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Abstract: Urban environments are characterized by a complex soundscape that varies across different
periods and geographical zones. This paper presents a novel approach for analyzing nocturnal urban
noise patterns and identifying distinct zones using mobile phone data. Traditional noise-monitoring
methods often require specialized equipment and are limited in scope. Our methodology involves
gathering audio recordings from city sensors and localization data from mobile phones placed in
urban areas over extended periods with a focus on nighttime, when noise profiles shift significantly.
By leveraging machine learning techniques, the developed system processes the audio data to extract
noise features indicative of different sound sources and intensities. These features are correlated
with geographic location data to create comprehensive city noise maps during nighttime hours. Fur-
thermore, this work employs clustering algorithms to identify distinct noise zones within the urban
landscape, characterized by their unique noise signatures, reflecting the mix of anthropogenic and
environmental noise sources. Our results demonstrate the effectiveness of using mobile phone data
for nocturnal noise analysis and zone identification. The derived noise maps and zones identification
provide insights into noise pollution patterns and offer valuable information for policymakers, urban
planners, and public health officials to make informed decisions about noise mitigation efforts and
urban development.

Keywords: mobile phone sensing; machine learning; noise patterns; urban environments; clustering
algorithms

1. Introduction

Ongoing urbanization trends have led to the rapid growth of cities, bringing numerous
benefits but also introducing challenges, such as noise pollution [1]. This is a significant
environmental concern, affecting the health and well-being of city residents [2]. Urban areas
are characterized by diverse noise sources, including transportation, industrial activities,
construction, and social events. The acoustic environment of a city is highly dynamic, with
noise patterns changing across different times and locations [3]. Therefore, understanding
and effectively managing urban noise pollution requires innovative approaches that capture
the complexity of these patterns [4], such as utilizing machine learning techniques and
wireless acoustic sensor networks, as proposed in [5].

The motivation behind this work stems from the need to develop comprehensive and
adaptable strategies for assessing and managing noise pollution in cities. Traditional meth-
ods of noise monitoring often involve stationary noise sensors placed in specific locations,
which may fail to capture the full scope of noise variability across a city. Furthermore, these
methods can be costly to deploy and maintain.
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The trajectory from noise mapping to action plans and eventual mitigation mea-
sures represents a crucial avenue in environmental acoustics, particularly in the context
of the evolving landscape of smart and sustainable cities. A paradigm shift has been
observed, especially in noise mapping, where innovative solutions are emerging, such as
real-time evaluation, enhanced monitoring stations with stringent control measures, and
the integration of artificial intelligence applications. Noteworthy advancements include
mitigations facilitated by electric vehicles, the integration of low-noise pavements, refined
input methodologies, and their real-world contextual evaluations [4,6-9].

Recent literature underscores the multifaceted developments in wireless acoustic sen-
sor networks for environmental noise monitoring within smart cities [7]. The incorporation
of machine learning methods and camera images in intelligent transportation systems (ITS)
is contributing to optimized noise maps and action plans [6]. Meanwhile, the integration
of the Internet of Things (IoT) for noise mapping in smart cities is a focal point, outlining
the state of the art and future directions [7]. Acoustic beamforming algorithms are making
strides, with applications in environmental noise [10,11]. Additionally, researchers are
defining key performance indicators for noise monitoring networks [12] and utilizing
statistical pass-by methods for unattended road traffic noise measurement [13].

In the realm of electric vehicles, there is a dedicated focus on predicting noise emis-
sions, with advancements in models and coefficients [14,15]. Artificial neural networks are
employed for predicting annoyance evaluations of electric vehicle noise [16], and machine
learning techniques are leveraged for real-time air quality and environmental noise detec-
tion [17]. Ensemble models based on artificial intelligence find applications in predicting
vehicular traffic noise [18], and deep learning and gradient boosting are making strides in
urban environmental noise monitoring in smart cities [19]. The comprehensive landscape
presented in these studies underscores the dynamic and interdisciplinary nature of noise
research in smart cities.

On the other hand, mobile phones, being an integral part of modern urban life, offer
a ubiquitous, unobtrusive and cost-effective means to collect large volumes of data from
diverse areas within a city. By harnessing the capabilities of mobile phones, it is possible to
obtain insights into the temporal and spatial dynamics of urban noise pollution that were
previously challenging to achieve [20].

Integrating mobile phone data into noise analysis holds the promise of revolutionizing
how noise pollution in urban environments is understood, monitored, and addressed.
By utilizing this approach, there is a move towards more data-driven, adaptable, and
efficient noise management practices, ultimately creating healthier and more livable cities
for everyone [21].

A combination of noise sensors scattered around a city and mobility data captured by
mobile operators represents a comprehensive urban data solution that can provide valuable
insights into the dynamics of urban life. Noise sensors are strategically placed throughout
the city, typically in areas prone to noise pollution, near transportation hubs, commercial
districts, residential neighborhoods, and public spaces. These sensors are equipped with
microphones and data collection capabilities. In the context of the data collection process,
these noise sensors continuously monitor and record environmental noise levels in real
time, capturing information such as decibel levels, frequency spectra, and the time of day
when noise events occur. For data transmission, these noise sensors are usually connected
to a central data collection device via wired or wireless connections [22]. The collected noise
data are then transmitted to a central server through the Internet for further processing
and analysis.

The combination of noise sensors and mobile operator mobility data offers a holistic
view of urban life, allowing city planners and authorities to make informed decisions,
improve services, and enhance the overall well-being of residents while addressing envi-
ronmental concerns. Data privacy and security are paramount, and are achieved in the
context of this work because information was provided not for a specific place, but for the
street [23].
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This paper’s main contribution is describing and demonstrating a novel approach
for analyzing nocturnal urban noise patterns and identifying distinct noise zones using
mobile phone data and stationary noise sensors. By leveraging machine learning (ML) and
clustering techniques, it is possible to process the collected audio recordings and location
data to create detailed noise maps and categorize zones based on their noise signatures.
The resulting insights can inform urban planning decisions, guide noise mitigation strate-
gies, and improve city residents” quality of life. Based on our work, municipalities may
understand nightlife patterns better, and decisions can be made based on these data.

The rest of this paper is organized as follows. Section 2 presents a literature review
highlighting the work related to the subject of this paper. Section 3 describes the datasets
used in this work and their pre-processing, while Section 4 describes the process of iden-
tifying the nightlife areas and the corresponding results. Finally, Section 5 presents the
conclusions and suggestions for future work.

2. Related Work

The literature surrounding the analysis of nocturnal urban noise and the identification
of noise zones using mobile phone data in a city reveals a growing interest in leveraging
technological advancements for a more accurate and comprehensive understanding of
urban soundscapes. This section reviews key studies and approaches that contribute to the
foundation of the proposed research.

The methodology employed in this literature review is based on PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) [24], which is a widely recog-
nized and extensively used framework for conducting and reporting systematic reviews
and meta-analyses in healthcare, social sciences, and other disciplines.

2.1. Search Strategy and Inclusion Criteria

This literature review was conducted in September 2023, and the applied filters were
designed to consider only research articles and reviews published in English-language
journals from the past five years. The databases selected for searching publications were
the Scopus database and the Web of Science Core Collection.

To restrict our search to relevant results, the constructed query included the concepts

T

of “machine learning”, “data analytics”, “artificial intelligence”, or “pattern recognition” in

Za7i

the context of “smart cities”, “mobile data”, or “mobile operator data”, targeting the works
4 ‘“" 7 i“ ” g 7”7 i

related to “nightlife”, “noise detection”, “noise pollution”, “noise monitoring”, “noise
zoning”, or “soundscape analysis”.

2.2. Search Results and Analysis

The constructed query returned 37 publications from both databases. Following the
download of these publications, the application of the PRISMA methodology began with
the elimination of duplicates, which resulted in 23 publications that warranted detailed
reading. Figure 1 illustrates the results of the application of the PRISMA workflow to this
literature review.

In this literature review, our primary objective was to investigate the existing research
works related to the analysis and mapping of nightlife noise, using ML techniques, in order
to comprehend potential patterns. Table 1 summarizes the topics identified in the literature
review ordered by the number of documents. As is evident, machine learning, the Internet
of Things (IoT), and deep learning play a significant role in noise monitoring and the study
and comprehension of noise pollution. Additionally, some studies also address the topics
of smart traffic and noise prediction.
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Figure 1. PRISMA workflow diagram.
Table 1. Topics found in the literature review.
Topic References Number of Documents
Machine Learning [25-33] 9
Noise Pollution [25-29,33-36] 9
Noise Monitoring [8,19,30-34] 7
Internet of Things [8,26,28,33,34,37] 6
Deep Learning [19,35,37-39] 5
Smart Traffic [29,36,39] 3
Noise Prediction [27,37,38] 2

In ref. [25], Albaji et al., investigate the use of ML models to classify environmental
sounds that are considered noise pollution in smart cities. Different types of noise were
collected in sixteen cities in Malaysia. The best ML sound classification model achieved
results with an accuracy score exceeding 0.95.

In ref. [26], Toutouh et al., use an IoT system to monitor noise at a university campus in
Spain. Using ML techniques, the authors found that most university community members
move through the campus at similar hours, causing congestion and acoustic pollution
above regulation limits. In [27], Bhoi et al. present a sismilar study, performed in India,
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aimed to understand the levels of noise pollution during relevant events. The authors
proposed an ML model to predict noise pollution, achieving an accuracy higher than 90%.

Middya et al. [28] use IoT and ML to better understand and combat noise pollution.
Their framework can successfully detect noise levels above tolerable limits. Monti et al. [33]
also combine IoT and ML to better inspect and monitor urban noise. In ref. [30], Hernandez-
Jayo et al., combine ML techniques with a geo-sensing application to help decision makers
have as much information as possible. The main function of the framework is to pro-
vide real-time information on the acoustic impact on the city and they also provide an
ML module capable of predicting the nature of the noise with an acceptable percentage
of accuracy.

Zamora et al. [32] present a robust environmental noise monitoring system that uti-
lizes smartphones and cloud services for high spatial granularity. The architecture ef-
ficiently captures noise pollution data through mobile sensors and Firebase technology,
achieving substantial energy and computing savings of approximately 60%. While slight
measurement variations were noted among different smartphones, they were generally
not significant.

Liu et al. [8] discuss the use of IoT solutions to help monitor and map noise in smart
cities. Cost, accuracy, scalability, reliability and capability are discussed in order to find the
best solution. In ref. [34], Middya et al. also use IoT technologies, combined with spatial
interpolation techniques and real-world participatory sensing-based datasets collected by
participants over a period of one year, to help monitor noise pollution.

The authors in refs. [19,35,37] focus on using deep learning techniques to help monitor
and classify noise, detect noise level anomalies and even predict noise pollution for various
periods, from 1 to 60 min.

In ref. [38], Zhang et al. use deep learning to predict traffic noise. The authors achieved
the best performance with a multivariate bi-directional GRU (Gated Recurrent Unit) model
with many-to-many architecture, featuring both high accuracy and computation efficiency.

The works described in refs. [29,31,36,39] are less related to the scope of this paper.
In ref. [31], Kaarivuo et al., discuss the utilization of ML techniques to create frameworks
for urban soundscape planning and, consequently, to create healthy urban soundscapes;
papers [29,39] focus on smart traffic control as a way to reduce noise pollution in cities.

Overall, these works understand the importance of controlling urban noise, which is
one of the most serious and underestimated environmental problems. According to Monti
et al., noise pollution from traffic and other human activities has a significant negative
impact on the health and quality of life of the populations [33].

Compared with the literature, this work employs machine learning approaches to
comprehend noise patterns during the nightlife period and provide decision makers with
the tools they need to make better and more informed decisions. Our work uses real data
and can be replicated in other cities.

3. Data and Methodology

The primary dataset used in this project was initially compiled by the telecommu-
nications company and was provided by the Lisbon City Council. The information in
the dataset includes the number of mobile phones that entered, remained, and exited
3743 grid cells in Lisbon, each one measuring 200 by 200 m, from 15 September 2021 to
31 December 2022. The 24 variables of this dataset are shown in Table 2, along with their
respective descriptions.

As mentioned before, the available dataset was limited to the telecommunications
company’s customers only. Recognizing the need to understand the broader mobile phone
usage in the area, the Lisbon City Council took the initiative to process this dataset further,
in order to estimate the total number of mobile phones of all telecommunications companies
in each grid, including the other two main telecommunications companies operating in
the area.
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Table 2. Description of each variable present in the main dataset files.
Variable Description
Grid_ID Identification of the grid cell number
Datetime Date and time
extract_year_2 Year
extract_month_3 Month
extract_day_4 Day
C1 Number of distinct terminals in the grid, during the 5 min
Cc2 Number of distinct terminals, roaming, in the grid, during the 5 min
C3 Number of distinct terminals remaining in the grid at the end of each 5 min
c4 Number of distinct terminals remaining %n the grid, roaming, at the end of
each 5 min
C5 Number of distinct terminal entries in the grid
Ce6 The number of distinct terminals exits in the grid
c7 Number of distinct terminal entries in the grid, roaming
C8 Number of distinct terminals exits in the grid, roaming
C9 Number of distinct terminals With an active flata connection, in the grid cell,
during the 5 min
c10 Number of distinct termina.IS with an sflctive data Fonnection, roaming, in the
grid cell, during the 5 min
C11 Number of voice calls originating from the grid
C12 Number of entries into Lisbon along the 11 main roads
C13 Number of exits into Lisbon along the 11 main roads
D1 Top 10 home countries of terminal equipment roaming
E1 Number of voice calls terminated in the grid
E2 The average downstream rhythm of the grid
E3 The average upstream rhythm of the grid
E4 Peak downstream rhythm of the grid
E5 Peak upstream rhythm of the grid
E6 Top 10 apps (semicolon separated)
E7 Duration of the minimum stay within the grid
E8 Duration of the average stay within the grid
E9 Duration of the maximum stay within the grid
E10 Number of devices performing grid connection sharing during the 5 min

By understanding telecommunications company’s market share, the Lisbon City
Council was able to make estimates about the overall mobile phone usage in the area,
encompassing all companies. For instance, if a telecommunications company’s market
share is known to be a certain percentage, say 30%, of the total telecom market in that area,
and the telecommunications company reports a specific number of users, this information
can be used to extrapolate or estimate the total number of users across all companies. This
method allowed for a more comprehensive understanding of mobile phone usage across
all telecommunications operators in the region, despite the lack of direct user data from
some companies.
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3.1. Data Pre-Processing

The pre-processing of the dataset was straightforward, due to the well-prepared nature
of the provided data. During the analysis to identify missing, duplicate, and incorrectly
formatted data, it was also discovered that dates without records were absent from the
dataset. This pattern was observed across all variables. Additionally, variables D1 and E6
contained NaN (not a number) values. As these two variables were not relevant to our work,
they were excluded, resulting in a clean dataset without any NaN values. Nevertheless,
in practical terms, there were dates without records that were not included in the dataset,
indicating data flaws. In places with missing values, the complete entry was removed,
reducing the amount of data by 3%.

3.1.1. Identification of Flaws in the Data

The task of identifying flaws in the provided dataset arose from the need to create time
series, which cannot have interruptions. This analysis was conducted in two stages: an
initial one, in which flaws in all grids lasting over 24 h were identified; and a more in-depth
one, in which all 5-min periods with flaws were identified for each grid individually.

The records were registered in intervals of 5 min, and all the intervals that contained
flaws were identified. Total and partial flaws were distinguished, with total flaws cor-
responding to failures in all grids, and partial flaws corresponding to failures in only
some grids.

3.1.2. Imputation of Missing Values

The imputation of missing values was performed using the Python’s interpolate
function from the Pandas library, which fills in the missing values of a data series with
estimated values based on the existing values before and after the data gap. This approach
allowed us to fill in all the intervals from which data was missing, except for the 38-day
failure recorded between February and March due to its extended duration.

3.2. Additional Datasets

The Lisbon City Council also made a list of the nightlife establishments in the city
available for this work, which had 511 entries composed solely of two columns: one for the
latitude, and one for the longitude. This dataset required no pre-processing.

These data were complemented using a public database, also from the Lisbon City
Council, containing data related to 80 environmental sensors placed all over the city. For
more details, see https://www.lisboa.pt/en/translate-to-en-atualidade/reports/noise
(accessed on 28 December 2023) and the data available at https://dados.cm-lisboa.pt/
dataset?tags=OpenData (accessed on 28 December 2023). One of these sensors measures
the noise levels of the area, which is used in this paper.

3.3. Nightlife Areas Identification Process

The main objective of the work is to identify the nightlife areas in Lisbon. This
identification is not straightforward, because nightlife areas do not necessarily contain
nightlife establishments in them. For this purpose, at first, patterns in the number of
mobile phones inside the grids containing a high number of nightlife establishments
were identified, and then other grids that follow similar patterns were also labeled as
nightlife areas.

Both supervised and unsupervised learning methodologies were considered to find
the nightlife areas. However, since the data were not annotated, we opted for an approach
based on unsupervised learning, which was ultimately chosen due to the characteristics of
the problem.

The decision to opt for the unsupervised learning methodology was driven by its
inherent advantages in the context of identifying nightlife areas. Unsupervised learning
excels when dealing with unstructured data and patterns that may not be readily apparent.
In the case of nightlife areas, where patterns may be dynamic and not clearly defined,
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unsupervised learning allows the algorithm to discover latent structures and relationships
within the data autonomously. This autonomy is particularly beneficial when the char-
acteristics of the problem are nuanced, or when there are a lack of labeled training data.
Therefore, the versatility and adaptability of unsupervised learning make it a preferable
choice for uncovering complex patterns in the context of identifying nightlife areas.

Initially, experiments were carried out in order to find the unsupervised learning
method that provided the best results for this work. After analyzing different clustering
methods, and taking into account our end goal, as well as the data structure and size, a
search was made for an efficient algorithm that is able to correctly identify nightlife areas
based on our needs. Compared to the performance of traditional cluster analysis, self-
organizing maps and the fuzzy C-means method for strategic grouping, the self-organizing
maps (SOM) algorithm was demonstrated to be the most adequate for the task.

The SOM algorithm, also known as Kohonen neural network, allows the mapping
of data patterns [19]. The nightlife areas of the city of Lisbon were identified using this
method in this work. Being a clustering algorithm, it identifies areas with similarities and
groups them together.

Given the many possible target variables of the clustering, such as the number of
entries (C5) or exits (C6) in the grid, the number of mobile phones that remained (C3) and
the total number of distinct mobile phones in the grid (C1), experiments were carried out
in order to find the best one. Ultimately, C1 provided the best results.

Having chosen the clustering technique and the target variable, the identification of
the nightlife areas could begin. The methodology proceeded as follows:

1.  Isolate the C1 variable in all periods from Friday to Saturday;

2. Perform the clustering on the resulting time series;

3. Calculate the ratio between the number of nightlife establishments present in each
cluster and the number of grids that belong to it;

4. Starting with the cluster with the largest ratio, and working downward, add the grids
belonging to the list of nightlife areas;

5. Stop when an arbitrary predefined number of nightlife establishments are contained
in the list of nightlife areas.

Around 150,000 time series were obtained as a result of isolating the periods from
Friday to Saturday in 2022. The choice of clustering these periods, instead of the whole
week, was driven by the necessity of identifying similar patterns in the nightlife periods.

The SOM algorithm ended up identifying 400 clusters in which people’s movement
patterns were similar. From these, 22 were selected. In total, 161 grids were identified
as nightlife areas, where 314 of the 511 original establishments are contained. Figure 2
shows the location of these areas. In all maps presented in this paper, the north direction is
oriented upwards.

From a visual analysis and considering previous knowledge of the city’s nightlife,
the results are positive: the majority of the grids identified are in known nightlife areas
in downtown Lisbon, and the few scattered around the rest of the city are expected, as
nightlife is not exclusively located downtown. Another positive aspect of the results is the
lack of hospitals in the identified areas, as the large amount of movement in these places
could be incorrectly attributed to nightlife activities.

The quality of the clusters obtained can be evaluated quantitatively. Upon investigat-
ing how the algorithm could be improved, a method that optimized the parameters by
minimizing the quantization error (QE) [20] was used. Due to the data’s distinct structure,
a function that calculates the QE was developed from the ground up in this work, using
theoretical knowledge [19] to check if the two methods gave the same results. After veri-
fying both techniques, the QE value of the model was determined to be 3.192, which was
proven to be a good quality measure, taking into account the QE values in Duarte et al. [21].
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Figure 2. Nightlife areas identified in the city of Lisbon (represented by the blue squares).

4. Analysis, Results and Discussion
4.1. Descriptive Analysis

To demonstrate how the SOM algorithm worked, let us consider cluster 165, one of
the 22 clusters associated with nightlife activities. This cluster includes most of the grids
located in the Bairro Alto area (Figure 3), a well-established nightlife landmark in Lisbon.

Figure 3. Grids corresponding to Cluster 165, the Bairro Alto area.
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Figure 4 shows all the time series that the SOM algorithm grouped in Cluster 165 in
gray, with the red line depicting the trend of the data. In all these kinds of figures, the y-axis
represents the normalized value of the number of people in the cluster (scale between 0
and 1). Although Bairro Alto is known for being a nightlife and bar hotspot, it also holds
significant touristic value, thus explaining the first increase in mobile phones by grid during
Friday’s 8 a.m. to 5 p.m. timeframe.

Cluster 165

1.0 4

0.8 1

0.6 -

0.4 1

0.2 1

0.0 1

Friday Friday Friday Saturday Saturday Saturday Sunday
12 AM 8 AM 5PM 1AM 9 AM 6 PM 12 AM

Figure 4. Time series for Cluster 165.

Approaching dinner time, there is a small decrease in the C1 variable, but it quickly
increases again, peaking at midnight. This is because Bairro Alto is mainly frequented by
people who want to start the night before going to areas where bigger nightclubs are located,
during dawn hours; that is why there is a downward decrease during this period, when,
presumably, people leave these grids to continue the night in more mainstream nightclubs.

The line gradually grows back again from Saturday 9 a.m. up until 11:59 p.m., where
the graphic ends, in a similar fashion as on the previous day.

To give further perspective on how nightlife areas may vary, let us consider another
cluster found by the algorithm, Cluster 8 (Figure 5). This cluster mainly encompasses the
Santos dock area, where several nightclubs are located. This area consists mostly of night
spots, a fact reflected by the map in Figure 5.

As is easily observed in Figure 6, there is one big spike in mobile phone entries
after 1 a.m. Having insight into how the Lisbon nightlife behaves, this peak presumably
correlates with a decrease in entries happening around the same time in the previously
analyzed area, Bairro Alto, as people leave the smaller bars to spend the rest of the night
in the more popular nightclubs. In comparison with Bairro Alto, the Santos dock area has
very little touristic value, thus having a much smaller concentration of people during every
other period outside of the peak.

In order to understand how tourists behave in the nightlife areas, a subsequent clus-
tering was made, where the target variable was C2 (the number of distinct mobile phones
in roaming in the grid), and only the time series corresponding to nightlife areas were
included in the model. Once again, the SOM algorithm was used.

Figure 7 shows one of the clusters obtained from the C2 variable, Cluster 79. This
cluster includes four grids referring to the Cais do Sodre and Rua do Alecrim area. Like
Bairro Alto, this is an area with popular nightlife activity, depicted by the red line in
Figure 8, where the C2 variable values are plotted between Friday 12 a.m. and Saturday
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11:59 p.m. It can be observed that from Friday 8 a.m., there is an increase in mobile phones
by grid, an ascending trend that continues until the maximum, which occurs around
Saturday 1 a.m. This is quite reasonable, given that this is an area that has both tourist
attractions and nightlife establishments. After 1 am. on Saturday, the values start to
decrease, since, similarly to Bairro Alto, this is the time when people try to prolong the
night in nightclubs or simply leave the area to go home. From 9 a.m. on Saturday, the Cais
do Sodre area follows the trend of the previous day, once again showing demand from
people of foreign nationality.
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Figure 5. Grids corresponding to Cluster 8, the Santos dock area.

Cluster 8
1.0 1
0.8 4
0.6 -
0.4 1
0.2 1
0.0 1
Friday Friday Friday Saturday  Saturday Saturday Sunday
12 AM 8 AM 5PM 1AM 9 AM 6 PM 12 AM

Figure 6. Time series for Cluster 8.
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Figure 7. Grids corresponding to Cluster 79, the Cais do Sodre area.

Cluster 79

10 -

0.8 -

0.6 -

04 1

0.2 -

0.0 -

Friday Friday Friday  Saturday Saturday Saturday Sunday
12 AM 8 AM 5PM 1AM 9 AM 6 PM 12 AM

Figure 8. Time series for Cluster 79.

Another cluster that is worth analyzing is Cluster 70 (Figure 9), which refers to the
Santos area (Cluster 70), more specifically, Cais da Viscondessa, where the K Urban Beach
nightclub is located. Based on the trend of the red line in Figure 10, it can be assumed that
this cluster corresponds to a grid containing nightclub-type establishments, as evidenced
by the peak that can be observed in the early hours of Saturday. It is notable that from
1 a.m. on Saturday the trend is toward an increase of mobile phones in Cais da Viscondessa,
prolonging until around Saturday at 3 a.m. From then, the tendency is to decrease until
9 a.m. on Saturday, during the period that tourists are leaving.
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Figure 9. Grids corresponding to Cluster 70, the Cais da Viscondessa area.
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Figure 10. Time series for Cluster 70.

It is worth mentioning that the grids identified as nightlife areas have some flaws. One
clear example of an area incorrectly recognized as a nightlife area is the Alfama area, with
its corresponding grids in Figure 11.

As can be seen by the red trend line in Figure 12, there is a notable decrease in mobile
phones around dinner time, which lasts the whole night and returns around Saturday at
9 a.m. This shows that this area does not offer much nightlife activity, despite containing
many of the establishments present in the list provided by the City Council, which means
that some of the entries in the list prevent the results from being even better. These may be
restaurants that are open until late (thus being identified as nightlife establishments), as
Alfama is a very touristic area. It is impossible to determine which establishments from
the list limit the process, as each entry is composed solely by its latitude and longitude. A
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viable solution to this problem would be for the Lisbon City Council to provide a dataset
with more information on each establishment.
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Figure 11. Grids corresponding to Cluster 151, the Alfama area.
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Figure 12. Cluster 151, the Alfama area.

4.2. Incorporating the Noise Data

In an attempt to further increase the accuracy of the obtained LSTM networks, we
decided to try and include the noise data in the models.

The noise dataset was collected from the Lisbon City Council’s API3, where the noise
level variable is identified as RULAEQ. There are a total of 80 sensors that measure this
variable, and the data collected correspond to the hourly average of the noise level (in dB).
These sensors were mostly placed on lampposts, and their locations were chosen with the
purpose of collecting a diversified range of data [8].

Because of the large break in the mobile phone dataset, the noise data were collected for
two separate periods: from September 2021 to January 2022, and from April to December 2022.
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4.2.1. Data Pre-Processing

Unlike the mobile phone dataset, the noise data contained missing values: there were
in 14,532 observations with the value —99. It was necessary to impute these values.

Within this analysis, the focus was on the noise sensors placed in nightlife areas. These
correspond to RULAEQ0003, RULAEQO0005, RULAEQ0012, RULAEQ0014, RULAEQO0017,
RULAEQO0076, RULAEQO0077, which can be found in Figure 13.
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Figure 13. Noise sensors and their respective locations, where the clouds represent the sensors and
the squares represent the clusters identified by the algorithm with more people.

Having discarded all other sensors from the dataset, it was then discovered that many
periods were also missing entirely, instead of being identified with an NaN value. It was
therefore necessary to identify every missing period and add it to the dataset to prevent
breaks in the time series (similar to the process for the mobile phone dataset).

Lastly, it was necessary to prepare the noise data for them to be comparable with the
number of mobile phones in a given grid (C1 variable). The noise data in our study were
averaged hourly, while mobile phone counts were recorded every 5 min. This difference
in time intervals created a mismatch between the datasets. To address this, we inserted
timestamps for each 5-min interval between two consecutive hourly noise measurements.
Subsequently, we imputed the missing noise values for these newly added timestamps.
This step ensured that both datasets were aligned in terms of timing, facilitating a more
coherent analysis.

4.2.2. Relationship between Noise Levels and the Number of People

The methodology to identify the relationship between the noise levels and number of
people on a nightlife grid proceeded as follows:

1. Divide the noise dataset into periods of 48 h, and save those that start on a Friday and
end on a Saturday (similar to with the process for the primary dataset in Section 4);

2. Plot every saved time series, and add the corresponding time series of the C1 variable
(after both have been normalized);

3. Analyze the Pearson’s correlation coefficient between the two curves.

The Pearson’s correlation coefficient measures the direction and the strength of the
linear relationship between two given variables, in this case, the number of mobile phones,
and the noise levels. Its values can range from —1 to 1, where positive values indicate that
the increase in one variable is followed by an increase in the other, and negative values
indicate that the increase is followed by a decrease. Zero means that the relationship
between the two variables is non-existent, and the closer the coefficient is to 1 (or —1), the
greater the impact a variable has on the other.

The expectation is for the coefficient values to be high and positive, meaning that great
noise levels are associated with large concentrations of people. Table 3 shows the descriptive
statistics of the coefficients obtained for every sensor in each Friday-Saturday period.

On average, the only sensors whose noise levels are moderately correlated with
the number of mobile phones are RULAEQ0014 and RULAEQ0077, with some values
showing strong correlations (greater than 0.7), and the standard deviation being relatively
low. RULAEQO0076 shows an average weak correlation, and the remaining sensors show
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negligible means (the fact that there are high max and minimum values shows that there
is no consistency in the direction of the relationship; thus, the average coefficient is close
to zero).

Table 3. Descriptive statistics of the Pearson’s correlation coefficients.

Sensor Max Min Mean Standard Deviation
RULAEQO0003 0.498 0.222 0.167 0.195
RULAEQO0005 0.145 0.316 0.136 0.134
RULAEQO0012 0.462 0.548 0.072 0.256
RULAEQO0014 0.796 0.210 0.561 0.128
RULAEQO0017 0.589 0.186 0.176 0.184
RULAEQO0076 0.697 0.111 0.354 0.159
RULAEQO0077 0.803 0.289 0.636 0.130

The reason for these values has mostly to do with the location of the sensors. In
general, those with high correlations are placed in areas with a lot of pedestrians, and those
with low correlations are located in areas with a lot of car traffic. This reflects Lisbon City
Council’s strategy of collecting a wide variety of data.

Figure 14 shows an example of a strong correlation, whereas Figure 15 shows one that
is weak. In the plot of RULAEQO0077, it is evident that the increase in noise is closely related
to the increase in the number of people. On the other hand, the plot of RULAEQO0076 shows
that an increase in the noise levels may not necessarily lead to an increase in the number
of people.

Comparison - RULAEQO077 - 2022-05-20 - Pearson: 0.803

=== Noise
c1

y \
\

100 20 0 400 500 600

Time Period

Normalized Value

Figure 14. Strong correlation between the noise sensor and the number of mobile phones.

The low average coefficients do not necessarily indicate that the noise levels will not
improve the accuracy of the LSTM models. Given the max and minimum values in Table 3,
one can see that there were often moderate (or even high) correlation coefficients, but the
correlations are not consistent, with this inconsistency caused by some factors that the
LSTM model may identify and use to improve its forecasts. This potential for the noise
levels is evident in Figure 15. The increase in the noise levels in the first half is not matched
with an increase in the number of people, but the sudden decrease is strongly correlated
with the decrease in the number of people.
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Figure 15. Weak correlation between the noise sensor and the number of mobile phones.

4.3. Noise Levels in the Forecasting

Having concluded that there are some strong correlations between the noise levels
and the number of mobile phones in a nightlife area, the possibility arose that the noise
levels in the LSTM models could increase the accuracy of their forecasts. Therefore, the
areas of the city with noise sensors were identified, and their neural networks were fitted
again. The results based on the test set can be seen in Table 4, where they are compared
with the results obtained without the inclusion of the noise levels.

Table 4. Results of the original models compared with those obtained with noise levels.

Sensor Grid RMSE (Noise) RMSE (Before) MAPE (Noise) MAPE (Before)

3 304 37.709 35.982 34.297 33.425
5 344 110.499 115.830 11.428 11.395
12 678 87.696 86.607 11.185 11.022
14 746 92.086 90.762 7.776 7.536
17 796 60.614 58.445 10.283 9.989
76 742 80.196 78.757 10.713 10.833
77 624 41.835 41.853 17.254 17.359

The only sensor that significantly increased the accuracy of the model was RULAEQO0005,
with the RMSE (root mean square error) on the test set decreasing by five units in that area
(there was also a decrease in the RMSE on the train and validation set). It can also be noted
that the MAPE increased by 0.033 percentage points, from 11.395 to 11.428. As these two
errors contradict each other, the choice was made to rely on the findings of the RMSE, as
that is the error the model was trained on, and the dataset is the same for both models.
The choice to rely on the RMSE is the reason that we concluded that sensor RULAEQO0076
did not improve the accuracy of the model, despite the fact that the MAPE decreased by
0.120 percentage points. Comparing these results with the Pearson’s correlation coefficients
in Table 3, it can be observed that high correlations to noise levels do not necessarily
increase the accuracy of the forecasts (in the context of these LSTM networks). In fact, the
only model that had an increase in its accuracy corresponds to a noise level sensor with
one of the lowest means in correlation degree. The fact that there was an increase in the
accuracy of one LSTM network shows that relocating the noise sensors to more appropriate
locations should lead to big increases in the accuracy of the neural networks in general.
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When comparing the night establishments identified by Lisbon municipality with the
clusters identified by the algorithm, it is noticeable that there is an overlap between the
location of such establishments and the clusters, as depicted in Figure 16.
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Figure 16. The map on the left shows the clusters identified by the algorithm as “nightlife”, and the
map on the right shows the overlap between the clusters and nightlife establishments (represented
by the pins).

5. Conclusions

This study has demonstrated the feasibility and significance of using mobile phone
data for the analysis of nocturnal urban noise patterns and the identification of distinct
noise zones within a city. The integration of mobile phone technology, machine learning,
and soundscape analysis has opened up new avenues for comprehensively understanding
and managing urban noise pollution.

Through the analysis of audio recordings collected from mobile phones placed across
various urban areas during nighttime hours, it has been possible to capture the dynamic
nature of urban soundscapes. The extracted noise features, combined with geographic
location data, have facilitated the creation of detailed noise maps that reflect the varying
intensities and sources of noise pollution. These noise maps provide a richer representation
of the urban environment, enabling more informed decision making for urban planning
and noise mitigation strategies.

The application of clustering algorithms to the combined audio and location data
allows us to delineate distinct noise zones within the city. These noise zones capture the
heterogeneity of noise sources and their distribution, shedding light on areas with varying
levels of noise pollution. This information is invaluable for urban planners, policy makers,
and public health officials seeking to design targeted interventions that enhance quality of
life for city residents.

However, it is essential to acknowledge the challenges inherent in this approach.
Ensuring the quality and accuracy of mobile phone-generated noise data remains a critical
consideration. Privacy concerns and representativeness of the data are areas that require
careful attention to ensure the credibility and validity of the findings.

In essence, this research showcases the transformative potential of mobile phone data
in the field of noise analysis and urban planning. By integrating this innovative approach
into existing noise management strategies, cities can move towards more adaptive and
data-driven policies, resulting in healthier and more livable urban environments. As
cities continue to grow and evolve, the ability to harness technology to gain a deeper
understanding of their sonic landscapes will play a pivotal role in shaping the future of
urban living. This study provides a stepping stone towards that future, contributing to the
body of knowledge that underpins sustainable and harmonious urban development.
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