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Abstract: Named entity recognition (NER) plays a crucial role in information extraction but faces
challenges in the Chinese context. Especially in Chinese paleontology popular science, NER encoun‑
ters difficulties, such as low recognition performance for long and nested entities, as well as the
complexity of handling mixed Chinese–English texts. This study aims to enhance the performance
of NER in this domain. We propose an approach based on the multi‑head self‑attention mechanism
for integrating Chinese lexicon‑level features; by integrating Chinese lexicon boundary and domain
term frequency weight features, this method enhances the model’s perception of entity boundaries,
relative positions, and types. To address training prediction inconsistency, we introduce a novel data
augmentation method, generating enhanced data based on the difference set between all and sam‑
ple entity types. Experiments on four Chinese datasets, namely Resume, Youku, SubDuIE, and our
PPOST, show that our approach outperforms baselines, achieving F1‑score improvements of 0.03%,
0.16%, 1.27%, and 2.28%, respectively. This research confirms the effectiveness of integratingChinese
lexicon boundary and domain term frequency weight features in NER. Our work provides valuable
insights for improving the applicability and performance of NER in other Chinese domain scenarios.

Keywords: Chinese named entity recognition; dual pointer network; lexicon enhancement; Chinese
paleontology popular science

1. Introduction
Over the past few years, with the development of the Internet and information tech‑

nology, various domains have accumulated a large amount of textual data, containing
valuable information and knowledge [1]. Effectively utilizing this textual data can have
a significant impact on various domains. Information extraction refers to automatically ex‑
tracting key information frommassive data, named entity recognition (NER), as a subtask,
and has become a research hotspot in various domains [2].

In the domain of education, popular science (also known as popsci) is a scientific ex‑
planation targeted at the general audience [3]. Popular science education can cultivate the
public’s interest in science and promote the popularization and dissemination of science
and technology in society, thereby fostering social development. Faced with the growing
data in the domain of popular science education, how to quickly and accurately identify
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keywords and reveal deep semantic relationships is an urgent issue for intelligent systems
in popular science education. Many discoveries and research results in the domain of
paleontology contribute to understanding the evolution of the Earth, as well as the ori‑
gin and evolution of life and humanity [4], and one of the advantages of paleontology is
popularization. In order to promote the latest research results to the public and advance
the development of popular science education, the efficient extraction of key information
from texts in the domain of paleontology popular science using deep learning‑based in‑
formation extraction technology has gained widespread attention from domain experts.
One of the primary tasks in the domain of Chinese paleontology popular science NER is
to identify different types of entities, such as a person, geological time, strata, and fossil,
etc., from unstructured textual data. NER involves preprocessing, feature extraction, and
classification to identify entities from unstructured textual data. By recognizing entities,
valuable information can be extracted from textual data, laying the foundation for subse‑
quent tasks [5], such as relationship extraction, sentiment analysis [6,7], and knowledge
graph construction.

The NER methods can be summarized from rule‑based methods to deep learning‑
based methods. In the early stage, rule‑based methods utilized predefined and inductive
assumptions and rules to identify entity names in the text and classify them [8,9]. However,
with the increase in annotated data, rule‑basedmethods need constant updates to discover
more entities. Traditional machine learning methods, mainly based on supervised learn‑
ing, involve training classification or sequence labeling models on annotated datasets to
learn features of positive or negative instances, or type features. For example, based on a
support vectormachine (SVM) [10], hiddenMarkovmodel (HMM) [11,12], and conditional
random field (CRF) [13], etc., those methods no longer require the manual construction of
rules, but they still require feature selection. In recent years, with the development of deep
learning, various neural networks have been used to address NER problems, such as con‑
volutional neural networks (CNNs) [14], recurrent neural networks (RNNs), such as long
short‑term memory (LSTM) [15] and bidirectional LSTM (BiLSTM) [16], graph neural net‑
works (GNNs) [17], and attentionmechanisms [18], etc. Neural networkmethods typically
use vectors to learn the syntax and context information of language. Pretrained models,
represented by BERT (bidirectional encoder representation from transformers) [19], have a
significant advantage in extracting contextual information features from text due to train‑
ing on large‑scale datasets. This notably improves various metrics for natural language
processing (NLP) tasks. In the field of NER, significant achievements have been made
by methods based on fine‑tuning pretrained models, like BERT [19,20], BERT‑CRF [21,22],
and BERT‑BiLSTM‑CRF [23]. Pretrained models can learn contextual features of text on
the basis of training on large‑sample data, enabling fine‑tuning in situations with limited
annotated data and subsequently learning contextual features for downstream tasks.

The models mentioned above are based on sequence labeling to accomplish NER,
which means performing a multi‑classification task for each token. However, in the do‑
main of Chinese paleontology popular science, as shown in Figure 1, the entity
“古脊椎动物与古人类研究所” (Institute of Vertebrate Paleontology and Paleoanthropology,
Chinese Academy of Sciences) consists of 12 Chinese characters; the span “寒武纪地层”
(Cambrian Strata) includes the Geological Time entity, the Cambrian, and the Strata entity,
Cambrian Strata; the span “古生物学家 Grant Zazula” (the Paleontologist named Grant
Zazula) contains both Chinese and English characters. Due to the existence of the men‑
tioned phenomena and problems, directly applying sequence labeling models will signif‑
icantly degrade the model’s performance, and these problems directly hinder the further
development of NER in this domain. To address this issue, the pointer labeling task is pro‑
posed. Pointer labeling is a framework for NER. It sets start and end pointers to record the
starting and ending positions of each entity, and simultaneously annotates the entity type.
This method excels in recognizing long entities and nested entities. However, using only
the pointer labeling for NER results in the loss of Chinese lexical boundary information,
causing the model to erroneously output any two boundaries as entities. Recently, the
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integration of lexicon‑level features into Chinese NER has attracted widespread attention.
Integrating lexicon‑level features involves incorporating lexicons as external information,
helping to determine the span and type of entities. At the same time, in our domain, we
found that the distribution of domain‑specific lexicon also affects the performance of NER.
Currently, the utilization of distributional features of a domain‑specific lexicon is still in
its early stages.
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Figure 1. An example containing a long entity, nested entities, and a mixed text of Chinese
and English.

To address the above‑mentioned issues, in this paper, we propose an enhanced NER
method based on lexicon boundary and frequency weight features, named the BERT‑
Lexicon‑PointerNetwork (BERT‑LPN) model. The model is proposed for extracting Chi‑
nese paleontology popular science entities and it consists of an encoder based on BERT, a
lexicon feature fusion layer and a fully connected classifier layer from the bottom up: the
encoder is a Chinese character‑level model based on BERT, and it maps Chinese characters
to a low‑dimensional, highly dense real‑vector space to extract latent semantic information
from Chinese entity elements; the lexicon feature fusion layer takes lexicon boundary and
weight information from Chinese word segmentation as input to capture the lexicon‑level
features of the input; finally the fully connected classifier layer takes BERT‑encoded embed‑
dings along with lexicon‑level features as input to generate start position and end position
labels for entities. The experimental results indicate that our proposedmodel outperforms
previous models, and our approach achieves state‑of‑the‑art (SOTA) performance on the
constructed dataset.

The main contributions of this research are summarized as follows:
• Based on the characteristics of texts in the domain of Chinese paleontology popular

science, we propose a NER model enhanced with Chinese lexicon boundary and fre‑
quencyweight features. This model is designed for identifying and extracting entities
from unstructured textual data.

• Based on the structural characteristics of our model, we propose a data augmentation
method utilizing all entity types and sample entity types to alleviate the inconsistency
between training and prediction tasks.
To comprehensively evaluate the performance of our model, we established a new

dataset, namely the PPOST dataset, specifically designed for NER in the Chinese paleon‑
tology popular science domain. The dataset primarily consists of data from authoritative
institutions in the domain of paleontology popular science in China. Experimental results
on both public datasets and the PPOST dataset validate the effectiveness of our approach.
In addition, we also analyze the possibility of applying our method to other domains, pro‑
viding a reference for enhancing NER performance in other domains.
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The remaining sections of this paper are organized as follows. Section 2 introduces
NER work based on deep learning that is closely related to our work. Section 3 presents
our proposed model and core algorithms. Section 4 provides a detailed description of
the datasets used in our experiments and analyzes the experimental results. Finally, we
conclude the article.

2. Related Work
In this section, we introduce works closely related to our proposed model, including

NER models that integrate lexicon‑level features, methods for addressing domain data
scarcity, and NER models based on pointer labeling, as follows.

2.1. Lexicon‑Based Chinese NER
Chinese, unlike languages, such as English, that use spaces as separators, encounters

the issue of word segmentation, where Chinese takes words as the basic semantic units. To
better adapt to Chinese NER, recent studies have found that introducing Chinese lexicon‑
level features can enhance the performance of NERmodels. For example, Zhang et al. [24]
proposed a lattice LSTM model for Chinese NER. This model is an extension of character‑
based NER models, incorporating words as input and additional gates to control informa‑
tion flow. The model explicitly utilizes word and word order information. However, due
to the RNN structure adopted by the lattice LSTM model, it cannot capture long‑distance
dependencies, and the introduction of lexical information is lossy. To address these lim‑
itations, Li et al. [25] proposed the FLAT model for Chinese NER. This model is based
on a transformer [26] to solve the lexical loss problem in lattice LSTM and uses relative
position encoding to adapt a transformer to NER, enabling efficient GPU parallel compu‑
tation. Thesemethods, combinedwith pre‑trained languagemodels, explore ChineseNER
and achieve SOTA performance on several Chinese benchmark datasets. However, Guo
et al. [27] and Liu et al. [28] believe that existing lexicon‑based models only conform to
lexicon features through shallow and randomly initialized encoding layers without inte‑
grating them into the underlying layers of pre‑trained language models to explore deep
lexicon knowledge. To address this, they proposed methods to deeply integrate external
lexicon features into the pre‑trained languagemodel BERT, achievingmore effective fusion
of entity boundaries and lexical information.

All of these studies have explored the integration of Chinese lexicon‑level features,
but they did not address the practical issues faced by more detailed domains. Moreover,
these methods rely on the quality of lexicons and have certain requirements for compu‑
tational resources. In contrast, this paper focuses on extracting entities from the Chinese
paleontology popular science domain, integrating Chinese lexicon‑level features in a sim‑
ple and effective manner while enhancing relative positional information. It provides a
reference for addressing the practical issues faced by this domain.

2.2. Prompt and Pointer Network
Typically, there is not much annotated data for downstream tasks, and there is often

a gap between pre‑trained BERT models on large corpora and fine‑tuning on downstream
tasks. To address the gap, some researchers have proposedmodeling downstream tasks in
the form of pre‑training tasks [29]. Taking BERT as an example, some tasks can bemodeled
asmasked languagemodeling (MLM) or next sentence prediction (NSP), and this approach
is particularly effective in scenarioswith small datasets [30]. For instance, Cui et al. [31] and
others proposed the TemplateNER method, which completes NER using prompt learning.
This method employs a template‑based approach to solve the problem of few‑shot NER:
a template is pre‑defined, for example, “<candidate_span>is a <entity_type> entity”. With
the help of a suitable prompt, this method reduces the difference between pre‑training and
fine‑tuning, allowing themodel to achieve good results with a small number of samples. It
significantly outperforms traditional sequence labeling methods and distance‑based few‑
shot NERmethods in cross‑domain and few‑shot scenarios. Subsequently, methods based
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on the prompt mechanism have been widely used in NER [32,33], such as modeling the
task asmachine reading comprehension and question answering (MRC‑QA) format, fitting
the NSP task for NER [34].

The NER model based on the dual pointer network aims to address both the chal‑
lenges of recognizing long entities and nested entities. Lu et al. [35] proposed a unified
extraction framework, where the NERmodule is based on a pre‑trainedmodel, employing
a multi‑layer dual pointer network. Input samples are constructed based on the template
“[SPOT]<entity_type>[text]”, predicting the start and end positions of possible entities in
the samples, andNER is completed through the decoding algorithm. However, real‑world
datasets often exhibit a long‑tail distribution problem, with a few types representing the
majority of the samples. The multi‑layer dual pointer network requires setting up a classi‑
fier for each entity type, potentially leading to some classifiers not being adequately trained,
thus impacting the overall performance of NER model.

To mitigate this issue, some researchers proposed a model based on a single‑layer
dual pointer network and the prompt mechanism. Gong et al. [36] introduced a model
based on a single‑layer dual pointer network, constructing the input in the format “<en‑
tity_type>[SEP]<text>” to accomplish NER. However, Su et al. [37] argue that the conven‑
tional design of the dual‑pointer network, when performing NER or MRC, typically em‑
ploys two modules to separately identify the start and end positions of entities. This can
lead to inconsistencies during training andprediction. To address this issue, they proposed
global pointer model which uses a globally normalized approach for NER. In non‑nested
scenarios, it achieves results comparable to CRF, and in nested scenarios, it performs well.
Moreover, it allows for fully parallelized training, significantly accelerating the training
process. This method addresses the inconsistency between training and prediction tasks
from a model perspective.

All these studies have explored NER methods based on pre‑trained models and pro‑
posed unique insights and solutions for various issues. However, most of them optimized
from the perspective of the model without considering the scarcity and differences in
datasets across various domains in real‑world applications. In contrast, this paper intro‑
duces a data augmentationmethod that enhances NER performance by increasing training
data, alleviating the inconsistency between training and prediction tasks. This approach
provides a reference for improving NER performance in domain‑specific applications.

3. Methods
In this section, we provide a detailed description of the proposed model architecture,

and the overall structure of our model is illustrated in Figure 2. Firstly, we introduce some
preprocessing operations specific to this domain to acquire the necessary experimental
foundation. Secondly, based on the WordPiece [38] algorithm, we use BERT to obtain
character‑level embeddings and acquire lexicon‑level features through Chinese word seg‑
mentation; lexicon‑level features fusion are accomplished using amulti‑head self‑attention
mechanism. Finally, the embeddings based on BERT and the lexicon‑level features serve
as inputs to the dual pointer network, which is applied to complete the NER through de‑
coding in the domain of Chinese paleontology popular science.
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3.1. Preprocessing
To obtain domain term frequency weight features, we base our calculations on the

collected corpus in the domain of Chinese paleontology popular science. TF‑IDF [39] is
a statistical method that consists of term frequency (TF) and inverse document frequency
(IDF) and evaluates the importance of a term to a document set or one of the documents
in a corpus, the TF‑IDF scores of domain terms are computed as domain term frequency
weights in our approach. Specifically, for the raw text corpus we collected, we employ
the Chinese word segmentation tool pkuseg [40] for segmentation. After removing stop
words and segmenting the Chinese text, the TF‑IDF scores of each term are calculated as
the weight feature for domain term frequency. Since there are N documents in total, term
t has N TF‑IDF scores, and we integrate these scores using the averaging strategy because
this approach preserves more features, thereby better assessing the weight of a term in
the corpus and obtaining the final feature for domain term frequency. The method for
calculating domain term frequency weights is as follows:

Wt,d = t ft,d · log(
N

1 + d ft
), (1)

Weightt =
∑N

i=0 Wi
t,d

N
, (2)

where t ft,d represents the term frequency of term t in document d, log is the natural log‑
arithm, d ft represents the number of documents out of N that contain term t, Wt,d is the
TF‑IDF score of term t in document d, andWeightt represents the averageweighted domain
term frequency weight of term t. The final domain term frequency weights are shown in
Table 1.
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Table 1. Domain term frequency weight lookup table (DTFW‑lookup Table).

Domain Term Weight

恐龙 (Dinosaur) W恐龙 = 1.36 × 10−3
侏罗纪 (Jurassic) W侏罗纪 = 3.67 × 10−4

中国科学院 (Chinese Academy of Sciences) W中国科学院 = 7.38 × 10−5
… …

Termi W i = x

Usually, theNER based on a dual pointer network and theMRC‑QAmechanism faces
the problem of inconsistency between training and prediction tasks. That is, during train‑
ing, fitting is carried out with the correct entity type as a prompt, while in prediction tasks,
it is often not possible to specify the correct prompt for prediction, meaning the prediction
task also includes an entity classification task. To alleviate this inconsistency and enhance
the model’s generalization ability, we propose a data augmentation method based on the
set difference between all entity types and sample entity types.

As shown in Figure 3, our dataset includes 13 types of entities, denoted as the set
AllTypes = {Strata, FossilClassification (FossilClass), Subject, Event, Position, Time, Fea‑
ture, Person, Organization, GeologicalTime (GeoTime), Address, Fossil, BiologicalClassifi‑
cation (BioClass)}, while the current set of entity types included in the samples is denoted
as set Goldsample. Through set difference operations on the sets, the entity types not in‑
cluded in the current samples are generated. In this way, after calculating the difference
set for all samples, the labels of the enhanced data are set to an empty set to avoid intro‑
ducing noisy data, as follows :

Di f f sample =
{

type ∈ AllTypes : type /∈ Goldsample

}
, (3)

DAitem
sample =

{
Textsample, EntityType = Di f f item

sample, Label = Ø
}

, (4)

where Di f f item
sample is an element in the collection Di f f sample, and DAitem

sample is a piece of data
generated when the entity type is Di f f item

sample.
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Goldsample to obtain augmented data.

Then, based on the given predefined data augmentation ratio, a certain number of
augmented data are generated through a random sampling algorithm and merged into
the training dataset for model training. By introducing augmented data, the model’s per‑
ception of entity types not present in the sample data is strengthened, effectively alleviating
the inconsistency between the training and prediction tasks.
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3.2. BERT Encoder
To effectively capture textual information from text, the encoder is constructed based

on a pretrained language model, BERT. Given an input (i.e., a sentence or a word)
S =

[
s1, s2, . . . , s|S|

]
, the encoder tokenizes it using a predefined vocabulary and encodes si

into a vector representation si. For detailed steps, please refer to the literature [19]. The en‑
coder embeds the text S into vector representations ΓS = Rlen×dim, where len represents the
maximum acceptable input length for the model, dim represents the dimension of BERT
token embedding vectors, and in the case of BERT‑base dim is set to 768. Generally, ΓSj
can be considered as the embedding of the jth token, and it is worth noting that due to the
usage of the WordPiece tokenization algorithm, variations may occur in our methods. Un‑
like other Chinese NERmodels, we use theWordPiece tokenization algorithm to represent
Chinese characters as independent tokens and English as their subword representations,
and the method can simplify the model input and reduce the complexity of model. Ad‑
ditionally, based on BERT, we fine‑tune the model in conjunction with the MRC‑QA task.
The detailed steps are as follows:

input = “ < entity_type >,< text > ”, (5)

tokenized = WordPiece(input) = {t1, t1, . . . , tn}, (6)

χi = e(ti). (7)

In the above, using the provided text sequence and its corresponding entity type
entity_type, we construct the input and obtain tokenized representations for the input using
the WordPiece algorithm. The variable χi represents the embedding vector by BERT for
the given tokenized representation.

3.3. Lexicon Encoder
Tobetter harnessChinese lexicon‑level information, wehave introduced lexicon bound‑

ary and frequency weight features. Given the input, it is segmented into individual lexi‑
cons or characters after applying a segmentation tool, as follows:

SegIdinput= {(0, a), (a + 1, b), . . . , (x, y), . . . , 0 . . . , 0}, (8)

where (x, y) represents the segment composed of the characters from the xth to the yth
position in the input sequence, in otherwords, in the ordered set of SegIdinput, each element
represents a Chinese lexicon or character. Let us define a function f (i, j)—element i repeats
j times results in an ordered set, as follow:

f (i, j) = {i repeats j times}, (9)

giving
(

x, y)id ∈ SegIdinput , where id is the index of (x, y)id in the ordered set SegIdinput,
and we substitute f (i, j) to obtain f (id, y − x), where y − x is the length of the current
lexicon or character segment. In summary, we obtain the lexicon boundary features of
the input sequence through Algorithm 1, and its time complexity is O(n), where n is the
length of the input sequence. At the same time, if n does not reach the maximum allowed
length of the model, padding with zeros is applied after the last element of boundary until
it reaches its maximum. On the other hand, as shown in Figure 4, when there are three
entities which belong to the same type (BioClass) in a given input (lexicons 0, 2, and 4),
without considering relative positional information, the model may arbitrarily combine
their boundaries in the output. For example, the phrase “恐龙位于爬行动物和鸟类” (Di‑
nosaurs are between reptiles and birds, with characters between the start of lexicon 0 and
the end of lexicon 4) could be incorrectly combined into a single BioClass entity. With the
inclusion of boundary information, the model becomes sensitive to the length and span
of entities.
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Algorithm 1 Lexicon Boundary Generation

Input: Ordered Set o f SegIdinput
Output: Ordered Set o f Lexicon Boundary
 1: boundary = {}
 2: for each (x, y)id ∈ SegIdinput do
 3:        item = {}
 4:        for each index ∈ [0, y − x] do
 5:               item = item ∪ {i}
 6:        end for
 7:        boundary = boundary ∪ item
 8: end for
 9: return boundary

Given the boundaryi, we look up the boundary index embedding ei from the special‑
ized embedding matrix. This matrix contains fixed‑size embeddings for each boundary
index 0, 1, 2, …, and these embeddings are learned through backpropagation.

Similarly, (x, y)weight ∈ SegIdinput, where weight represents the term frequency weight
of the xth to yth subsequence of the input, and this weight value is obtained through the
DTFW‑lookup Table in Section 3.1. Substitute f (i, j) to obtain f (weight, y − x), where y− x
is the length of the current segment. This step will result in the lexicon or character fre‑
quency weight representation wi for the input. Specifically, when the lexicon or character
do not exist in the DTFW‑lookup Table, we use zero as the default value, as follows:

wi =

{
DTFW − Lookup Tableterm, i f term ∈ DTFW − Lookup Table

0, else.
(10)

Ultimately, for the given boundaryi, the lexicon‑level feature representation at position i
is as follows (whereas ◦ denotes concatenation):

θi = ei ◦ wi. (11)

Simultaneously, in order to capture features of different dimensions for boundaries
and weights, we employ a multi‑head self‑attention mechanism for feature fusion. The
workflow of the above algorithm is illustrated in Figure 5.

In this mechanism, the multi‑head self‑attention mechanism calculates attention weights
and outputs through the query (Q), key (K), and value (V) inputs. Specifically, for the in‑
puts Q, K, and V, the calculation formula for the output vectors is as follows:

MultiHead(Q, K, V) = head1 ◦ head2 ◦ . . . ◦ headh × Wo, (12)

where WO ∈ Rhdv×dmodel , and headi is calculated as follows:
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headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, (13)

where Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (14)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv (h represents the number of

heads, and dmodel is the dimension of the input vector. Generally, dk = dv = dmodel/h).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 22 
 

  
(a) (b) 

Figure 5. (a) Method for enhancing Chinese lexicon-level features: after undergoing Chinese word 
segmentation processing, we obtain the lexicon-level representation. We encode and embed its 
boundaries while simultaneously looking up the DTFW-lookup Table to acquire domain term fre-
quency weights, and concatenate embeddings and weights; (b) after concatenating them, we use the 
multi-head self-attention mechanism for feature fusion, with the final output serving as the Chinese 
lexicon-level features vector. 

In this mechanism, the multi-head self-attention mechanism calculates attention 
weights and outputs through the query (Q), key (K), and value (V) inputs. Specifically, for 
the inputs Q, K, and V, the calculation formula for the output vectors is as follows: 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = ℎ𝑒𝑎𝑑 ∘ ℎ𝑒𝑎𝑑 ∘. . .∘ ℎ𝑒𝑎𝑑 × 𝑊 , (12) 

where 𝑊 ∈ ℝ × , and ℎ𝑒𝑎𝑑  is calculated as follows: ℎ𝑒𝑎𝑑 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 , 𝐾𝑊 , 𝑉𝑊 ), (13) 

𝑤ℎ𝑒𝑟𝑒 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑑 )𝑉, (14) 

where 𝑊 ∈ ℝ × , 𝑊 ∈ ℝ × , 𝑊 ∈ ℝ ×   (ℎ  represents the number of 
heads, and 𝑑  is the dimension of the input vector. Generally, 𝑑  = 𝑑  = 𝑑 /h). 

3.4. Classifier 
To address the challenges posed by long entities and nested entities, we apply a dual 

pointer fully connected network classifier. The classifier consists of two pointers: one in-
dicating the start position of an entity and the other indicating the end position. In addi-
tion, a sigmoid function is applied to map the fully connected network output into the [0, 
1] range. Finally, based on a specified 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the output is discretized into {0, 1} for 
representation, where “1” indicates that the position is the start position or end position 
of the entity, and “0” indicates the opposite. The specific classification process is illus-
trated in Figure 6. Given the embedding vector representation of the input, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, is 
determined as follows: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝜒 ∘ 𝜃 . (15) 

We utilize the 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 vector as the input for the classifier and decode based on pre-
defined 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as follows: 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡), (16) 
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segmentation processing, we obtain the lexicon‑level representation. We encode and embed its
boundaries while simultaneously looking up the DTFW‑lookup Table to acquire domain term fre‑
quency weights, and concatenate embeddings and weights; (b) after concatenating them, we use the
multi‑head self‑attention mechanism for feature fusion, with the final output serving as the Chinese
lexicon‑level features vector.

3.4. Classifier
To address the challenges posed by long entities and nested entities, we apply a dual

pointer fully connected network classifier. The classifier consists of two pointers: one indi‑
cating the start position of an entity and the other indicating the end position. In addition,
a sigmoid function is applied to map the fully connected network output into the [0, 1]
range. Finally, based on a specified threshold, the output is discretized into {0, 1} for repre‑
sentation, where “1” indicates that the position is the start position or end position of the
entity, and “0” indicates the opposite. The specific classification process is illustrated in
Figure 6. Given the embedding vector representation of the input, context, is determined
as follows:

contexti = χi ◦ θi. (15)

We utilize the context vector as the input for the classifier and decode based on pre‑
defined threshold, as follows:

output = classi f ier(context), (16)

positions
i , positione

i =

{
1, i f positioni > threshold
0, else,

(17)

where positions
i denotes the start position classifier’s output at position i, and positione

i
denotes the end position classifier’s output at position i.
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3.5. Loss Function
The loss function is applied to gauge the performance of the model, specifically the

disparity between the model’s predictions and the actual targets. This discrepancy is typi‑
cally referred to as the loss value, and the objective of the loss function is to minimize this
value. When the model’s predictions perfectly align with the targets, the loss value is zero,
indicating optimal model performance. We apply the binary cross‑entropy loss (BCELoss)
function to compute the disparity between the model’s outputs and the actual labels.

Additionally, the AdamW [41] optimizer, which is a variant of the Adam [42] opti‑
mizer, introduces a weight decay term to control the regularization of model parameters.
Weight decay helps prevent overfitting by encouraging the model to use simpler param‑
eter settings, thereby enhancing generalization capabilities. It is important to note that
we do not explicitly introduce a regularization term in the loss function. In our loss func‑
tion, we calculate the difference between the model’s outputs and the true labels using
binary cross‑entropy, and we apply the AdamW optimizer with weight decay to enhance
the model’s generalization without explicitly introducing a regularization term in the loss
function, as follows:

Loss =
1
2
(Ls + Le), (18)

where Ls denotes the start position classifier’s loss and Le denotes the end position classi‑
fier’s loss. A sentence consists of N tokens, L is calculated as follows:

L(Y, P) = − 1
N

N

∑
i=1

[Z(y i, pi) +Z(1 − yi, 1 − pi)], (19)

where Z(y, p) = y ∗ log(p), (20)

where log is the natural logarithm.
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4. Experiments
4.1. Preparation
4.1.1. Dataset

We evaluated our proposed method on the following datasets: Resume [24], Youku [43],
DuIE [44], and our own PPOST dataset.

The Resume dataset is a ChineseNERdataset focused on resumes. Youku provides an
open NER dataset in the entertainment domain. DuIE is a large‑scale manually annotated
dataset, and all sentences in this dataset are extracted from Baidu Baike and Baidu News
Search. The text in this dataset covers various domains found in real‑world applications,
including news, entertainment, and user‑generated content. Due to the large size of the
dataset, we randomly sampled a portion of the data, referred to as SubDuIE, for evaluation.
Table 2 shows the details of these datasets.

Table 2. Statistics on the four dataset for the experiments.

Dataset Resume Youku SubDuIE PPOST 1

Train 3821 8001 19,521 13,124
Eval 463 1000 1950 1396
Test 477 1001 1948 1395
Types 8 9 13 13
Avg 2 33 18 66 83

1 The PPOST dataset includes 9% of data generated using the data augmentation method; 2 “Avg” represents the
average number of characters in the samples of this dataset.

The PPOST dataset consists of manually labeled entity data in the domain of Chinese
paleontology popular science. The label distribution of the PPOST dataset is illustrated in
the Figure 7. It can be seen that even after data augmentation processing, the phenomenon
of a long‑tail distribution still exists in practical production scenarios.
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4.1.2. Evaluation Metrics
To evaluate the performance on Chinese NER, following most of the baselines, we

use precision (P), recall (R) and F1‑score (F1) as the metrics, they are computed on the
entity‑level number of true positives (TP), false positives (FP) and false negatives (FN):

Precision =
TP

TP + FP
∗ 100%, (21)
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Recall =
TP

TP + FN
∗ 100%, (22)

F1 = 2 ∗ Precision × Recall
Precision + Recall

∗ 100%, (23)

where F1 is obtained by directly averaging the F1 scores of all types, that is, Macro‑F1 [45].

4.1.3. Baseline Methods
Aiming to measure and analyze the proposed method, we compare its performance

on the four datasets mentioned above with mainstream models in recent years:
• Methods without lexicon features: BiLSTM‑CRF [16], BERT [19], BERT‑CRF [23], BERT‑

BiLSTM‑CRF [46], BERT‑GlobalPointer [37] and BERT‑Pointer [36]. These models are
based on deep learning, such as BiLSTM or BERT, using sequence labeling or pointer
labeling frameworks. In particular, these models do not introduce Chinese lexicon‑
level features.

• Methods with lexicon features: lattice LSTM [24] and lexicon‑enhanced BERT
(LEBERT) [28]. Lattice LSTM can be seen as an extension of the character‑based NER
model, which adds words as input and additional gates to control information flow;
LEBERT directly integrates external lexicon knowledge into the BERT layer through
the lexicon adapter layer.

4.1.4. Training
In all experiments, we used the same BERT pre‑trained model. Due to differences

between datasets, we adjusted batch size and max_seq_len separately for each dataset,
and all experiments were conducted on a single NVIDIA (Santa Clara, CA, USA) GeForce
RTX 3070Ti GPU. For specific details and settings of other hyperparameters, please refer
to Tables A1–A3 in Appendix A.

4.2. Results and Analysis
4.2.1. Comparative with Other Models

To validate the effectiveness of the proposed method in the Chinese NER, we ap‑
plied an early stopping mechanism and calculated the average results over five runs of
experiments. Tables 3 and 4 present the experimental results for the models mentioned in
Section 4.1.3.

Table 3. Precision, recall, and F1‑score statistics on the Resume and Youku datasets.

Model
Resume Youku

P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM‑CRF 93.70 93.30 93.50 [47] 80.31 79.22 79.76
BERT 94.20 95.80 95.00 [19] 85.06 76.75 80.69

BERT‑CRF ‑ ‑ 96.87 [48] 83.00 81.70 82.40 [43]
BERT‑BiLSTM‑CRF ‑ ‑ 95.59 [49] 89.56 80.48 84.78

Lattice LSTM 94.81 94.11 94.46 [24] 84.43 81.28 82.82
LEBERT ‑ ‑ 96.08 [28] 91.93 82.10 86.74

BERT‑GlobalPointer 96.94 93.71 95.30 92.76 82.02 87.06
BERT‑Pointer 97.15 94.27 95.69 [27] 95.06 83.47 88.89
BERT‑LPN 98.12 95.70 96.90 95.74 83.23 89.05

Significant bold values are the current SOTA in performance achieved, and the bold in the last row of these tables
denotes the new achievements we obtained in our model.

Experimental results on two shorter‑text datasets, Resume andYouku, and two longer‑
text datasets, SubDuIE and PPOST, show that our model improves F1‑score by 0.03%,
0.16%, 1.27%, and 2.28%, respectively, compared to previous models. This demonstrates
that our feature fusion strategy effectively utilizes Chinese lexicon‑level information, en‑
hancesChineseNERperformance. However, the advantages of ourmethod are not fully re‑
flected in the Resume and Youku datasets, where the sample texts are shorter, and entities
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are simpler. Moreover, the DTFW‑lookup Table for the original corpus of these datasets
was not calculated. The more significant improvement on longer‑text datasets may be
attributed to the use of the WordPiece algorithm, simplifying the model input and inte‑
grating Chinese lexicon‑level features, enhancing the model’s generalization performance
and feature capture capability. Specifically, on the PPOST dataset, compared to sequence
labeling models, the performance of pointer labeling models has significantly improved.
This experimental result indicates that pointer labeling models can effectively improve the
recognition performance of long and nested entities in the domain of Chinese paleontology
popular science.

Table 4. Precision, recall, and F1‑score statistics on the SubDuIE and PPOST datasets.

Model
SubDuIE PPOST

P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM‑CRF 72.37 58.71 64.83 61.14 47.37 53.38
BERT 79.48 55.49 65.35 66.79 46.88 55.09

BERT‑CRF 78.60 57.66 66.52 68.82 46.40 55.43
BERT‑BiLSTM‑CRF 76.65 56.71 65.19 67.78 46.22 54.96

Lattice LSTM 79.00 62.68 69.90 71.07 50.38 58.96
LEBERT 83.31 61.58 70.81 79.48 53.13 63.69

BERT‑GlobalPointer 83.20 61.84 70.95 80.40 67.98 73.67
BERT‑Pointer 83.67 61.81 71.10 81.50 71.60 76.23
BERT‑LPN 84.47 63.30 72.37 83.50 74.07 78.51

4.2.2. Comparative with Various Entity Types
To comprehensively evaluate our model’s recognition performance on various enti‑

ties in our domain, we collected the performance of our model in identifying different
entities on the PPOST dataset, as shown in Figure 8. The experimental results indicate that
the recognition accuracy of various entities ismainly positively correlatedwith the number
of labels in the dataset. This may be due to the scarcity of samples for certain types, leading
to the model’s inability to learn richer features of these type entities. Specifically, since we
define the Feature type mostly for the attributes of things, such as the volume of fossils
or the appearance of ancient organisms, and with diverse characteristics, the recognition
performance for this part of entities is relatively lower. Therefore, it is more appropriate
to consider conducting attribute extraction tasks for these entities.
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To evaluate the recognition performance of our model for long entities and nested en‑
tities, we sampled 324 instances of long entitieswith an entity length exceeding 8 characters
and an average length of 10 characters and 213 instances of nested entities from the PPOST
dataset. The relevant experimental results are shown in Table 5. The results indicate that
compared to models based on CRF, models based on pointer labeling can effectively en‑
hance the recognition performance of long and nested entities. Moreover, our BERT‑LPN
model achieves the best performance among the models mentioned.

Table 5. Precision, recall, and F1‑score statistics of long entities and nested entities on the PPOST.

Model
Long Entities Nested Entities

P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM‑CRF 43.36 39.76 41.48 47.68 40.01 43.50
BERT 46.90 41.47 44.02 45.19 37.31 40.87

BERT‑CRF 48.43 41.29 44.58 42.17 35.31 38.44
BERT‑BiLSTM‑CRF 49.00 40.39 44.28 43.16 37.99 40.41

Lattice LSTM 51.49 45.62 48.38 44.11 41.01 42.50
LEBERT 52.04 45.84 48.74 45.80 42.61 44.15

BERT‑GlobalPointer 57.42 53.73 55.51 65.80 56.76 60.95
BERT‑Pointer 59.00 54.71 56.77 67.67 58.30 62.64
BERT‑LPN 60.39 55.19 57.67 68.32 59.26 63.47

4.2.3. Comparative with Complexity of Various Models
Compared to neural networks, CRF models themselves have a relatively high time

performance overhead [50], with an overall time complexity of O
(
m ∗ n2), where m rep‑

resents the length of the observed sequence, and n denotes the number of hidden states.
To assess the computational requirements of our model, we only recorded the trainable
parameters and training speed of the pointer labeling models, as shown in Table 6. The ex‑
perimental results indicate that the additional time performance overhead of our method
is negligible. This is because, through preprocessing, we obtained the DTFW‑lookup Ta‑
ble, eliminating the need for repetitive computation of lexicon frequency weight during
training, requiring only table lookup operations. Additionally, compared to the BERT‑
GlobalPointer model, we used only two fully connected layers for positional marking,
reducing the parameters of fully connected layers and improving the training speed by
15%. In contrast to the BERT‑Pointer model, we need to calculate the boundaries of lexi‑
con and look up the DTFW‑Lookup Table to obtain lexicon frequency weights. Moreover,
the boundary embedding layer is trainable, resulting in an additional 1.7% performance
overhead.

Table 6. Parameters and training speed statistics of the GlobalPointer, LPN, and Pointer models
based on BERT on the PPOST dataset.

Model Parameters Speed

BERT‑GlobalPointer 29.00 M 1× *
BERT‑LPN 28.97 M 1.15× *

BERT‑Pointer 28.94 M 1.17× *
* 1.15× and 1.17× represent 15% and 17% faster than 1×, respectively.

4.2.4. Comparative with Various Strategies
In order to investigate the contribution of each strategy to our approach, we conducted

a series of ablation experiments on the SubDuIE and PPOST datasets, and the results are
shown in Figure 9.

The ablation studies were designed as follows:
• Strategy 1: Strategy of adding only domain term frequency weight features without

additional methods for feature fusion;
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• Strategy 2: Strategy of adding only Chinese lexicon boundary features without addi‑
tional methods for feature fusion;

• Strategy 3: Strategy of simultaneously adding Chinese lexicon boundary and domain
term frequency weight features without additional methods for feature fusion;

• Strategy 4: Strategy of simultaneously adding Chinese lexicon boundary and domain
term frequency weight features, using the BiLSTM for feature fusion.
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Figure 9. Performance comparison of different strategies on the SubDuIE and PPOST datasets in
terms of F1‑score. The Complete represents our proposed BERT‑LPNmodel, simultaneously adding
Chinese lexicon boundary and domain term frequencyweight features and using themulti‑head self‑
attention for feature fusion.

We remove any strategy that will lead to a decrease in entity recognition accuracy. Specif‑
ically, compared to the original pointer network, Strategy 1, Strategy 2, and Strategy 3
have all shown improvements on our experimental SubDuIE and PPOST datasets. Their
F1‑scores increased by 0.28%, 0.54%, 0.67% and 0.67%, 0.72%, 1.84%, respectively. This
indicates that lexicon boundary features and domain term frequency weight features can
effectively integrate Chinese lexicon‑level features, improving the performance of theNER
model. Compared to Strategy 3, Strategy 4 and the Complete model showed F1‑score
improvements of 0.13% and 0.44% and 0.18% and 0.44%, respectively, on the above two
datasets. This suggests that the feature fusion of Chinese lexicon‑level feature vectors can
more effectively integrate contextual information features, enhancing the performance of
the NER model. Compared to Strategy 4, the Complete model showed F1‑score improve‑
ments of 0.31% and 0.26% on the above two datasets, respectively, indicating that themulti‑
head self‑attention mechanism better handles dependencies between information.

4.2.5. Comparative with Various Data Augmentation Ratios
To verify the effectiveness of the data augmentation method, we conducted an addi‑

tional set of experiments on the BERT‑LPN model. The experiments were performed on
the PPOST dataset, and the results are shown in Figure 10. The experimental results in‑
dicate that, on the PPOST dataset, our proposed data augmentation method has a certain
performance improvement within the enhancement ratio range of (0, 0.1], where the ratio
value is the ratio of the generated data to the original total data. This improvement may be
attributed to the model further learning the ability to identify entities that do not exist in
the input within this enhancement ratio range. However, when the ratio is more than 0.1,
the model’s performance sharply declines, and the performance is even worse than that of
the original dataset. This may be due to an excess of augmented data in the training set,
causing the model to preferentially predict the absence of entities in the input.
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4.3. Extraction Results and Error Analysis
In this study, a set of experiments were conducted to validate the extracted NER re‑

sults and analyze errors. Some examples of experimental results are shown in Table 7.
From the experimental data with IDs 1 and 2, it can be observed that our model can ef‑
fectively recognize nested entities, such as “寒武纪地层” (Cambrian strata), and long enti‑
ties, like “古脊椎动物与古人类研究所” (Institute of Vertebrate Paleontology and Paleoan‑
thropology). From the experimental data with IDs 3 and 4, it is evident that when the
input data contains multiple entities of the same type (Address: “湖南” (Hunan), “江西”
(Jiangxi), “浙江” (Zhejiang), “安徽” (Anhui)), our model, with the introduction of relative
positional information, can effectively distinguish the boundaries of these four entities, re‑
ducing the likelihood of erroneously combining arbitrary start and end positions to form
incorrect entities.

Additionally, we summarized and analyzed the model’s recognition errors, identify‑
ing the following main issues:
1. We cannot accurately identify some continuous entity characters separated by the

symbol “—”. For example, experimental data with ID 5 indicates that in the entity
“中—上奥陶统” (Middle—Upper Ordovician), “中—” (Middle—) is not considered
part of the entity. This may be due to a limited number of samples for such entities
or the negative impact of the “—” symbol on the recognition of contextual features;

2. We cannot accurately identify entities with uncommon terms as boundaries. For in‑
stance, experimental datawith ID 6 shows that in the entity “獬豸盘角鹿” (Discokeryx
xiezhi), themodel fails to recognize “獬豸” (xiezhi) as part of the entity. This could be
because “獬豸” (xiezhi) is an uncommon term, and its domain term frequencyweight
is relatively low, preventing the model from fully learning the features of uncommon
lexicons.
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Table 7. Illustrative examples of recognition results.

ID Sentence Ground Truth Prediction

1 “寒武纪地层记录”
(Record of Cambrian strata)

寒武纪 (Cambrian),
寒武纪地层 (Strata).

寒武纪 (Cambrian)
√
,

寒武纪地层 (Strata)
√
.

2

“中国科学院古脊椎动物与古人类研究所”
(Institute of Vertebrate Paleontology

and Paleoanthropology,
Chinese Academy of Sciences)

中国科学院
(Chinese Academy of Sciences),
古脊椎动物与古人类研究所

(Institute of Vertebrate Paleontology
and Paleoanthropology).

中国科学院
(Chinese Academy of Sciences)

√
,

古脊椎动物与古人类研究所
(Institute of Vertebrate

Paleontology and
Paleoanthropology)

√
.

3

“主要分布于我国湖南,
江西、浙江、安徽等地”

(Mainly distributed in Hunan, Jiangxi,
Zhejiang, Anhui and other places in China)

湖南 (Hunan),
江西 (Jiangxi),
浙江 (Zhejiang),
安徽 (Anhui).

湖南 (Hunan)
√
,

江西 (Jiangxi)
√
,

浙江 (Zhejiang)
√
,

安徽 (Anhui)
√
.

4
“恐龙位于爬行动物和鸟类之间的十字路口”
(Dinosaurs were at the crossroads between

reptiles and birds)

恐龙 (Dinosaurs ),
爬行动物 (Reptiles),
鸟类 (Birds).

恐龙 (Dinosaurs )
√
,

爬行动物 (Reptiles)
√
,

鸟类 (Birds)
√
.

5
“我国华南地区中—上奥陶统黑色页岩”
(Middle‑Upper Ordovician black shale

in South China)

华南地区 (South China),
中—上奥陶统

(Middle‑Upper Ordovician).
华南地区 (South China)

√
,

上奥陶统 (Upper Ordovician)×.

6
“獬豸盘角鹿属于长颈鹿科”

(Discokeryx xiezhi belongs to the
family Giraffeidae)

獬豸盘角鹿 (Discokeryx xiezhi),
长颈鹿科 (Giraffeidae).

盘角鹿 (Discokeryx) ×,
长颈鹿科 (Giraffeidae)

√
.

“×” represents entity type or boundaries recognition errors. “
√
” represents complete and accurate recognition

of entity type and boundaries.

5. Conclusions and Future Work
In the domain of Chinese paleontology popular science, NER is a fundamental step for

extracting information and knowledge from a massive amount of popular science articles
or books. In this study, we researched and compared mainstream Chinese deep learning‑
based NERmethods to address the challenges in our domain. We constructed a corpus for
the Chinese paleontology popular science domain and its annotated NER dataset, PPOST.
We proposed a domain NER model, BERT‑LPN, based on the BERT pre‑trained language
model. The model was applied to four different datasets, and its performance was eval‑
uated in terms of precision, recall, and F1‑score. The experimental results show that the
proposed BERT‑LPN method significantly outperforms baseline models and other deep
learning models in both general domain and Chinese paleontology popular science texts.

The contributions of this research can be viewed from two perspectives. Methodolog‑
ically, this study introduces a deep learning model named BERT‑LPN. Experimental re‑
sults demonstrate that, compared to other deep learning models, BERT‑LPN performs
better in extracting entities, providing multiple advantages for Chinese NER, including
the following:
1. Domain‑specific information: In the task of Chinese NER within a specific domain,

lexicon‑level features can encompass domain‑specific lexicons, thereby enhancing the
model’s performance within that domain;

2. Improved semantic understanding: Lexicon‑level features can assist themodel in bet‑
ter comprehending the semantic information within the text, capturing the meanings
of lexicons and their contextual relationships. This helps themodel inmore accurately
distinguishing between different entity types in longer texts.
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From an application perspective, this study developed a Chinese paleontology popu‑
lar science NER dataset, promoting the development of NER, popular science knowledge
graphs, and popular science education in the Chinese paleontology domain. Moreover, in
other NER tasks in different domains, researchers typically have easy access to original
corpora, and our method relies only on the target domain’s corpus, greatly increasing the
possibility of generalizing our model to other domains. Future research will focus on the
following three aspects:
• Corpus construction is an ongoing process, and we will further optimize the Chinese

paleontology popular science corpus and PPOST dataset. Specifically, for the Feature
entity type, it will be split into more specific attributes to further improve NER per‑
formance;

• Studying the performance of our model in other Chinese domains to promote the
development of Chinese NER;

• Studying how to handle ambiguous entity boundaries and uncommon terms situa‑
tions based on our approach.
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Appendix A
There are some details about the experimental process using systems, such as BERT,

embedding layer, and multi‑head self‑attention, that require fine‑tuning of the hyperpa‑
rameters, and some details about this process are given in the following Tables A1 and A2.
Some hardware and software environments for the experiments are given in the following
Table A3.

https://tianchi.aliyun.com/dataset/144345
https://github.com/allanj/ner_incomplete_annotation
https://www.luge.ai/#/luge/dataDetail?id=5
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Table A1. Some common hyperparameter settings about the experiments.

Hyperparameter Value

Data Augmentation Ratio 0.09
Epoch 20

BERT Model bert‑base‑chinese
BERT LR 1 × 10−5

BERT Dropout Rate 0.35
Linear LR 3 × 10−4
Optimizer AdamW

Boundary Embedding Dim 16
Multi‑head self‑attention head 8

Threshold 0.6

Table A2. Some hyperparameter settings about the experiments on the four datasets.

Dataset max_seq_len Batch Size

Resume 64 64
Youku 64 64
SubDuIE 256 32
PPOST 256 32

Table A3. Some hardware and software environments about the experiments.

Environment Value

Processor 12th Gen Intel(R) Core(TM) i5‑12600KF
RAM 32.0 GB
GPU NVIDIA GeForce RTX 3070Ti GPU 8GB

Python Version 3.8.16
PyTorch Version 2.0.0
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