patterns in the breast phantom
dataset. There are several possible ways to improve pattern diversity in the breast phantom
dataset. For example, providing variation in the sound speed assigned to each tissue may
improve generalization performance for abnormal sound speed structures. However, in
this case, the pattern of possible solutions increases, which may lead to decreased resolution.
Another possible way to improve generalization performance is to add tumour models
to the training data. In this case, the tumour shape and sound speed settings need to be
investigated. As seen in this study, DNNs tend to create the output close to the pattern of
the training data. For example, if a DNN is trained with circular tumours, it may reconstruct
a tumour having a different shape as a circular one. In other words, introducing simple
tumour models may result in imaging that does not reflect the true tumour characteristics.
Since it is difficult to obtain patterns of true tumour sound speed distribution, additional
investigation is required for these settings. These considerations should be taken into
account for the production of a more appropriate dataset.

5. Conclusions

In this study, we developed a dataset based on natural images for a DNN that solves
an inverse problem of sound speed reconstruction. Through visual and spatial frequency
evaluations, we found that the developed dataset has more diverse patterns than those of
the breast phantom dataset. Furthermore, we evaluated the generalization performance of
DNN-based sound speed reconstruction for the developed dataset compared to a breast
phantom dataset. The DNN trained on the natural image data (NI-DNN) successfully
reconstructed both natural image and breast phantom test data with a resolution of about
half a wavelength, while the DNN trained on the breast phantom data (BP-DNN) could
not reconstruct natural image test data. In addition, the BP-DNN exhibited issues, as it
could produce false structures and was unable to reconstruct tumour structures. In contrast,
the NI-DNN did not produce any apparent false structures and was able to reconstruct
tumours on the breast phantom. These results indicate that the developed natural image-
derived dataset enable DNNs to learn sound speed reconstruction with high generalization
performance and high resolution.
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